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Abstract

The paper deals with nonlinear diffusion, both time-dependent and time-independent. The spatial terms in the partial differential
equation (p.d.e.) contain a second order nonlinear part (where the non-negative diffusivity depends on the dependent variable) and
a fourth order linear part. In the context of non-null, time-independent boundary conditions, convergence of the unsteady to the
steady state is established. The second part of the paper discusses criteria on data ensuring non-negativity of the solutions. This
is done for the steady state irrespective of the spatial dimension; and it is done for the unsteady state for the one-dimensional
rectilinear case only, using a result from the first part of the paper.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with nonlinear diffusion, both time-dependent and time-independent. The spatial terms in
the relevant partial differential equation contain a second order nonlinear part (where the (non-negative) diffusivity
depends on the dependent variable) and a fourth order linear part. Time independent, non-null, Dirichlet type boundary
conditions are envisaged, and both the corresponding initial boundary value problem (for the unsteady state) and the
boundary value problem (for the steady state) are considered.

Using an extension of a versatile Liapunov functional (e.g. [1,2] and the references quoted therein) as applied to
the perturbation (i.e. unsteady–steady state), a lower estimate is obtained for the rate of convergence, with respect
to time, of the unsteady to the steady state. In the one-dimensional, rectilinear case, it is possible to deduce a decay
estimate for the absolute value of the perturbation. The foregoing may be referred to as the first part of the paper.

We now turn to the second part of this paper: In the context of the initial boundary value problem and the boundary
value problem considered, an important question arises: What restrictions on the data ensure non-negative solutions?
This question arises as equations of the type considered are often used to model intrinsically non-negative, or positive,
quantities, e.g. cell density in biology. In the case of the steady state problem, restrictions are obtained on the data that
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ensure non-negative solutions: this is done by means of a comparison theorem based on maximum principles. In the
case of the unsteady state problem, restrictions are obtained on the data guaranteeing non-negative solutions in the
one-dimensional rectilineal case only. These restrictions are based on the conditions arising in the case of the steady
state problem together with a restriction on the initial data. The latter restriction is obtained using the estimate for the
perturbation obtained in the first part of the paper.

2. Steady and unsteady states: Convergence of the latter to the former

A fixed spatial region V is considered, its smooth boundary being denoted by ∂V . The spatial and time variables
are denoted by x, t , respectively. It is supposed that the unsteady state T (x, t) is a smooth function, satisfying the
initial boundary value problem

∂T /∂t = ∇ · {k(T )∇T
} − α∇4T in V, (1)

the diffusivity k(·) being a continuously differentiable, positive or non-negative, function of its argument, α being a
positive constant, subject to the boundary conditions

T = r(x), ∇2T = s(x) on ∂V, (2)

and to the initial condition

T (x,0) = T0(x) in V, (3)

r(x), s(x), T0(x) being assigned functions of position.
The initial boundary value problem considered above is one of the simpler such problems for the p.d.e. (1). Mur-

ray [3] provides motivation for (1) in a biological context: Diffusion with a = 0 corresponds to a flux proportional to
the concentration gradient ∇T and is appropriate to dilute systems. For relatively high cell concentrations—as may
occur in embryological development, for example—it is appropriate to augment the flux by the inclusion of a term
involving ∇(∇2T ). Murray [3] points out that the p.d.e. (1) with

k(T ) = a + bT 2,

a, b being non-negative constants, follows from a Landau–Ginzberg free energy form.
Let U(x) be the corresponding steady state, satisfying the same time-independent boundary conditions: it is sup-

posed that U(x) is a smooth function satisfying the boundary value problem

∇ · {k(U)∇U
} − α∇4U = 0 in V, (4)

subject to the boundary conditions

U = r(x), ∇2U = s(x) in V. (5)

The analysis subsequently carried out for these is envisaged in the context of a two or three-dimensional region,
but the corresponding results in a one-dimensional, rectilineal context will be immediately apparent.

A perturbation of the steady state is envisaged (at t = 0) and we define the perturbation

u(x, t) = T (x, t) − U(x). (6)

We introduce a function Φ(u,U) which is fundamental to the subsequent analysis

Φ(u,U) =
u∫

0

dū

ū∫
0

k(U + τ) dτ. (7)

This function was used in previous papers [1,2], and most of the principal properties, under certain assumptions, are
summarized in Appendix A. One may verify that the initial boundary value problem characterizing u may be written

∂u/∂t = ∇2Φu − α∇4u in V, (8)

subject to the boundary conditions

u = ∇2u = 0 on ∂V, (9)
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and the initial condition

u(x,0) = T0(x) − U(x) in V. (10)

Referring to Φ(u,U), defined by (7), we summarize hereunder some of its salient properties. It is evident that

Φ(0,U) = Φu(0,U) = 0. (11)

Further, supposing that there exists a non-negative constant k0 such that

k(·) � k0, (12)

then

Φ(u,U) � 1

2
k0u

2. (13)

It follows that Φ(u,U) is positive-definite in u when k0 > 0, and non-negative if k0 = 0. Further relevant properties
of Φ are given in Appendix A.

We define

E(t) =
∫
V

[
Φ(u,U) + (α/2)(∇u)2]dV. (14)

In view of the foregoing properties of Φ it is evident that the integrand in (14) is positive-definite in u provided k0 � 0.
E(t) is thus a suitable global measure of the perturbation u at time t.

On using (8), (9), etc., one may prove that

dE

dt
= −

∫
V

[∇Φu − α∇(∇2u
)]2

dV. (15)

Remark 1. This result (dE/dt � 0) is sometimes verbalized as follows: the steady state U is stable with respect to
the measure (or Liapunov functional) E.

Remark 2. It does not appear to be possible to replace the constant α/2 in (14) by another one to obtain a result of
the type (15) wherein dE/dt � 0.

Remark 3. The result (15) continues to be valid if the boundary conditions (5) are modified to read

∇T · n = 0, ∇(∇2T
) · n = h(x) on ∂V,

where h(x) is an assigned function and where n denotes the unit outward normal to ∂V .

We now obtain a differential inequality for dE/dt, representing an improvement of dE/dt � 0. Consider the
following chain of inequalities, etc.:

{
E(t)

}2 =
[∫

V

{
Φ + (α/2)(∇u)2}dV

]2

�
[∫

V

{
uΦu + α(∇u)2}dV

]2

=
[∫

V

{
u
(
Φu − α∇2u

)}
dV

]2

�
∫
V

u2 dV

∫
V

(
Φu − α∇2u

)2
dV, (16)

the four steps, taken in order, being based on

(i) the definition (14),
(ii) uΦu � Φ (see Appendix A),

(iii) integration by parts, using (91),
(iv) Schwarz’s inequality.
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Let λ1 denote the lowest (positive) “fixed-membrane” eigenvalue of V (corresponding to the eigenvalue problem
defined by

∇2χ + λχ = 0 in V, χ = 0 on ∂V,

etc.) Applying the standard variational characterization of λ1 to (16) we obtain

{
E(t)

}2 �
∫
V

u2 dV · λ−1
1

∫
V

{∇(
Φu − α∇2u

)}2
dV = −

∫
V

u2 dV · λ−1
1 dE/dt (17)

where (15) has been used in the last step.
Again using the variational characterization of λ1, as applied to u, together with (13), we obtain from (14)

E(t) � (1/2)(k0 + αλ1)

∫
u2 dV. (18)

Combining (17), (18) we obtain the requisite, improved differential inequality

dE/dt + (λ1/2)(k0 + αλ1)E � 0. (19)

Integration gives the following result:

Theorem 1. The global measure of the perturbation u (defined by (6)–(9), etc.) given by the Liapunov functional E(t),

defined by (14), satisfies

E(t) � E(0) exp
[−(λ1/2)(k0 + αλ1)t

]
, (20)

λ1 being the lowest (positive) fixed membrane eigenvalue of the region V , k0 being defined by (12).

Remark 4. The theorem may be expressed verbally as follows: as t → ∞, the unsteady state converges asymptotically
and exponentially to the steady state, in the measure E.

Remark 5. The result (20) continues to hold if the constant k0 is omitted.

Remark 6. An upper bound for
∫

u2 dV is deducible from (18), (20).

Remark 7. The previous, and subsequent, analysis continues to hold in a one-dimensional rectilineal context, mutatis
mutandis, e.g. consider the fixed domain 0 � x � L,x being a rectangular cartesian coordinate; ∇,∇2,∇4 are replaced
by d/dx, d2/dx2, d4/dx4, respectively; the boundary conditions (2), etc. are replaced by

T (0) = r(0), d2T/dx2(0) = s(0), T (L) = r(L), d2T/dx2(L) = s(L), (21)

where r(0), s(0), r(L), s(L) are constants, etc. In this context, λ1 is replaced by π2/L2.

In this (one-dimensional) case, it is possible to obtain pointwise bounds for u(x, t): for 0 < x < L,

E(t) =
L∫

0

[
Φ(U,u) + (α/2)(du/dx)2]dx � (α/2)

L∫
0

(du/dx)2 dx

� (α/2)
{
x(1 − x/L)

}−1{
u(x, t)

}2
, (22)

on using a well-known, optimal bound [4]. The requisite, explicit bound for u(x, t) follows on combining this
with (20). It is possible to improve this along the following lines: for 0 < x < L,

E(t) � (α/2)

L∫
0

[
(du/dx)2 + (k0/α)u2]dx � (α/2)c

(
x,L, (k0/α)

){
u(x, t)

}2
,

where c(x,L, k0/α) is a non-negative quantity, the best value of which can be written down explicitly [5].
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Remark 8. If a positive constant km is known such that

k(·) � km,

then a slight generalization of the analysis leading to (20) yields

E(t) � E(0) exp
[−(

p2λ1/2
)
(k0 + αλ1)t

]
, (23)

where

p = 1 + k0/km;
(A.5) of Appendix A plays a central role in this generalization. The result (23) is optimal in the limit k0/km → 1:
when the diffusivity is constant, there are non-trivial circumstances in which the equality sign is realized in (23).

3. Non-negativity of solutions

In this section the following important issue is considered: under what conditions (i.e. for what data) are the
solutions of the steady and unsteady state problems non-negative? Whereas it is possible to obtain such conditions for
the steady state irrespective of the number of spatial dimensions, in this paper this proves possible for the unsteady
state in the one-dimensional rectilineal case only. The importance of the general issue arises as the dependent variable
in p.d.e.s of the type (1), often model intrinsically non-negative, or positive, quantities, e.g. cell density in biology.

To address the issue for the steady state, we need the following (simplified version of the) comparison theorems,
given in [6], for example. Suppose z(x), Z(x) are smooth functions satisfying

(i) ∇2z − a(x)z = 0 in V , z = F(x) on ∂V,

(ii) ∇2Z − a(x)Z � 0 in V , Z � F(x) on ∂V ,

where a(x) � 0, then

Z(x) � z(x). (24)

If we define

W = −∇2U (25)

and if we suppose that the derivative of the diffusivity k(·) with respect to its argument k′ satisfies

k′(·) � 0

then (4), (25) imply an inequality of the type

∇2W − a(x)W � 0 in V, (26)

where a(x) � 0. Suppose, in addition, that

W(x) � 0 on ∂V, (27)

then, on putting F ≡ 0, z ≡ 0, Z ≡ W in the comparison theorem (24), it follows that

W(x) � 0 in V, (28)

i.e.

∇2U � 0 in V. (29)

Suppose, in addition to (29), that

U(x) � 0 on ∂V, (30)

then, on putting a ≡ 0,Z ≡ U,F ≡ 0, z = 0 in the comparison theorem (24), one finds that

U(x) � 0 in V. (31)

We have thus obtained conditions on the data under which the steady state—defined by (4), (5)—is non-negative
(assuming, of course, the existence of smooth solutions). These are embodied in the following theorem
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Theorem 2. The steady state U(x), defined by (4), (5), is non-negative provided that

(a) the diffusivity k(·) is a non-decreasing function of its argument,
(b) the boundary conditions (5) are such that r(x) � 0, s(x) � 0.

It is possible to deduce from the foregoing analysis sufficient conditions on the data to ensure non-negative solutions
in the time-dependent case, provided one confines attention to the one-dimensional, rectilineal case. This may be done
by using the results of Theorems 1 and 2 (mutatis mutandis) together with the pointwise bound (22). Plainly one has

T (x, t) � 0

provided that the conditions of Theorem 2 hold mutatis mutandis together with{
u(x, t)

}2 �
{
U(x)

}2
.

Recall that Theorem 1 (or, indeed, (15)) implies

E(t) � E(0),

and the foregoing considerations lead to:

Theorem 3. In the one-dimensional rectilinear context 0 � x � L (see [1–5] and Remark 7), suppose that

(a) the diffusivity k(·) is a non-decreasing function of its argument,
(b) the boundary conditions satisfy r(0) � 0, r(L) � 0, s(0) � 0, s(L) � 0,

(c) x(1 − x/L)

[ L∫
0

{
(2/α)

u0(x)∫
0

dū

ū∫
0

k(U + τ) dτ + (
du0(x)/dx

)2

}
dx

]
�

{
U(x)

}2
,

where u0(x) is the initial value of the perturbation, then

T (x, t) � 0 for t � 0.

Remark 9. The issue dealt with in the latter theorem is similar to that dealt with by Bartuccelli et al. [7] and in the
references quoted therein, although there are considerable differences in the nonlinear diffusion problems considered
in both cases. Among the similarities, is a condition restricting the size of the absolute values of the initial values of
the perturbation and that of its spatial derivative. See also [8].

Remark 10. It is, of course, possible to weaken the restriction (c) in Theorem 3 if one merely requires

T (x, t) � 0 for t � t0,

where t0 > 0.

Appendix A. Properties of Φ defined by (7)

Suppose that the diffusivity k satisfies (12). Then the remainder form of Taylor’s theorem together with (7), (11),
(13) imply that

Φ(u,U) � 1

2
k0u

2. (A.1)

The positive-definiteness in u of Φ(u,U) follows.
One easily shows that

uΦu − Φ =
u∫
ū k(U + ū) d ū. (A.2)
0
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Assuming (12), it follows that

uΦu � Φ, (A.3)

for if u is non-negative there is nothing to prove, while if it is negative a change of variable makes the proof transparent.
If one assumes the existence of a positive constant km such that

km � k(·)
one may prove a result similar to (A.1)

1

2
kmu2 � Φ(u,U). (A.4)

Combining (A.1), (A.2), (A.4) one may obtain

uΦu � (1 + k0/km)Φ. (A.5)
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