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SUMMARY

Invasive pulmonary aspergillosis is a leading cause
of infection-associated mortality in immunocompro-
mised individuals. Aspergillus fumigatus infection
produces ligands that could activate inflamma-
somes, but the contribution of these host defenses
remains unclear. We show that two inflammasome
receptors, AIM2 and NLRP3, recognize intracellular
A. fumigatus and collectively induce protective
immune responses. Mice lacking both AIM2 and
NLRP3 fail to confine Aspergillus hyphae to inflam-
matory foci, leading to widespread hyphal dissemi-
nation to lung blood vessels. These mice succumb
to infection more rapidly than WT mice or mice
lacking a single inflammasome receptor. AIM2 and
NLRP3 activation initiates assembly of a single
cytoplasmic inflammasome platform, composed of
the adaptor protein ASC along with caspase-1 and
caspase-8. Combined actions of caspase-1 and
caspase-8 lead to processing of pro-inflammatory
cytokines IL-1b and IL-18 that critically control the
infection. Thus, AIM2 and NLRP3 form a dual cyto-
plasmic surveillance system that orchestrates re-
sponses against A. fumigatus infection.

INTRODUCTION

Invasive pulmonary aspergillosis is a leading cause of deaths

in immunocompromised individuals (Segal, 2009). Aspergillus

fumigatus is themajor cause of invasive pulmonary aspergillosis.

Aspergillus is a ubiquitous saprophytic mold that produces a

large number of airborne spores known as conidia. These spores

are inhaled on a daily basis and do not cause disease in healthy

individuals owing to pulmonary defense mechanisms. In immu-

nocompromised individuals, however, inhaled conidia metamor-

phosize into hyphal form to cause disease. Individuals who are

highly susceptible to aspergillosis include transplant patients,
Cell Ho
patients with leukemia, those undergoing prolonged corticoste-

roid therapy or chemotherapy, individuals with chronic granulo-

matous disease, and those infected with HIV (Dagenais and

Keller, 2009). Despite the advent of newer anti-fungal agents,

mortality rates in transplant recipients with invasive aspergillosis

ranged from 60% to over 90% (Singh and Paterson, 2005).

Innate immune defenses are critical in conferring host resis-

tance to aspergillosis (Gresnigt and van de Veerdonk, 2014).

Alveolar macrophages are able to clear conidia by phagocytosis

to prevent spore germination (Philippe et al., 2003). Conidia that

escape effector functions of alveolar macrophages develop into

germtubes and hyphae, whereby effective killing and control

require neutrophils (Prüfer et al., 2014). A number of fungal com-

ponents withinA. fumigatus serve as ligands for a family of innate

immune receptors known as pattern-recognition receptors.

Recognition of Aspergillus by host cells requires Toll-like recep-

tors (TLRs) TLR2 (Mambula et al., 2002; Meier et al., 2003), TLR4

(Netea et al., 2003; Wang et al., 2001), and TLR9 (Ramaprakash

et al., 2009; Ramirez-Ortiz et al., 2008) and C-type lectin recep-

tors (CLRs) dectin-1 (Hohl et al., 2005; Steele et al., 2005) and

dectin-2 (Barrett et al., 2009). Activation of these surface-associ-

ated TLRs or CLRs by Aspergillus conidia or hyphae mediates

pro-inflammatory cytokine production and the synthesis of

biologically inactive pro-IL-1b, which requires further processing

(Gresnigt and van de Veerdonk, 2014).

Host cells are also equipped with cytoplasmic sensors,

including AIM2-like receptors (ALRs) and nucleotide-binding

domain and leucine-rich repeat-containing family receptors

(NLRs). Activation of these sensors triggers assembly of the

inflammasome, a multi-meric protein complex containing

caspase-1 that converts pro-IL-1b and pro-IL-18 into their bio-

logically active forms. Inflammasome assembly requires the

adaptor protein ASC, which bridges the inflammasome recep-

tors with caspase-1. Inflammasome receptors include AIM2,

NLRP1, NLRP3, and NLRC4, which recognize diverse path-

ogen-associated or danger-associated molecular patterns. For

example, AIM2 recognizes dsDNA (Fernandes-Alnemri et al.,

2009; Hornung et al., 2009; Rathinam et al., 2010; Roberts

et al., 2009), whereas NLRP3 responds to a range of activators,

including ATP, silica, bacterial toxin, RNA, and DNA (Cassel

et al., 2008; Dostert et al., 2008; Hornung et al., 2008; Kailasan
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Figure 1. NLRP3 and AIM2 Inflammasomes

Provide Resistance to Aspergillus-Induced

Mortality

(A) Survival of mice infected with 1 3 105

A. fumigatus conidia after immunosuppression

with cyclophosphamide and cortisone acetate.

(B) Gross pathology of A. fumigatus-infected lungs

collected on day 3.

(C) Gomori methenamine silver (GMS), H&E, and

myeloperoxidase (MPO) staining of A. fumigatus-

infected lungs collected on day 3. Data represent

two independent experiments. (A) Log-rank test,

**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not

statistically significant. See also Figures S1 andS6.
Vanaja et al., 2014; Kanneganti et al., 2006; Mariathasan et al.,

2006; Sander et al., 2011).

The role of inflammasomes in the host response to fungal

pathogens is well established for Candida albicans. In human

primary monocytes, N-mannan-linked residues, chitin, and

b-glucan from C. albicans efficiently induce IL-1b secretion

owing to the presence of constitutively active caspase-1 (Lam-

kanfi et al., 2009; van de Veerdonk et al., 2009). In mouse bone

marrow-derived dendritic cells (BMDCs) or macrophages,

TLR2, dectin-1, and Syk provide a priming signal, while NLRP3

assembles the inflammasome in response to C. candida infec-

tion (Gross et al., 2009; Hise et al., 2009; Joly et al., 2009). Little

is known regarding the role of inflammasomes in the recognition

and control of A. fumigatus infection. A previous study suggests

that hyphal fragments derived from A. fumigatus induce reactive

oxygen species (ROS) that provide a potential signal to trigger

the NLRP3-caspase-1 inflammasome in the human THP-1 cell

line (Saı̈d-Sadier et al., 2010). In contrast, another report found

that caspase-1 is dispensable for IL-1b production in human

dendritic cells in response to A. fumigatus conidia (Gringhuis
358 Cell Host & Microbe 17, 357–368, March 11, 2015 ª2015 Elsevier Inc.
et al., 2012). The intracellular receptor

that engages inflammasome activation

and the physiological function of the in-

flammasomes in response to Aspergillus

infection remains to be elucidated.

In this study, we found that both AIM2

and NLRP3 engage the inflammasome

to trigger innate immune responses

against A. fumigatus infection. Mice lack-

ing both AIM2 and NLRP3, but not mice

lacking a single inflammasome receptor,

are hypersusceptible to invasive aspergil-

losis. Bonemarrow transplantation exper-

iments revealed that both the hematopoi-

etic and stromal compartments mediate

protection against fungal dissemination

in the lungs. Mechanistically, both recep-

tors activate caspase-1 and induce

processing of IL-1b and IL-18 by recruit-

ing caspase-8 to the same inflamma-

some complex. IL-1b, IL-18, caspase-8,

and FADD are crucial for preventing

Aspergillus-induced mortality. Together,

these results unveiled a dual cytoplasmic
sensing mechanism governed by AIM2 and NLRP3 to orches-

trate robust host responses against A. fumigatus.

RESULTS

AIM2 and NLRP3 Provide Dual Surveillance and
Protection against Aspergillus Infection
Inflammasome receptors, including NLRP3 and AIM2, activate

caspase-1 and proteolytic cleavage of pro-inflammatory cyto-

kines IL-1b and IL-18. However, the physiological role of inflam-

masomes in the host defense against the fungal pathogen

A. fumigatus is unclear. To investigate this, we infected WT,

Aim2�/�, Nlrp3�/�, Asc�/�, and Casp1�/�Casp11�/� mice with

A. fumigatus conidia intranasally and monitored for their survival

over time. Mice were first immunocompromised with cyclophos-

phamide and cortisone acetate to mimic the immunocompro-

mised status of susceptible individuals. Following intranasal

infection with 105 conidia, we observed that mice lacking either

AIM2 or NLRP3 showed similar susceptibility to Aspergillus-

induced mortality compared to WT mice (Figure 1A). The lungs



of mice lacking either AIM2 or NLRP3 showed similar gross

damage and hemorrhage (Figure 1B). Interestingly, 100% of

themice lacking caspase-1 and -11 and 90%of the mice lacking

ASC, the common inflammasome adaptor protein, succumbed

to infection after 6 and 7 days, respectively (Figure 1A).

We hypothesized that inflammasome receptors are playing

redundant roles in response to A. fumigatus infection. To

address this, we crossed mice lacking AIM2 and NLRP3 to

generate mice deficient in both inflammasome receptors and

infected these with Aspergillus. In line with our hypothesis,

Aim2�/�Nlrp3�/� mice were significantly more susceptible to

aspergillosis, with 80% of the Aim2�/�Nlrp3�/� mice succumb-

ing to Aspergillus infection after 6 days compared to 20% of

the WT mice (Figure 1A). The lungs from mice lacking both

AIM2 and NLRP3 or caspase-1 and -11 showed increased gross

damage and hemorrhage (Figure 1B). Mice that were not given

cyclophosphamide and cortisone acetate failed to succumb to

infection; however,Aim2�/�Nlrp3�/�mice lostmore bodyweight

after 2–4 days post-infection (Figures S1A and S1B).

We performed histological analysis on lung tissues from mice

infectedwithA. fumigatus for 3 days. Gomori methenamine silver

(GMS) staining was used to visualize fungal distribution and

revealed that Aspergillus hyphae localized in small foci within

the lung tissues of WT mice (Figure 1C). In contrast, Aspergillus

hyphae were widespread and failed to confine to foci in

the lung tissues of Aim2�/�Nlrp3�/� or Casp1�/�Casp11�/�

mice (Figure 1C). The majority of blood vessels in the lungs of

Aim2�/�Nlrp3�/� mice were colonized with Aspergillus hyphae,

with hyphae penetrating blood vessel walls and surrounding

connective tissues and alveoli (Figure 1C). We quantified our his-

tologic observations and measured the area covered by hyphae

in lung tissue sections. These analyses showed that the lung area

colonized by Aspergillus hyphae in Aim2�/�Nlrp3�/� mice was

greater than the areas colonized in WT mice (Figure S1C). Mice

lacking either AIM2 or NLRP3 showed a similar susceptibility

to hyphal dissemination compared to WT mice, whereas mice

lacking caspase-1 and -11 phenocopied mice lacking both

AIM2 and NLRP3 (Figure S1C).

H&E staining of lung tissues fromWTmice revealedAspergillus

hyphae surroundedby a large number of immunecells composed

of granulocytes, lymphocytes, histiocytes, macrophages, and

plasma cells (Figure 1C). In addition, we observed a composite

of immune cells encompassing most large blood vessels and

associated foci of hemorrhage extending from perivascular

connective tissues into the surrounding alveoli (Figure 1C).

In lung tissues of Aim2�/�Nlrp3�/� mice, we observed minimal

inflammatory reaction to Aspergillus hyphae; however, edema

and hemorrhage were present where intravascular thrombi were

frequently identified in affected blood vessels (Figure 1C). Quan-

tification of the number of myeloperoxidase (MPO)-positive cells

following immunohistochemistry staining revealed a significantly

greater number of MPO-positive cells in the lungs of

Aspergillus-infected WT mice compared to Aim2�/�Nlrp3�/� or

Casp1�/�Casp11�/� mice (Figures 1C and S1D). There was a

modest reduction in the number of MPO-positive cells in mice

lackingeitherAIM2orNLRP3compared toWTmice (p>0.05; Fig-

ures 1C and S1D). These results collectively indicate that AIM2

and NLRP3 control Aspergillus dissemination within the lung tis-

sues, which confers resistance to Aspergillus-induced mortality.
Cell Ho
AIM2 and NLRP3 Function in the Hematopoietic and
Stromal Compartments to Confer Resistance to
Aspergillus Dissemination
Since AIM2 and NLRP3 provide protection against invasive pul-

monary aspergillosis, we asked whether the bone marrow or the

stromal compartments facilitate host defense against infection.

We generated four groups of mice: (1) irradiated WT mice

receiving WT bone marrow (control), (2) irradiated WT mice

receiving DKO bonemarrow (Aim2- andNlrp3-deficient hemato-

poietic compartment), (3) irradiated DKO mice receiving WT

bone marrow (Aim2- and Nlrp3-deficient stromal compartment),

and (4) irradiated DKO mice receiving DKO bone marrow (global

Aim2 and Nlrp3 deficiency). We infected these mice intranasally

with 105 conidia following immunosuppression procedures and

monitored for their survival. We observed that mice lacking

AIM2 and NLRP3 in both the bonemarrow and stromal compart-

ments were significantly more susceptible to Aspergillus-

induced mortality compared to WT mice receiving WT bone

marrow (Figure 2A). Substantial gross damage was observed

in the lungs of these mice compared to other groups (Figure 2B).

Mice lacking AIM2 and NLRP3 in either the bone marrow or

stromal compartments were slightly more susceptible than WT

controls; however, this was not statistically significant (Fig-

ure 2A). Indeed, GMS staining revealed that mice lacking AIM2

and NLRP3 in either the hematopoietic or stromal compartment

or both were more susceptible to hyphal dissemination in the

lung tissues (Figures 2C and S2A). H&E staining showed that

Aspergillus hyphae were confined to granulomas in WT mice,

whereas mice lacking AIM2 and NLRP3 in either or both the

hematopoietic or stromal compartment had an impaired ability

to recruit immune cells in the presence of Aspergillus hyphae,

an observation which is further confirmed by immunohistochem-

istry staining and quantification of MPO-positive cells (Figures

2D, 2E, and S2B). It is, therefore, likely that AIM2 and NLRP3

operate in both the hematopoietic and stromal compartments

to contribute to the host defense against aspergillosis.

AIM2 and NLRP3 Provide Redundant Roles in Mediating
IL-1b and IL-18 Release in Dendritic Cells
We have shown that both AIM2 and NLRP3 provide host pro-

tection against A. fumigatus. To investigate the mechanism gov-

erning AIM2- and NLRP3-mediated host protection, we infected

mouse BMDCs with germinating conidia and examined the level

of caspase-1 activation and IL-1b or IL-18 release. A. fumigatus

infection induced similar levels of caspase-1 and IL-1b release in

unprimed BMDCs compared to C. albicans (Figures S3A and

S3B). Indeed, priming of BMDCs with LPS was not necessary,

but did enhance caspase-1 activation and IL-1b release (Figures

S3C and S3D). We found that unprimed BMDCs lacking either

NLRP3 or AIM2 retained the ability to induce proteolytic pro-

cessing of caspase-1 followingA. fumigatus infection (Figure 3A).

In line with this observation, Aim2�/� or Nlrp3�/� BMDCs were

able to release IL-1b and IL-18 upon Aspergillus infection (Fig-

ures 3B and 3C). However, we noted that Aim2�/� or Nlrp3�/�

BMDCs consistently produced slightly less IL-1b and IL-18

than WT BMDCs (p > 0.05), despite their ability to produce

similar levels of another pro-inflammatory cytokine, IL-6 (Fig-

ure 3D). BMDCs lacking the inflammasome receptor for bacterial

flagellin or components of the type III secretion system, NLRC4,
st & Microbe 17, 357–368, March 11, 2015 ª2015 Elsevier Inc. 359



A B

C

D

E

Figure 2. Bone Marrow and Stromal Compartments Contribute to the Host Defense against Aspergillus Infection

(A) Survival of bone marrow chimeras infected with 1 3 105 A. fumigatus conidia after immunosuppression with cyclophosphamide and cortisone acetate.

(B) Gross pathology of A. fumigatus-infected lungs collected on day 3.

(C–E) GMS, H&E, and MPO staining of A. fumigatus-infected lungs collected on day 3. (A) Log-rank test, *p < 0.05. ns, not statistically significant. See also

Figure S2.
or the non-inflammasome receptor, NOD1, also exhibited

normal levels of caspase-1 activation and IL-1b secretion (Fig-

ures S3E and S3F).

We observed that BMDCs from Aim2�/�Nlrp3�/� mice in-

fected with A. fumigatus failed to activate caspase-1 and release

the caspase-1 p20 subunit into the supernatant (Figures 3E and

S4A). We confirmed these results and found that BMDCs lacking
360 Cell Host & Microbe 17, 357–368, March 11, 2015 ª2015 Elsevie
ASC also failed to induce caspase-1 activation (Figure 3E). Both

Aim2�/�Nlrp3�/� or Asc�/� BMDCs had an impaired ability to

secrete IL-1b and IL-18 (Figures 3F and S4B). We observed

similar levels of TNF-a, KC, and IL-6 released by WT and

Aim2�/�Nlrp3�/� BMDCs (Figure S4C), suggesting that there is

no global defect in pro-inflammatory cytokine production by

these cells infected with A. fumigatus. In addition, the rate of
r Inc.
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Figure 3. Both NLRP3 and AIM2 Are

Required for Inflammasome Activation in

Response to Aspergillus Infection

(A–F) BMDCs from WT, Nlrp3�/�, Aim2�/�,
Aim2�/�Nlrp3�/�, and Asc�/� mice were infected

with A. fumigatus (MOI 20) for 20 hr. Caspase-1

activation was analyzed from the cell lysate, and

levels of IL-1b, IL-18, or IL-6 released were

analyzed from the supernatant. Data represent

means ± SEM of triplicate wells and are repre-

sentative of three or more independent experi-

ments. (B)–(D) and (F) Tukey’smultiple comparison

test, **p < 0.01; ***p < 0.001; ns, not statistically

significant. See also Figures S3–S5.
phagocytosis, phagocytic index, and conidiocidal activity were

comparable between WT cells and cells deficient in AIM2 and/

or NLRP3 (Figure S4D). These results demonstrate that AIM2

and NLRP3 play redundant roles in driving robust inflammasome

activation to mediate IL-1b and IL-18 release in response to

Aspergillus infection.

AIM2 binds dsDNA to initiate the assembly of the inflamma-

some. Indeed, transfection of Aspergillus DNA into BMDCs acti-

vated the AIM2 inflammasome (Figures S5A and S5B). The pre-

cise activator for NLRP3 during Aspergillus infection is unknown.

A number of mechanisms have been proposed to drive the acti-

vation of the canonical NLRP3 inflammasome, including ROS

and K+ efflux (Muñoz-Planillo et al., 2013; Perregaux and Gabel,

1994; Pétrilli et al., 2007; Zhou et al., 2011). To investigate

whether these signals are required for NLRP3 inflammasome

activation during Aspergillus infection, we infected WT and

Aim2�/� BMDCs with A. fumigatus in the presence of a ROS in-

hibitor N-acetyl-L-cysteine (NAC) or high extracellular K+. Inhibi-

tion of ROS or addition of KCl had minimal effects on caspase-1

activation and only partially reduced IL-1b release in WT BMDCs
Cell Host & Microbe 17, 357–36
(Figures 4A–4D). This was not surprising

given that WT cells had intact AIM2

responses. Indeed, inhibition of ROS or

addition of KCl substantially impaired

caspase-1 activation and IL-1b produc-

tion in Aim2�/� BMDCs (Figures 4A–4D).

These results indicate that both ROS

and K+ efflux contribute to NLRP3

inflammasome activation in response to

Aspergillus infection.

To investigatewhether viableA. fumiga-

tus is necessary to activate the inflam-

masome, we stimulated BMDCs with

heat-killed or paraformaldehyde-fixed

A. fumigatus and examined the levels of

caspase-1 activation and IL-1b produc-

tion. Heat-killed or paraformaldehyde-

fixed A. fumigatus failed to activate

caspase-1 and induce IL-1b secretion in

BMDCs (Figures 4E and 4F). In addition,

inhibition of phagocytosis using cyto-

chalasin B or cytochalasin D reduced

caspase-1 activation and significantly in-

hibited IL-1b release (Figures S5C and
S5D). Collectively, our findings indicate that phagocytosis of

viable Aspergillus activates the NLRP3 inflammasome pathway

in a manner that depends on ROS and K+ efflux.

AIM2 and NLRP3 Assemble a Single Dynamic
Inflammasome that Comprises ASC, Caspase-1, and
Caspase-8
The inflammasome is a multi-meric protein complex that has the

capacity to recruit distinct effector proteins to tailor the immune

response (Man et al., 2013). To visualize components of the

Aspergillus-induced inflammasome, we infected WT, Aim2�/�,
Nlrp3�/�, and Aim2�/�Nlrp3�/� BMDCs and stained for ASC,

caspase-1, and caspase-8—components which assemble into

an inflammasome complex to mediate IL-1b processing

(Gringhuis et al., 2012; Man et al., 2013, 2014). Our confocal

immunofluorescence analysis revealed that ASC, caspase-1,

and caspase-8 formed a single and distinct cytoplasmic ‘‘speck’’

of 1 mm in diameter in WT cells infected with A. fumigatus (Fig-

ure 5A). We quantified the percentage of BMDCs forming the

ASC speck and found that 20% of the WT cells contained the
8, March 11, 2015 ª2015 Elsevier Inc. 361
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Figure 4. ROS and Potassium Efflux

Contribute to NLRP3 Inflammasome Activa-

tion in Response to Aspergillus Infection

(A–D) BMDCs from WT and Aim2�/� mice were

infected with A. fumigatus (MOI 20) for 20 hr in

the absence or presence of 10 mM N-acetyl-

L-cysteine (NAC) or 50 mM KCl. Caspase-1 acti-

vation was analyzed from the cell lysate, and

levels of IL-1b released were analyzed from the

supernatant.

(E and F) WT BMDCs were infected with

A. fumigatus (MOI 20), C. albicans (MOI 5), or stim-

ulated with heat-killed (HK) or paraformaldehyde

(PFA)-fixed A. fumigatus or C. albicans for 20 hr.

Caspase-1 activation was analyzed from the cell

lysate, and levels of IL-1b released were analyzed

from the supernatant.

Data represent means ± SEM of triplicate wells.

Data are representative of two independent ex-

periments. (B), (D), and (F) Tukey’s multiple com-

parison test, *p < 0.05; **p < 0.01; ****p < 0.0001;

ns, not statistically significant.
ASC speck (Figure 5B). A significantly fewer number of Nlrp3�/�

orAim2�/� orAim2�/�Nlrp3�/�BMDCs contained an ASC speck

(Figure 5B). We further analyzed the composition of the ASC

speck in WT, Aim2�/�, or Nlrp3�/� BMDCs and found that the

majority of the ASC specks in WT cells contained both cas-

pase-1 and caspase-8, whereas BMDCs lacking either receptor

primarily harbored caspase-1 (Figure 5C). Indeed, BMDCs

lacking either AIM2 or NLRP3 consistently produced less IL-1b

and IL-18, and this suggests that robust secretion of these cyto-

kines may require the recruitment of both caspases into the

inflammasome.

Caspase-1 and Caspase-8 Contribute to Inflammasome
Processing of IL-1b and IL-18
The role for caspase-1 and caspase-8 in the processing of IL-1b

and IL-18 during Aspergillus infection is unclear. Here we used

genetic knockout mice lacking either of these proteins to inves-

tigate the relative contribution of caspase-1 and caspase-8 in the
362 Cell Host & Microbe 17, 357–368, March 11, 2015 ª2015 Elsevier Inc.
processing of IL-1b and IL-18 during

A. fumigatus infection. BMDCs lacking

caspase-1 failed to produce appreciable

levels of IL-1b and IL-18 (Figures 6A–

6C). However, caspase-1-deficient mice

backcrossed to the C57BL/6 background

also lack caspase-11 owing to a mutation

in the caspase-11 locus, which originated

from the 129 strain used to generate the

caspase-1-deficient mouse strain (Kaya-

gaki et al., 2011). However, we did not

observe a role for caspase-11 in inflam-

masome activation because casp11�/�

BMDCs infected with A. fumigatus

induced similar levels of caspase-1

activation and IL-1b and IL-18 release

compared to WT cells (Figures 6A–6C).

We further confirmed these results

using BMDCs lacking caspase-1 alone
(Casp1/11�/� mice injected with a caspase-11 bacterial artificial

chromosome transgene; Casp1�/�Casp11Tg) (Kayagaki et al.,

2011) and found that caspase-1, rather than caspase-11, was

required to induce processing of IL-1b and IL-18 during

A. fumigatus infection (Figures 6A–6C).

Although caspase-1 is essential for mediating IL-1b and IL-18

processing in response to A. fumigatus infection, it is possible

that caspase-8 might also be playing a role in this process given

that this protein is recruited to theAspergillus-induced inflamma-

some (Figure 5). Genetic deletion of caspase-8 in mice results in

embryonic lethality, which can be rescued by ablation of recep-

tor interacting protein kinase-3 (RIPK3) (Kaiser et al., 2011;

Oberst et al., 2011). To unravel the role of caspase-8, we infected

WT, Rip3�/�, and Casp-8�/�Rip3�/� BMDCs with A. fumigatus

and examined for caspase-1 activation and IL-1b and IL-18

release. Interestingly, A. fumigatus-induced IL-1b and IL-18

production were impaired in Casp-8�/�Rip3�/� BMDCs, but

not inWT cells orRip3�/� cells (Figures 6D and 6E). Consistently,
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Figure 5. Activation of AIM2 and NLRP3 by Aspergillus Infection Induces the Assembly of a Single Inflammasome Composed of ASC,

Caspase-1, and Caspase-8

(A) WT, Aim2�/�, Nlrp3�/�, and Aim2�/�Nlrp3�/� BMDCs were infected with A. fumigatus for 20 hr and stained for ASC (red), Caspase-1 (magenta), Caspase-8

(green), and DNA (blue). Arrowheads indicate an inflammasome speck.

(B) Percentage of BMDCs that contained an ASC speck after A. fumigatus infection or transfected with 2.5 mg poly(dA:dT) for 5 hr. At least 300 BMDCs from each

genotype were counted.

(C) Composition of the ASC specks.

Data represent means ± SEM of one experiment representative of two independent experiments. (B) Dunnett’s multiple comparison test, ***p < 0.001;

****p < 0.0001.
Casp-8�/�Rip3�/�BMDCs had an impaired ability to induce cas-

pase-1 activation in response to A. fumigatus infection (Fig-

ure 6F). FADD is an adaptor protein for caspase-8 and has

been implicated in inflammasome activation (Gurung et al.,
Cell Ho
2014). Indeed, we observed impaired caspase-1 activation

and IL-1b and IL-18 production in Fadd�/�Rip3�/� BMDCs

compared to WT or Rip3�/� BMDCs (Figures 6D–6F). These

results suggest that caspase-8 and FADD license caspase-1
st & Microbe 17, 357–368, March 11, 2015 ª2015 Elsevier Inc. 363
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Figure 6. Aspergillus-Induced IL-1b and

IL-18 Production Is Dependent on Both

Caspase-1 and Caspase-8

(A–F) BMDCs from WT, Casp1�/�Casp11�/�,
Casp11�/� and Casp1�/�Casp11Tg, Ripk3�/�,
Ripk3�/�Casp8�/+, Ripk3�/�Casp8�/�, Ripk3�/�

Fadd�/+, and Ripk3�/�Fadd�/� mice were infected

with A. fumigatus (MOI 20) for 20 hr. Caspase-1

activation was analyzed from the cell lysate, and

levels of IL-1b and IL-18 released were analyzed

from the supernatant.

(G) Survival of mice infected with 1 3 105

A. fumigatus conidia after immunosuppression

with cyclophosphamide and cortisone acetate.

(B)–(E) Data represent means ± SEM of triplicate

wells. Data are representative of three or more

independent experiments. Tukey’s multiple com-

parison test, **p < 0.01; ***p < 0.001. (G) Log-rank

test, ****p < 0.0001. ns, not statistically significant.
activation in the Aspergillus-induced inflammasome. To extend

our findings to the physiological setting, we investigated the sus-

ceptibility of mice lacking caspase-8 or FADD in the absence of

RIP3 to Aspergillus infection. Mice lacking caspase-8 and RIP3

or FADD and RIP3 succumbed to infection within 5–6 days and

were significantly more susceptible than their corresponding

controls (Figure 6G).

Inflammasome-Dependent Cytokines Contribute to the
Host Protection against A. fumigatus Infection
Aspergillus-induced activation of the inflammasome leads to the

production of IL-1b and IL-18 in vitro. Consistently, we observed

decreased levels of both cytokines in the lungs of mice lacking

AIM2 and NLRP3 compared with WT mice infected with

A. fumigatus (Figures 7A and 7B). Caspase-1 activation in the

lung tissues was substantially reduced in the absence of AIM2

and NLRP3 (Figure 7C). The levels of IFN-g, which is produced

in response to IL-18 stimulation (Ghayur et al., 1997), were mark-
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edly reduced in Aim2�/�Nlrp3�/� mice

(Figure 7D). However, there were no

significant differences in the levels of

IL-6, KC, and TNF-a in the lungs of

A. fumigatus-infected WT and Aim2�/�

Nlrp3�/� mice (Figures S6A–S6C). These

results confirmed that there was no global

defect in pro-inflammatory cytokine pro-

duction in mice lacking AIM2 and NLRP3

infected with A. fumigatus. Although

both IL-1b and IL-18 are produced, the

relative contribution of these in the host

resistance to A. fumigatus infection is un-

known. To investigate the physiological

relevance of inflammasome-mediated

IL-1b and IL-18 secretion in Aspergillus

infection, we infected mice lacking IL-1b

or IL-18 with A. fumigatus and monitored

for their survival. We found significantly

increased mortality in Il-1b�/� mice

compared to WT mice (Figure 7E).
Il-18�/� mice exhibited partial susceptibility to aspergillosis.

These results, together, reveal that inflammasome-dependent

cytokine release governed by AIM2 and NLRP3 contributes in

the host protection against aspergillosis.

DISCUSSION

In this study, we unveiled a requirement for inflammasome

receptors, AIM2 and NLRP3, in the cytoplasmic sensing of and

host protection against the human pathogen A. fumigatus.

Emerging evidence suggests that multiple inflammasome recep-

tors can be activated upon infection by microorganisms, which

ultimately determines the nature and dynamics of the innate im-

mune response (Broz et al., 2010; Kalantari et al., 2014; Liu et al.,

2012; Man et al., 2014). Indeed, we and others have previously

shown that NLRC4 and NLRP3 mediate the clearance of Salmo-

nella infection, and that NLRP3 and AIM2 contribute to the

host defense against plasmodium infection (Broz et al., 2010;
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Figure 7. IL-1b and IL-18 Are Critical in

Controlling Aspergillus Infection

WT and Aim2�/�Nlrp3�/� mice were infected with

1 3 105 A. fumigatus conidia after immunosup-

pression with cyclophosphamide and cortisone

acetate.

(A, B, and D) The levels of IL-1b, IL-18, and IFN-g in

lung homogenates after 3 days of A. fumigatus

infection.

(C) Caspase-1 activation in lung homogenates

after 3 days of A. fumigatus infection.

(E) Survival of WT, Il-1b�/�, and Il-18�/� mice

infected with 1 3 105 A. fumigatus conidia after

immunosuppression.

(A, B, and D) Data represent means ± SEM.

Unpaired t test. (E) Log-rank test. *p < 0.05; **p <

0.01, ns, not statistically significant.
Kalantari et al., 2014; Man et al., 2014). However, in response to

the fungal pathogenC. albicans, NLRP3 is strictly required for the

activation of the inflammasome in macrophages or dendritic

cells (Gross et al., 2009; Hise et al., 2009; Joly et al., 2009). It is

unclear why C. albicans activates NLRP3 exclusively, whereas

A. fumigatus activates both NLRP3 and AIM2. It is possible

that C. albicans fails to release its DNA into the host cytosol to

activate AIM2 or that it harbors a virulence factor that mediates

evasion of AIM2 detection. Furthermore, NLRP3 is required for

robust IL-1b secretion in the human THP-1 cell line infected

with A. fumigatus (Saı̈d-Sadier et al., 2010), whereas our study

showed that both NLRP3 and AIM2 are required in mouse den-

dritic cells. Whether AIM2 is also required in human immune cells

is unknown. Regardless, it is important to note that the compo-

sition of the human and mouse NLRP3 inflammasomes may

differ. Nevertheless, our study now provides insights into the

cooperative and synergistic relationship between different in-

flammasome receptors in the context of Aspergillus infection.

AIM2, amemberof theHIN-200 family, is activatedbydsDNAof

bacterial or viral origin (Fernandes-Alnemri et al., 2009; Hornung

et al., 2009; Rathinam et al., 2010; Roberts et al., 2009). It has

been shown that germination ofA. fumigatus results in biofilm for-

mation,which leads to the release of extracellularDNA (Rajendran

et al., 2013). The release of extracellular DNA by A. fumigatus

may activate the AIM2 inflammasome. We and others have also

shown that bacterial nucleic acid molecules, including RNA and

DNA:RNA hybrids, are recognized by NLRP3 (Kailasan Vanaja

et al., 2014; Kanneganti et al., 2006; Sander et al., 2011). There-

fore, it may be possible that NLRP3 and AIM2 recognize a com-

mon nucleic acid structure released by Aspergillus that ultimately

triggers the formation of a single heteroduplex inflammasome.

ROS generated in the cell in response to A. fumigatus infection

has been suggested to activate NLRP3 in the human THP-1 cell

line (Saı̈d-Sadier et al., 2010). In addition, K+ efflux is one of the

proposed mechanisms in the activation of the canonical NLRP3

inflammasome (Muñoz-Planillo et al., 2013; Perregaux and Ga-
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bel, 1994; Pétrilli et al., 2007). We provide

evidence to show that both ROS and

K+ efflux act upstream of NLRP3 and

contribute to NLRP3-induced inflamma-

some activation in response to Asper-
gillus infection. It is possible that damage of the host cell causes

both ROS production and K+ efflux that collectively leads to acti-

vation of NLRP3. Recent studies indicate that, depending on the

pathogens countered, NLRP3 inflammasome activation can be

driven by a canonical caspase-11-independent or a non-canon-

ical caspase-11-dependent pathway (Kayagaki et al., 2011).

Here we identified a canonical pathway for NLRP3 activation in

response to A. fumigatus.

We have also shown that the Aspergillus-induced inflamma-

some, composed of ASC, caspase-1, and caspase-8, localized

in a single cytoplasmic location to regulate processing of pro-

IL-1b and pro-IL-18. Our study clearly supports the view that

the inflammasome is a dynamic complex which recruits different

components to a single molecular platform depending on the

contextual cue received by the cell upon infection. In this study,

we have demonstrated that caspase-8 drove caspase-1 proteo-

lytic activities during Aspergillus infection. A previous study has

shown that inhibition of caspase-8, but not caspase-1, using

chemical inhibitors abolished pro-IL-1b processing in dendritic

cells exposed to fungi and mycobacteria, suggesting that cas-

pase-8, rather than caspase-1, mediates IL-1b processing

(Gringhuis et al., 2012). In contrast, another study suggests that

caspase-1 is required for the processing of IL-1b (Saı̈d-Sadier

et al., 2010). Both of these studies used chemical inhibitors,

which are prone to off-target effects (Pereira and Song, 2008).

Here, we provide genetic evidence and demonstrate that genetic

deletion of caspase-1 or caspase-8 leads to impaired IL-1b and

IL-18 release in response to A. fumigatus infection, suggesting

that both caspases are required in this process. The requirement

for caspase-8 to induce caspase-1 activation suggests that cas-

pase-8might be upstreamof caspase-1. The involvement of cas-

pase-8 and the NLRP3 inflammasome has also been described

for b-glucan-induced IL-1b processing in Pam2CSK4-primed

BMDCs (Ganesan et al., 2014).

In line with our in vitro data, mice lacking both AIM2

and NLRP3 are hypersusceptible to aspergillosis. These mice
8, March 11, 2015 ª2015 Elsevier Inc. 365



phenocopied mice deficient in caspase-1 and -11 or ASC.

In addition, our data suggest that mice lacking caspase-1

and -11 appear to be more susceptible than mice lacking IL-1b

alone, suggesting that pyroptosis may play a role in the host

defense during Aspergillus infection. It would be interesting to

compare the susceptibility between Casp1/11�/� and Il-1b�/�/
Il-18�/� mice to A. fumigatus infection to fully elucidate the role

of pyroptosis in future studies. Our observation that mice defi-

cient in only AIM2 or NLRP3 exhibit little to no susceptibility to

aspergillosis supports our view that these two inflammasome re-

ceptors play redundant roles in the host defense against Asper-

gillus infection. However, BMDCs lacking either inflammasome

receptor consistently produce less IL-1b and IL-18 compared

to WT BMDCs, suggesting that the relationship between

NLRP3 and AIM2 is not always strictly redundant. The partner-

ship between AIM2 and NLRP3 in the host defense against

infectious diseases extends beyond that of Aspergillus infection,

since a concerted inflammasome effector function mediated by

AIM2 and NLRP3 has been observed in response to Plasmodium

and Listeria infection (Kalantari et al., 2014; Kim et al., 2010; Wu

et al., 2010). In conclusion, our findings reveal that AIM2 and

NLRP3 form a dual surveillance system within the cytoplasm to

orchestrate a robust inflammasome-mediated response against

A. fumigatus infection.

EXPERIMENTAL PROCEDURES

Mice

Aim2�/�, Nlrp3�/�, Asc�/�, Casp1�/�Casp11�/�, Casp11�/�, Casp1�/�

Casp11Tg, Nlrc4�/�, Nod1�/�, Il1b�/�, Il18�/�, Rip3�/�, Rip3�/�Casp8�/�,
and Rip3�/�Fadd�/� mice were described previously (Jones et al., 2010; Kan-

neganti et al., 2006; Kayagaki et al., 2011; Mariathasan et al., 2004, 2006;

Oberst et al., 2011; Shornick et al., 1996; Zaki et al., 2010). Aim2�/�Nlrp3�/�

mice were generated by crossing Aim2�/� and Nlrp3�/� mice. All mice were

backcrossed to the C57BL/6 background. Mice were bred at St. Jude Chil-

dren’s Research Hospital. Animal studies were conducted under protocols

approved by St. Jude Children’s Research Hospital on the use and care of

animals.

In Vivo Aspergillus Infection

Aspergillus fumigatus strain AF293 was used in this study. This is a clinical

isolate from an individual who died of invasive aspergillosis (Giles et al.,

2011). Cyclophosphamide (Sigma) was dissolved in sterile water and given

by intraperitoneal injection (150 mg/kg of body weight). Cortisone acetate

(Sigma) was suspended in 0.02% Tween 80 in PBS and administered by sub-

cutaneous injection (112 mg/kg of body weight). Mice were given a combina-

tion of cyclophosphamide and cortisone acetate 3 days and 1 day before

Aspergillus infection. Mice were injected again with cyclophosphamide

(150 mg/kg of body weight) 3 days after infection. On the day of infection,

Aspergillus conidia were swollen in RPMI media at 37�C for 5 hr followed by

two washes using 0.02% Tween 80 in PBS. Mice were anesthetized by isoflur-

ane inhalation and inoculated intranasally with 13 105 conidia in 25 ml of 0.02%

Tween 80 in PBS. For histopathology and cytokine levels, the mice were sacri-

ficed on day 3 after infection, and lungs were submitted for histopathology and

processed for cytokine measurement or western blotting.

In Vitro Stimulation of BMDCs

BMDCswere prepared as described previously (Lamkanfi et al., 2009). In brief,

bone marrow cells were grown in RPMI supplemented with 10% FBS, 1%

penicillin-streptomycin, 1% non-essential amino acid, 1% sodium pyruvate,

and 20 ng/ml GM-CSF for 7 days. BMDCs (5 3 106) were seeded in six-well

cell culture plates and infected with Aspergillus conidia with the indicated mul-

tiplicities of infection (MOIs) for 20 hr. In experiments which required LPS prim-

ing, 500 ng/ml ultrapure LPS from Salmonella minnesotaR595 (InvivoGen) was
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added to BMDCs for 4 hr. To activate the NLRP3 inflammasome, 5 mM ATP

(10519979001, Roche), 20 mM nigericin (N7143, Sigma), or 2.5 mg/ml silica

(MIN-U-SIL 15, US Silica) was added for 30min, 45min, and 8 hr, respectively.

For DNA transfection, each reaction consisted of 2.5 mg of poly(dA:dT) (Inviv-

oGen) resuspended in PBS and mixed with 0.6 ml of Xfect polymer in Xfect

reaction buffer (Clontech Laboratories). After 10 min, DNA complexes were

added to BMDCs in Opti-MEM (Gibco) and incubated for 5 hr. To transfect

Aspergillus DNA, A. fumigatus conidia were grown in RPMI media supple-

mented with 10% FBS and 1% penicillin-streptomycin overnight at 37�C.
The next day, A. fumigatus was collected and centrifuged to remove the

culture supernatant. A. fumigatus DNA was extracted using the QIAamp

DNA Mini Kit according to the manufacturer’s instructions (51304, QIAGEN).

DNA transfection was performed as described above.

The concentrations of inhibitors used in our studies were 5 and 50 mM cyto-

chalasin B (C6762, Sigma), 5 and 50 mM cytochalasin D (C8273, Sigma),

10 mM NAC (A7250, Sigma), and 50 mM KCl (P217500, Fisher Scientific).

Bone Marrow Chimeras

Micewere subjected to a single dose of irradiation (1,000 rad). Micewere retro-

orbitally injected with 107 bone marrow cells from the femur and tibia of donor

mice 2 hr after irradiation. The reconstitution rate evaluated 6 weeks after bone

marrow transfer was determined by flow staining of CD45.1 and CD45.2 in

blood leukocytes, which was at least 95%. After 6 weeks, mice were infected

as described above.

Western Blot

BMDCs were lysed in 1 3 RIPA buffer and sample loading buffer containing

SDS and 100 mM DTT. Lung tissues were homogenized in PBS containing

protease inhibitors (Roche). Homogenates were then mixed 1:1 with 2 3

RIPA buffer, and protein concentrations determined and diluted to 1 mg/ml

using sample loading buffer. Proteins (15 mg) were separated on 10%–12%

polyacrylamide gels. Following electrophoretic transfer of protein onto

PVDF membranes, membranes were blocked in 5% skim milk and incubated

with primary antibodies against caspase-1 (Adipogen, AG-20B-0042)

followed by secondary anti-rabbit or anti-mouse HRP antibodies (Jackson

ImmunoResearch Laboratories).

Immunofluorescence Staining

Following infection, BMDCs were washed three times with PBS and incubated

with media containing 1 3 FLICA far-red 660 active caspase-1 for 1 hr

(ImmunoChemistry Technologies). Cells were then fixed in 4% paraformalde-

hyde for 15 min, followed by blocking with 10% normal goat serum (Dako) in

0.1% saponin (Sigma) for 1 hr. Cells were incubated with a mouse anti-Asc

antibody (1:500 dilution, clone 2EI-7; Millipore) overnight followed by incuba-

tion with a rabbit anti-caspase-8 (1:500 dilution, 8592; CST) for an additional

1 hr. The secondary antibodies used were Alexa Fluor 488 anti-rabbit IgG

and Alexa Fluor 568 anti-mouse IgG. Cells were counterstained in DAPI

mounting medium (1:250 dilution; Vector Laboratories). Cells and inflamma-

somes were visualized, counted, and imaged using a Nikon C1 confocal

microscope at the Cell and Tissue Imaging Center Light Microscopy Facility

(CTIC-LM) at St. Jude.

Phagocytosis and Conidiocidal Assays

Phagocytosis, phagocytic index, and intracellular conidiocidal activity were

performed as described previously (Roilides et al., 1998). In brief, percentage

phagocytosis was determined by calculating the number of BMDCs that had

one or more conidia phagocytosed or attached divided by the total number

of BMDCs observed 3 100. The phagocytic index was generated by deter-

mining the average number of conidia that had been phagocytosed or

attached per BMDC. The conidiocidal activity was calculated by the following

formula: (1 � the number of CFU observed at 6 hr / the number of CFU

observed at 1 hr) 3 100.

Cytokine Analysis

Cell supernatants were collected for ELISA. Lung tissues were homogenized in

PBS containing protease inhibitors (Roche). Cytokine levels were determined

by using multiplex ELISA (Millipore) or IL-18 ELISA (MBL International) accord-

ing to the manufacturers’ instructions.
r Inc.



Immunohistochemistry

Formalin-preserved livers were processed and embedded in paraffin

according to standard procedures. Sections (5 mm) were stained with H&E

and examined by a pathologist blinded to the experimental groups. For immu-

nohistochemistry, formalin-fixed paraffin-embedded livers were cut into 4-mm

sections and stained with an anti-MPO antibody (1:500 dilution, A0398; Dako)

for 30 min, followed by rabbit on rodent polymer-HRP (RMR622L; Biocare

Medical) for 30 min.

Statistical Analysis

GraphPad Prism 6.0 software was used for data analysis. Data were repre-

sented as mean ± SEM. Statistical significance was determined by Student’s

t test, ANOVA with multiple comparison tests, or log-rank test as specified in

the figure legends. p < 0.05 was considered statistically significant.
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