
Verification of Correspondence Assertions in a
Calculus for Mobile Ad Hoc Networks

Jens Chr. Godskesen1

The IT University of Copenhagen
Rued Langgaards Vej 7

2300 Copenhagen S
Denmark

Hans Hüttel2 and Morten Kühnrich 3,4

Distributed and Embedded Semantics
Aalborg University

9220 Aalborg, Denmark

Abstract

We introduce a novel process calculus called DBSPI (distributed broadcast SPI-calculus) which models
mobile ad hoc networks (MANET). The calculus is a cryptographic broadcast calculus with locations and
migration. Communication and migration are limited to neighborhoods. Neighborhood definitions are
explicitly part of the syntax allowing dynamic extension using bound identifiers. In this semantic setting
we study authentication of agents in MANET protocols. A safety property dealing with authentication
correspondence assertions is defined. Later a dependent type and effect system is given and it is shown
to be sound, i.e. protocols which are typeable are also safe. This result is lifted to open systems which
involves Dolev-Yao attackers. Our Dolev-Yao attacker may use public keys for encryption and can attack
any neighborhood it wishes. Our technique is applied to the Mobile IP registration protocol – a type check
shows it is safe. To our knowledge this is the first type system for a MANET calculus doing that.

Keywords: Process calculus theory, Mobile Ad Hoc Networks, MANET, Type and Effect Systems,
Broadcast Communication, Mobility

1 Introduction

The last decades have seen the rise of new technologies within the field of com-
munication and networking. The development of new protocols has gone hand in
hand with the request for new and more demanding services. One of the more

1 Email: jcg@itu.dk
2 Email: hans@cs.aau.dk
3 Email: mokyhn@cs.aau.dk
4 Technical report at http://www.cs.aau.dk/~mokyhn/publications/dbspirap.pdf

Electronic Notes in Theoretical Computer Science 229 (2009) 77–93

1571-0661 Crown Copyright © 2009 Published by Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.06.030

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82247317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jcg@itu.dk
mailto:hans@cs.aau.dk
mailto:mokyhn@cs.aau.dk
http://www.cs.aau.dk/~mokyhn/publications/dbspirap.pdf
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

recent advances is that of mobile ad-hoc networks (MANETs). A MANET is a self-
organizing network that does not rely on the existence of central service providers.
This means that route discovery and route maintenance are completely local and
that mobile devices act as routers and servers. The mobility and limited send and
receive range of such devices cause new challenges in protocol construction. Firstly,
route discovery and multi-hop protocols are necessary. Secondly, topologies that
change dynamically need to be captured. Thirdly, reliability and security are im-
portant issues. Finding the right attacker model is not trivial. The Dolev-Yao
attacker seems unrealistic strong in a MANET setting because of the limited radio
transmission range.

Several process calculi for MANETs have already been proposed. Many of these
introduce broadcast communication. On the other hand, the treatment of connec-
tivity and mobility is extremely varied, considering the different approach taken in
the work on process calculi with locations, with Hennessy’s Dπ calculus [8] and the
calculus of Mobile Ambients [5] due to Cardelli and Gordon as prominent represen-
tatives.

1.1 Our work

In this paper we describe a process calculus that lets us reason about authenticity
properties of MANET protocols that use cryptographic operations. We define an
attacker model that allows the user of our calculus to choose the strength of the
attacker. One example would be the attacker that may only communicate locally.
Another would be the attacker capable of communicating everywhere.

The problem of authentication has been addressed for cryptographic protocols
with point to point communication. In particular, the body of work by Gordon
and Jeffrey [9,10,11,12] describes how one may analyze authenticity properties of
a SPI-calculus process [4] using effect type systems and correspondence assertions
in the style of Woo and Lam [15]. The type inference problem for assertion-check
type and effect systems has recently been studied independently by Hüttel et. al.
[7] and by Kobayashi et. al [13].

The message language of DBSPI contains cryptographic operations. We have
locations (like in distributed π–calculus Dπ [8]) and objective migration. Further-
more DBSPI uses synchronous broadcast (with possible loss of packages) restricted
to local neighborhoods. In [18] Ene and Muntean compare the expressive power
of point-to-point communication and broadcast communication in the π–calculus.
They show that it is impossible to encode broadcast communication using point-to-
point communication uniformly. This together with the practical need for broad-
casts in MANET protocol specifications makes it natural to have a true broadcast
primitive in a MANET calculus. The notion of a neighborhood is explicit in the syn-
tax of the calculus. It does not mean that the neighborhood is fixed, since neighbors
can be added dynamically (See section 2.4 for a discussion on the expressive power).
Furthermore we are able to model link failures and process crashes. Mobility and
broadcasts are limited to locations which are neighbors.

On top of the calculus we give a dependent type and effect system for DBSPI

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9378

following the tradition of [9,10,11,12]. Using our type system we are capable of
proving that the registration protocol of Mobile IP [14,19] is well–typed. This
implies that the assertions of the protocol are not violated, hence it is shown that
authentication happens correctly. If a network is well–typed, then it is also safe
in presence of an attacker, lifting this result to open systems. The type system is
tailored for the check of assertions. This means that we do not check for common
type errors such as mismatching types in comparisons or arity mismatch. We believe
that this is the first type system presented for a calculus within the setting of
MANETs. Below we give an example of a DBSPI network. We shall use this as our
running example in the text.

Example 1.1 (Mobile IP registration) The Mobile IP protocol [14,19] allows a
mobile device (or mobile node, in short MN) to have one single long term IP-address,
when connecting to the Internet from different access points. We will assume that
a MANET is used to establish connection to MN. Each device has a home agent (in
short HA) in some home network associated with it. The agent acting as the access
point for MN (called the foreign agent, in short FA) is a router between MN and
HA. Every communication with MN from the Internet goes through HA and FA.

The Mobile IP protocol proceeds in three phases: Agent discovery, registration
and message tunneling. We will focus on the registration part and assume that
agent discovery has already taken place. When MN has been authenticated as MN
at HA, HA will serve MN in the manner described above. We shall assume that an
asymmetric key pair has been distributed among FA and MN, i.e. FA uses the key
pair F+, F−. Furthermore assume that MN and HA has agreed on a shared secret
key SMN−HA. The messages of the protocol have been simplified focusing only at
the cryptographic operations.

We shall write decrypt y is {y1, y2, y3}K .P for the decryption of y using key
K. If (M1, M2, M3) is the resulting message from this operation then Mi will be
substituted for the variable yi in P .

Our example system is composed of three processes MN, FA, and HA represent-
ing the mobile node, foreign agent, and home agent respectively. They communicate
via channels m, f and h respectively. We will compose MN, FA and HA in the fol-
lowing network:

N = new SMN−HA : T ; A[HA | MN] | B[FA] | A � B | B � C | A � D | C � D.

In the above A, B,C, and D are so called locations. The expression A � B means
that locations A and B are neighbors (likewise for B and C etc.). Agents MN and
HA are collocated in the beginning.

The protocol is a request/reply protocol. The request message MReq is
Req, NMN , w, {Req, NMN , w}SMN−HA

and the reply message MRep is given by
Rep, N ′

HA, y2, {Rep, N ′
HA, y2}SMN−HA

. Names w and y2 are bound in the process
definitions below.

MN = new NMN : Un;

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–93 79

m(w).

begin NMN | // Start authentication of MN
f(MReq). // Send request message
m(x). // Receive result

decrypt x is {y1, y2, y3, y4}F+ . // Forwarder integrity check
decrypt y4 is {z1, z2, z3}SMN−HA

.

if (y1, y2, y3) = (z1, z2, z3) then

if NMN = z3 then // Check nonce
end z2 // End authentication of HA

FA =!f(x).h({x}F−).f(y).m({y}F−) // Router

HA = new NHA : Un; m(NHA).
h(x). // Receive request

decrypt x is {y1, y2, y3, y4}F+ .

decrypt y4 is {z1, z2, z3}SMN−HA
.

if (y1, y2, y3) = (z1, z2, z3) then

if NHA = z3 then // Check nonce
new N ′

HA : Un;
end z2 | // End authentication of MN
begin N ′

HA | // Begin authentication of HA
f(MRep) // Send reply

The protocol starts by HA sending it’s initial nonce NHA to MN at location A.
The mobile node MN might then start traveling e.g. to location D and from there
to location C. Communication with the home agent is possible through the foreign
agent FA which is located at B. FA routes registration messages back and forth
between the mobile and the home address. If nonce, decryption and validity checks
succeed we have a successful registration. This enables the home agent to verify
that it was indeed the node that started the authentication. On the other hand,
the mobile node can be assured that it was indeed the home agent that replied. We
shall prove this fact later when we give types and effects for this example.

1.2 Related work

In [16] Maffeis et al. give a type system involving logic-based policies for correct
authorization in a point-to-point communication semantics. Their type system gen-
eralizes the work of Gordon et. al. mentioned earlier. Instead of using names as
effects they use logical formulæ. That allows formulation of effects not express-
ible in the type systems of Gordon et. al. It is unclear how their work relates to
MANET-calculi.

In [21] following earlier work on the CBS calculus [20], Prasad presents the
outline of a broadcast calculus called MBS, where synchronous communication is
used locally and asynchronous communication globally. We are capable of simulat-

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9380

ing such behavior under the use of our neighborhood relation and an encoding of
asynchronous communication. A similar calculus, CBS#, introduced by Nanz and
Hankin in [6], uses an explicit connectivity graph and memory stores. Stores can be
encoded using the π–calculus fragment of our calculus. The connectivity graphs of
CBS# are closely related to our neighborhood relations. Using a control flow anal-
ysis they check security properties defined using an equivalence-based approach. In
this domain it is unclear, which methodology is stronger; type theory or control
flow theory.

In [22] Sangiorgi and Mezzetti introduce a calculus for wireless systems called
CWS. The objectives of this work are different from ours. Sangiorgi and Mezzetti
study semantic properties of collisions in radio broadcasts. Our work is targeted at
a higher level of abstraction where problems related to collisions have already been
dealt with.

In [17] Merro describes the calculus CMN, a broadcast calculus with locations
and mobility but without cryptography. Here, the connectivity of nodes is described
using a distance function and physical radii. It is an interesting and fundamental
discussion whether topologies should be given using radii or neighborhood relations.
Where Merro gives simulations we use an approximative verification technique.

In [23] Smolka et al. present the ω-calculus which is a conservative extension
of the semantics for the π-calculus without cryptographic primitives. Both broad-
cast and point-to-point communication is supported as well as mobility. Neighbor
topologies are called groups, and the use of a special non-standard restriction con-
struct for group names allows one to describe mobility. We think our representation
of neighborhoods is more concise - though it might be a matter of taste.

In [3] Godskesen describes a calculus with a rich term language á la Applied
π [2] for mobile ad hoc networks called CMAN. The calculus supports locations
and neighborhoods and permits dynamic change of the topology. It seems that our
concept of neighborhoods in this work is stronger due to dynamic extension using
e.g. communication as seen in Example 2.5. Something similar is not possible in
Godskesen’s calculus.

1.3 Outline of the paper

Section 2 contains the formal syntax and semantics of the DBSPI calculus. Fur-
thermore a Dolev-Yao attacker and authenticity in a MANET is defined. Section 3
defines a dependent type and effect system which ensures that well–typed processes
are safe. Furthermore we prove subject reduction. We apply our type system to
the Mobile IP Registration protocol and show it is typeable. Section 4 contains our
conclusions and directions for further research.

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–93 81

Messages

C, K,L, M ::= a, b, . . .

| K+ | K−

| (M, M ′)
| fst(M) | snd(M)
| {M}K

| ok

Networks

N ::= 0
| N | N ′

| new n : T ;N
| l[P]
| l � m

Processes

P,Q ::= 0
| P | Q

| new n : T ;P
| C(x).P
| C(L).P
| !P
| if M = L then P else Q

| let x = M in P

| decrypt M is {y}K .P

| l � m

| begin L

| end L

| release L;P
Table 1

Syntax of the DBSPI–calculus.

2 Syntax and Semantics of the DBSPI–calculus

2.1 Syntax

We will assume the existence of a countable infinite set of names. The syntax of
DBSPI which is given in Table 1 consists of messages, processes and networks. The
symbol T denotes a type annotation which will be defined in Section 3.

Networks are built from locations l[P]. The notation l[P] means that process P

is at location l. A location is to be thought of as a physical area on a land map which
allows inhabitation of processes P . Locations are related through neighborhoods
using a special construct �. If we write l[P] | m[Q] | l�m it means that P may send
to Q (but not the other way) and P can migrate from l to m. We will write l � m

for l�m | m� l which is a neighborhood allowing bidirectional communication and
migration. The empty network is denoted 0, and new n : T ; N means that name n

of type T is private in network N . Networks N and N ′ are composed by writing
N | N ′. Processes are built from synchronous broadcast based communication
and the constructs explained in the following. An input prefix C(x).P listens on
channel C. When a message M is received C(x).P is rewritten to P where M is
substituted for all free occurrences of variable x in P . An output prefix C(M).P
broadcasts message M on channel C and proceeds as P .

A name n is restricted to process P by the prefix new n : T ; P . We require that
type T is one of the allowed types for names, i.e. it is generative (see Section 3).
Replication !P allows replicated instantiation of finitely many copies of process P .
If two messages M,M ′ are equal up to simple reductions, then process if M =
M ′ then P else Q evolves to P otherwise the process evaluates to Q. We will
write if M = M ′ then P as shorthand for the process if M = M ′ then P else 0.
Decrypting an encrypted message M using key K is done with decrypt M is {y}K .P .
If message M actually is encrypted by key K’s inverse i.e. K, we continue as P

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9382

where y is instantiated with the content of M . Otherwise the process is stuck.
Local binding of a message M for a free name x in P is written let x = M in P .
The constructs begin L and end L are assertions i.e. protocol points. The process
release M ;P is an annotation used with latent effects in the type system later
on. Their meaning will become clearer later. We will write

∏
φ P for the parallel

composition of a finite set of processes, which satisfy the logical predicate φ.
Messages are built from names, tuples of names and cryptographic constructors

for symmetric and asymmetric keys and encryption. Messages M and M ′ are paired
by (M, M ′). Components can be extracted by projections fst(M) (the first) and
snd(M) (the second).

We have private K− and public K+ keying. Symmetric keys are not annotated.
We define the following operator K on keys by the equations K = K, K+ = K−

and finally K− = K+. Key K is called the inverse of K. Encryption of message M

under key K is written {M}K .
We will use the message ok as a carrier of effects in our static analysis given

later on. We transfer effects using the ok-message, instead of using channels with
latent effects. Notice that ok is a symbol which is not a name.

2.2 Free names, substitution and structural congruence

Restriction, decryption, let and input prefixes are the name binding constructs of
DBSPI. The notations bn(P) and bn(N) denote the set of bound names for process
P or network N respectively. Function fn(·) denotes the free names analogously.
A name n is said to be bound in a process P or in network N if n ∈ bn(P) or
n ∈ bn(N) respectively. A name n is said to be free in process P or network N if
n ∈ fn(P) or n ∈ fn(N) respectively. The set of all identifiers is n(M) or n(P) or
n(N) for messages, processes and networks respectively. Since we are working with
a dependent type system alpha conversions are also defined on types occurring in N

and N ′. The substitution of a message M for a name v in message L written L[M/v]
is defined in the standard way. The substitution of a message M for a free name or
variable v in a process P or network N written P [M/v] and N [M/v] respectively,
is also defined in the standard way with the added clause (new a : T ; P)[M/v] =
new a : T [M/v];P [M/v], a /∈ n(M).

Definition 2.1 Structural equivalence on networks is the least reflexive, symmetric
and transitive binary relation, closed under alpha conversion, satisfying the rules
given below treating parallel composition | as a commutative and associative
construct with 0 as neutral element.

(S1) l[new n : T ; P] ≡ new n : T ; l[P], l �= n (S2) l[P | Q] ≡ l[P] | l[Q]
(S3) N | new n : T ;N ′ ≡ new n : T ; (N | N ′), n /∈ n(N)
(S4) l[P | m � n] ≡ l[P] | m � n

Rules (S1-S3) are standard and inspired from Dπ. Rule (S4) describes how local
neighborhood declarations can be pushed to network level.

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–93 83

2.3 Reduction semantics of DBSPI

The reduction rules of the semantics are given in Table 2. The rules define a state
transition system, where states are networks and the relation → describes reductions
between networks. Reduction is closed under parallel composition, name restriction
and structural equivalence.

Definition 2.2 Reduction of a message M with respect to projection on pairs
written �M� is defined in the following. We define �γ� = γ when γ ∈ {a, ok}
and �Ki� = �K�i for i ∈ {+,−}. Furthermore �(M1, M2)� = (�M1�, �M2�) and
�fst(M)� = M1 if �M� = (M1, M2). If �M� is not a pair then �fst(M)� = fst(M).
The second projection snd(M) is defined as above with M2 instead of M1. Two
messages M and M ′ are equal up to projections written � M = M ′ if �M� is
syntactically equal to �M ′�.

(R-Move) l[P] | l � m → m[P] | l � m

(R-BCom) l[C(L).P] | ∏
i∈I mi[C(xi).Qi] | l � mi →

l[P] | ∏
i∈I mi[Qi[L/xi]] | l � mi

(R-If True) l[if M = M ′ then P else Q] → l[P], if � M = M ′

(R-If False) l[if M = M ′ then P else Q] → l[Q], if � M �= M ′

(R-Let) l[let x : T = M in P] → N , where l[P [�M�/x]] → N

(R-Decrypt) decrypt {M}N is {y}N .P → P [M/y]
(R-Replication) l[!P] → l[P] | l[!P]
(R-Release) l[release ok; P] → l[P]

Table 2
Reduction semantics of DBSPI defined on networks

Reduction rule (R-Move) moves process P from location l to m if l and m

are neighbors. Rule (R-BCom) defines broadcast communication between neighbors.
Since I may be a smaller set than the total set of listeners rule (R-BCom) permits
loss of messages. Rules (R-If) are standard. Rule (R-Let) permits the use of a local
declaration and (R-Decrypt) describes decryption of an encrypted message. Replica-
tion is defined by (R-Replication). The annotation release ok; P can be reduced using
(R-Release). Begin- and end-assertions do not add anything to the semantics.

Example 2.3 (Revisiting the Mobile IP example). Using (R-BCom) HA can
send nonce NHA to MN at location A. By rule (R-Move) the mobile node can move to
location D and from there to location C. FA routes messages back and forth using
rule (R-BCom). Decryption and validity checks are performed using rules (R-Let), (R-If)

and (R-Decrypt). We have not yet defined safety formally but we will mention what
the idea is informally. The protocol we are working with is safe, since the assertions
end NMN and end N ′

HA never occur without corresponding expressions begin NMN
and begin N ′

HA. Intuitively this means that if an authentication succeeds (marked
with an end-assertion) then it was actually initiated by the agent intended (marked
with a begin-assertion). The reason is the protecting cryptographic operations
involved. Since the attacker has no access to the secret key SMN-HA he will not be
able to send interfering messages that ultimately (after sanity checks) would create

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9384

and unmatched end-assertion say end bogus. This means that the authentication
of MN at HA (and vice versa) cannot be interfered by an attacker.

2.4 Considerations on the expressive power of DBSPI

In the examples below we will show typical MANET features expressed in DBSPI.
We will start this section by noting that migration is our main semantic tool for
what sometimes is called joining and splitting of MANET. If we have the following
topology A � B | B � C | B � D we see that processes at location A and location
C may only communicate via a forward node at B. A split of the groups connected
to A and C (if A and C has B as their only intermediate node) occurs if B migrates
to A. A join would be the opposite situation where a process acting as a forwarder
enter location B, thereby interconnecting A and C.

Example 2.4 Link failures occurring now and then are possible to model using
reduction rule (R-BCom). Permanent link failures can be modeled by the introduction
of a remote “prison location” i.e. a location which allows agents to enter but not
to exit. n would be such a location in the network m � n | n[0] | m[P]. If P moves
to location n, P will be unable to communicate with other processes. It is not the
same as a process crash since P may still perform internal reductions.

Example 2.5 Dynamic extension of neighborhoods are possible since input pre-
fixes may bind names occurring in neighborhood relations. For example l[C(x).l �

x] | m[C(n).P] | m � l can result in the network l � n | m � l | m[P]. By (R-Move)

used twice this can be rewritten to l � n | m � l | n[P] which shows that dynamic
creation of locations is possible as well.

2.5 Safety and Robust Safety of Networks

Safety is a correspondence between protocol points: Whenever an end L is reached
there has already been one or more begin L. This is useful for specification of
properties when causality of events matter e.g. when dealing with authentication
issues. In that case the protocol designer includes information in L determining the
identity of the agent who starts/ends the authentication. In Example 1.1 nonces
plays this role. If the authentication ends successfully then it is the same agent
that started it (and not a hostile attacker). Before giving the safety property we
notice that any network N can be put on the form N ′ = new a1 : T1; . . . ; new an :
Tn; N ′′, n ≥ 0 such that N ≡ N ′ using structural congruence and alpha conversion.

Definition 2.6 (Safety) A network N annotated with begin and end-assertions is
safe when the following condition is true: for all reductions on the form N →∗

new a1 : T1; . . . ; new an : Tn; (l[end L] | N ′), n ≥ 0 it holds that N ′ ≡ begin L | N ′′

for some N ′′.

Example 2.7 The networks end a and begin a | end b are unsafe whereas
begin a | end a and begin a | end a | begin a are safe.

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–93 85

The safety property we are interested in is safety in presence of an attacker. This
is what is called robust safety. In this respect it is important to settle an appropriate
opponent model. We will use the Dolev-Yao model [25] extended with concepts
related to MANET. Choosing the right concepts is not a trivial task. However
there are some basic limitations. The opponent is not allowed to use assertions -
since this would let the attacker violate safety by creating unmatched end-assertion
like l[new a : Un; end a].

Many attacks in the literature assumes that the attacker can receive messages
at one location and e.g. resend them at another location. It seems reasonable to
let the attacker choose whatever neighborhood relation he wishes. Rule (R-Move)

and the extension of neighborhoods will enable an attacker to visit any location and
overhear and send modified messages. If a system is robust with a super attacker
like that it will also be robust with a weaker attacker not capable of extending
the neighborhood relation. One might argue that this assumption is too strong
– leading to unnecessary over-approximations. We will leave the study of weaker
assumptions as future work.

Having settled the core of our attacker model we give the last details which
are all tied to the type system given later. We will assume that bounded names
occurring in the attacker are of type Un (i.e. the type for untrusted data, see section
3). Furthermore we do not allow the attacker to use self created public/private key
pairs – this will be left as future work. However he is allowed to use shared public
key parts. This is a stronger attacker compared to e.g. [10].

Definition 2.8 (Opponents and robust safety) An opponent O is an assertion free
network where all bound names are of type Un. The opponent is not allowed to
perform encryption or decryption using secret keys K−. A network N is robustly
safe if N | O is safe for all opponents O.

3 A Type and Effect System for DBSPI

In the following we give a dependent type and effect system that approximates
robust safety. Well–typed processes are safe. Our effects are assertions and types are
used in two ways: they ensure correct use of keys in encryption and decryption and
they keep track of effects. We will determine whether end-assertions are correctly
matched by preceding begin-assertions under the use of types.

3.1 Effects and Types

Definition 3.1 Effects are finite sets of assertions. The operator begins(·) defined
on processes and networks returns top level begin-assertions.

begins(begin L) = {L} begins(P | Q) = begins(P) ∪ begins(Q)
begins(l[P]) = begins(P) begins(N | N ′) = begins(N) ∪ begins(N ′)
begins(!P) = begins(P)
begins(new a : T ; γ) = {L ∈ begins(γ) | a /∈ n(L)}, where γ = P or γ = N
begins(·) = ∅, for all other P or N .

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9386

Definition 3.2 Types T are defined by the following:

T ::= Un | SymKey(T) | KeyPair(T) | SecKey(T) | PubKey(T) |
Pair(x : T, T ′) | Ok({L1, . . . , Ln})

The type Un (untrusted) is given to public messages and SymKey(T) is given to
names which are used for symmetric encryption and decryption of messages of type
T . The type KeyPair(T) is given to a name k which acts as a seed for public k+ and
private k− key parts. Types SecKey(T) and PubKey(T) are types for private and
public key-parts respectively. The type Ok({L1, . . . , Ln}) is used to keep track of
effects L1, · · · , Ln. The type Pair(x : T, T ′) is used to type dependent pairs where
the first component has type T and the second has type T ′[T/x].

The types Un,SymKey(T),SecKey(T),PubKey(T) are generative, i.e. used for
names. The typing of a name with a non generative type makes no sense. We will
identify pair types up to alpha conversion of bound names, i.e. Pair(x : T, T ′) =
Pair(y : T, T ′[y/x]) where y is a fresh name not occurring in T or T ′. The domain
of the free names operator fn(·) is extended to types considering binders inside
dependent pairs as binders.

Example 3.3 Given the network

l[begin b | a({(b, ok)}k)] | m[a(x).decrypt x is {y}k.release snd(y); end fst(x)] | l � m

We will type a and b with types Un, and let the symmetric key k be of type
SymKey(Pair(z : Un, Ok({z}))) because k is a symmetric key. Now (b, ok) was
given type Pair(z : Un, Ok({z}) which means that the message occurring at the
first component is of type Un. The second component expresses that there has been
observed a begin-assertion of the form begin z for whatever z might be (could be b).
ok-messages and dependent types are used to capture that effects has been observed
at some points of the protocol. It is hence safe when receiving a message with an
ok (at some other point of the protocol) to assume the same effects. This is what
the expression release does. It allows effects generated at one place in the protocol
to be unleashed into the type environment at another point. The protocol designer
will have to insert release-expressions preceding end-expressions. In this way he can
use the type system checking that each end-expression will be matched by one or
more begin-expressions.

Definition 3.4 Letting S range over sets of messages we will use the following type
and effect environment:

E ::= ∅ Empty environment
| E, u : T Identifier u of type T

| E,S Environment containing the effects S

An environment E is well–formed if E �
 can be derived using the rules in figure
1 and using the following definitions. The domain of an environment is defined by
dom(∅) = ∅, dom(E, u : T) = dom(E) ∪ {u}, dom(E,S) = dom(E). An effect
extracting function effect(·) is defined by effect(∅) = ∅, effect(E, u : T) = effect(E),

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–93 87

∅ �

E �
 u /∈ dom(E) fn(T) ⊆ dom(E)

E, u : T �

E �
 n(S) ⊆ dom(E)

E,S �

Fig. 1. Well–defined environments

effect(E,S) = effect(E)∪S. Furthermore extend the names operator n(·) to sets of
messages by n({L1, . . . , Ln}) = ∪1≤i≤nn(Li).

Definition 3.5 (Type judgments) E �
 means that environment E is well–formed.
E � M : T means that message M is well–formed with type T . The form E � P

means that process P is well–typed in environment E and finally E � N means
that network N is well–typed in environment E.

3.2 Type rules

All the following type rules will be given using the same scheme. One set of rules
for each judgment form involving types which are not public and one set of rules
for forms involving the public type Un. We shall comment on the type rules in
the following. We omit explanation of trivial rules for brevity. Typing rules for
messages are given in Figure 2 (rules for untrusted message types are given in
Figure 3 describing that untrusted subcomponents of a message makes the entire
message untrusted). Rule (M-Ok) states that the effect transfered by an ok cannot
be more than the effects occurring in the environment. Rule (M-Pair) is the typing
rule for pairs. The parameter x is used to describe effects, which depend on the
value of x. Rule (M-Snd) likewise makes this dependency clear by the substitution
of fst(M) for x in T2.

Rules (M-PubKey), (M-SecKey) describe how to derive symmetric and asymmetric
keys types from the key seed type KeyPair(T). Rule (M-SymEnc) describes encryption
of a message M under a symmetric key y. The result of encryption is a cipher text
which receives type Un. This is safe because the message is only readable to those
who have the symmetric key. Rule (M-SecEnc) is the analogous rule using secret
keys. Rule (M-Publish) (and the fact that the opponent only use public keys) makes
it possible for the opponent to do public key encryption and decryption. In this way
public key parts can be used by the opponent via a type environment with names
of type KeyPair(T).

Typing rules for networks are given in Figure 4. Notice rule (N-Par). It states
that the sub components of a network will be type checked using the effects occurring
in the other sub network. This is essential since an end expression occurring in N ′

may have its matching begin expression in N and vice versa. Typing rules for
processes are given in Figure 5 (see Figure 6 for the untrusted processes). The
rules for input and output are (P-Un-In) and (P-Un-Out). Rule (P-Let) treats local
binding of a type. The rule (P-Sym) describes symmetric decryption where a message
of untrusted type Un is turned into a concrete type T . This is due to the assumption
that opponents cannot access secret keys. Rule (P-Asym) is for the asymmetric case.

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9388

(M-Id)

E′, u : T, E′′ �

E′, u : T, E′′ � u : T

(M-Ok)

E �
 S ⊆ effect(E)

E � ok : Ok(S)

(M-Pair)

E � M1 : T1 E � M2 : T2[M1/x]

E � (M1, M2) : Pair(x : T1, T2)
(M-Fst)

E � M : Pair(x : T1, T2)

E � fst(M) : T1

(M-Snd)

E � M : Pair(x : T1, T2)

E � snd(M) : T2[fst(M)/x]
(M-PubKey)

E � y : KeyPair(T)

E � y+ : PubKey(T)

(M-SecKey)

E � y : KeyPair(T)

E � y− : SecKey(T)
(M-Publish)

E � y : KeyPair(T)

E � y : Un

(M-SecEnc)

E � M : T E � y− : SecKey(T)

E � {M}y− : Un

(M-SymEnc)

E � M : T E � y : SymKey(T)

E � {M}y : Un

Fig. 2. Typing of messages

(M-Un-Pair)

E � M1 : Un E � M2 : Un

E � (M1, M2) : Un

(M-Un-Fst)

E � M : Un

E � fst(M) : Un
(M-Un-Snd)

E � M : Un

E � snd(M) : Un

(M-Un-Enc)

E � M : T1 E � N : T2

E � {M}N : Un
, Un ∈ {T1, T2} (M-Un-Ok)

E �

E � ok : Un

Fig. 3. Typing of untrusted messages

(N-Nil)

E � 0
(N-Location)

E � P

E � l[P]
(N-Res)

E,n : T � N

E � new n : T ; N

(N-Neighbor)

E � l � m
(N-Par)

E,begins(N ′) � N E, begins(N) � N ′

E � N | N ′

Fig. 4. Typing of networks

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–93 89

(P-Nil)

E � 0
(P-Par)

E,begins(P2) � P1 E,begins(P1) � P2

E � P1 | P2

(P-Rep)

E � P

E �!P

(P-Res)

E,n : T � P

E � new n : T ;P
(P-If)

E � M1 : T1 E � M2 : T2 E � P E � Q

E � if M1 = M2 then P else Q

(P-Let)

E � M : T E, x : T � P

E � let x = M in P
(P-Begin)

E �
 n(L) ⊆ dom(E)

E � begin L

(P-Neighbor)

E � l � m
(P-Sym)

E � M : Un E � y : SymKey(T) E, x : T � P

E � decrypt M is {x}y.P

(P-Asym)

E � M : Un E � y+ : PubKey(T) E, x : T � P

E � decrypt M is {x}y+ .P

(P-End)

E �
 n(L) ⊆ dom(E) L ∈ effect(E)

E � end L
(P-Rel)

E � M : Ok(S) E,S � P

E � release M ;P

Fig. 5. Typing of processes

(P-Un-In)

E � C : Un E, x : Un � P

E � C(x).P
(P-Un-Out)

E � L : Un E � C : Un E � P

E � C(L).P

(P-Un-Dec)

E � M : Un E � K : Un E, x : Un � P

E � decrypt M is {x}K .P
(P-Un-Rel)

E � M : Un E � P

release M ;P

Fig. 6. Typing of untrusted processes

Rule (P-Rel) allows effects generated (by begin assertions) at some place in the
protocol, to be unleashed into the environment at this very point. The protocol
designer inserts appropriate ok-expressions in messages and release-expressions in
front of occurrences of end-expressions. In this way we can use the type system
to check that each end-expression is matched, by one or more begin-expressions,
occurring at an earlier stage at the protocol.

When a begin-assertion is found the names used in the assertion L must be
defined in the type environment. Rules (P-Par) and (N-Par) does the actual extraction
of begin-assertions (using the operator begins(·)). An end-assertion is correct if it
is guarantied that there exists a corresponding begin-assertion elsewhere. This is
checked using a lookup in the environment.

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9390

3.3 Subject reduction, safety and robust safety

Typability is decidable, sound (well–typed networks are safe) but not complete.
A safe (assuming a, b and k are private names) but not typable network:
l[a({(b, ok)}k).begin b] | m[a(x).decrypt x is {y}k.release snd(y); end fst(x)] | l � m.
Effect {b} is not present when the encryption {(b, ok)}k is performed. On the other
hand example 3.3 is typable since the effect {b} occurs before encryption.

Well–typedness is preserved under reduction, also in presence of a Dolev-Yao
attacker.

Theorem 3.6 (Safety and subject reduction)
Network N is safe if effect(E) = ∅ and E � N . If E � N and N →∗ N ′ then
E � N ′.

Theorem 3.7 (Main theorem) If x1 : T1, . . . , xn : Tn � N and ∀i∃T ′
i : Ti ∈

{Un,KeyPair(T ′
i)} then it holds that network N is robustly safe, where fn(N) ⊆

{x1, . . . , xn}.
Example 3.8 (Typing the Mobile IP example) First annotate the pro-
tocol with ok-messages and appropriate release-expressions making latent
effects transferable. Add ok-messages to request and reply messages as fol-
lows: MReq becomes Req, NMN , w, {Req, NMN , w, ok}SMN−HA

and MRep becomes
Rep, N ′

HA, y2, {Rep, N ′
HA, y2, ok}SMN−HA

. Furthermore one extra parameter is
added in decryption: Expression decrypt y4 is {z1, z2, z3}SMN−HA

of MN becomes
decrypt y4 is {z1, z2, z3, z4}SMN−HA

and end z2 becomes release z4; end z2. The
same is done analogously for HA.

Second, assign types to names of N . Key SMN-HA gets type SymKey(Pair(x :
Un, Pair(y : Un, Pair(z : Un, Ok(y))))) and the type environment E for free names is
defined by:

E = A : Un, B : Un, C : Un, D : Un, f : Un,h : Un,m : Un,

Req : Un,Rep : Un, F : KeyPair(Un), H : KeyPair(Un)

Third, under the use of the type system it can be shown that E � N , and by our
main result N is robustly safe. When HA receives an authentication request it is
indeed from the mobile node (and vice versa). All begin-assertions are typable by
(Begin). The crucial point is that all end-assertions are well typable by (End). This is
the case due to (P-Rel) and type rules (M-Fst) and (M-Snd) for projection on messages.

4 Conclusion and Future work

We defined a process calculus for MANET called DBSPI which is a distributed
cryptographic π–calculus. Following previous work on type systems by Gordon
and Jeffrey [9,10,11,12] we analyzed authenticity properties using correspondence
assertions. Using a stronger attacker model than in [10] we proved subject reduction,
type safety and robust safety. Finally we applied our techniques to an example

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–93 91

inspired from the Mobile IP registration protocol. We believe this type system is
one of the first for a MANET process calculus.

Future work includes behavioral studies by definition of suitable equivalences.
The study of weaker attacker models seems important. A sub-typing relation á la
[10] in the type system would result in a more precise approximation of safety.

Finally it would be interesting to compare the expressive power of DBSPI with
CMAN [3]. The CMAN calculus can model all the cryptographic operations from
DBSPI and broadcast communication. It seems plausible that DBSPI networks with
a fixed neighbor topology and bidirectional neighbor relations could be simulated
in CMAN.

References

[1] Bruno Blanchet: Computationally Sound Mechanized Proofs of Correspondence Assertions. In 20th
IEEE Computer Security Foundations Symposium (CSF’07), pages 97-111, Venice, Italy, July 2007.
IEEE.

[2] Martin Abadi and Cedric Fournet: Mobile values, new names, and secure communication. SIGPLAN
Not., vol. 36, number 3, 2001.

[3] Jens Chr. Godskesen: A Calculus for Mobile Ad Hoc Networks (Extended Abstract). To appear in
Proceedings of Coordination’07, Paphos, Cyprus. June 2007.

[4] Mart́ın Abadi and Andrew D. Gordon: A Calculus for Cryptographic Protocols: The Spi Calculus.
Fourth ACM Conference on Computer and Communications Security. ACM Press, pp. 36–47, 1997.

[5] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. Foundations of Software Science and
Computation Structures: First International Conference, FOSSACS ’98.

[6] Sebastian Nanz and Chris Hankin: A framework for security analysis of mobile wireless networks. Theor.
Comput. Sci. Vol. 367, number 1. 2006.

[7] Andrew D. Gordon, Hans Hüttel and René Rydhof Hansen: Inferring Correspondence Types in a
Polarized Pi-Calculus, Submitted to SECCO 2008.

[8] Matthew Hennessy: A Distributed Pi-Calculus, Cambridge University Press 2007.

[9] Andrew D. Gordon and Alan Jeffrey: Typing One-to-One and One-to-Many Correspondences in Security
Protocols. Software Security – Theories and Systems, Mext-NSF-JSPS International Symposium, ISSS
2002, Tokyo, Japan, November 8-10, 2002.

[10] Andrew D. Gordon and Alan Jeffrey: Types and Effects for Asymmetric Cryptographic Protocols. Proc.
CSFW 15, 2002.

[11] Andrew D. Gordon and Alan Jeffrey: Authenticity by Typing for Security Protocols. Journal of
Computer Security, Volume 11, number 4, 2003.

[12] Andrew D. Gordon and Alan Jeffrey: Typing correspondence assertions for communication protocols.
Theor. Comput. Sci., Vol 300, number 1-3, 2003.

[13] Daisuke Kikuchi and Naoki Kobayashi. Type-based verification of correspondence assertions for
communication protocols. In Zhong Shao, editor, APLAS, volume 4807 of Lecture Notes in Computer
Science, pages 191-205. Springer, 2007.

[14] Sufatrio and Kwok-Yan Lam: Mobile IP Registration Protocol: A Security Attack and New Secure
Minimal Public-Key Based Authentication, 1999 International Symposium on Parallel Architectures,
Algorithms and Networks (ISPAN ’99), 23-25 June 1999, Fremantle, Australia.

[15] Thomas Y.C. Woo and Simon S. Lam: A Semantic Model for Authentication Protocols. Research in
Security and Privacy, Oakland, CA, USA. 1993.

[16] Fournet, Cedric; Gordon, Andrew; Maffeis, Sergio: A Type Discipline for Authorization in Distributed
Systems. Computer Security Foundations Symposium, 2007. CSF ’07. 20th IEEE, pp.31-48, 6-8 July
2007.

[17] Massimo Merro: An Observational Theory for Mobile Ad Hoc Networks, ENCS. Vol 173, 2007.

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–9392

[18] Christian Ene and Traian Muntean: Expressiveness of point-to-point versus broadcast communications.
FCT ’99 : fundamentals of computation theory (30 August - 3 September 1999). LNCS vol. 1684.

[19] Perkins C. ed.: IP Mobility Support. IETF RFC 2002, October 1996.

[20] K. V. S. Prasad: A Calculus of Broadcasting Systems. Sci. Comput. Program. Vol 25, Number 2–3, pp.
285–327. 1995.

[21] K. V. S. Prasad: A Prospectus for Mobile Broadcasting Systems. Electr. Notes Theor. Comput. Sci.,
Vol 162, pp. 295–300. 2006.

[22] Nicola Mezzetti and Davide Sangiorgi: Towards a Calculus For Wireless Systems. Electr. Notes Theor.
Comput. Sci., vol 158, pages 331–353. 2006.

[23] Anu Singh, C.R.Ramakrishnan, and Scott A. Smolka: A Process Calculus for Mobile Ad Hoc Networks.

[24] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile Processes, Cambridge
University Press 2001.

[25] Danny Dolev and Andrew C. Yao: On Security of Public Key Protocols, IEEE trans. on Information
Theory, IT-29, 198-208. 1983.

J.Chr. Godskesen et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 77–93 93

	Introduction
	Our work
	Related work
	Outline of the paper

	Syntax and Semantics of the DBSPI–calculus
	Syntax
	Free names, substitution and structural congruence
	Reduction semantics of DBSPI
	Considerations on the expressive power of DBSPI
	Safety and Robust Safety of Networks

	A Type and Effect System for DBSPI
	Effects and Types
	Type rules
	Subject reduction, safety and robust safety

	Conclusion and Future work
	References

