Von Neumann–Jordan Constant of Absolute Normalized Norms on \mathbb{C}^2

Kichi-Suke Saito1

metadata, citation and similar papers at core.ac.uk

Mikio Kato¹

Department of Mathematics, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan E-mail: katom@tobata.isc.kyutech.ac.jp

and

Yasuji Takahashi¹

Department of System Engineering, Okayama Prefectural University, Soja 719-1197, Japan E-mail: takahasi@cse.oka-pu.ac.jp

Submitted by Paul S. Muhly

Received September 7, 1999

We determine and estimate the von Neumann–Jordan constant of absolute normalized norms on \mathbb{C}^2 by means of their corresponding continuous convex functions on [0,1]. This provides many new interesting examples including those of non- ℓ_p -type as well as some previous ones. It is also shown that all such norms are uniformly non-square except ℓ_1 - and ℓ_∞ -norms. © 2000 Academic Press

Key Words: absolute normalized norm; convex function; non- ℓ_p -type norm; von Neumann-Jordan constant; uniform non-squareness.

1. INTRODUCTION

The notion of the von Neumann-Jordan constant of Banach spaces (hereafter referred to as NJ constant) was introduced by Clarkson in [5]

¹ The authors are supported in part by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

515

and recently it has been studied by several authors (cf. [5, 6, 8–11, 13], etc.). The NJ constant $C_{\rm NJ}(X)$ of a Banach space X is the smallest constant C for which

$$\frac{1}{C} \le \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} \le C$$

holds for all $x, y \in X$, not both 0. From Jordan and von Neumann [6], we have $1 \le C_{\rm NJ}(X) \le 2$ for any Banach space X, and X is a Hilbert space if and only if $C_{\rm NJ}(X) = 1$. Clarkson [5] calculated the NJ constant of L_p by using Clarkson's inequalities. Recently, following his way, it was determined for a sequence of other Banach spaces such as $L_p(L_q)$ (L_q -valued L_p -space), $W_p^k(\Omega)$ (Sobolev space), c_p (Schatten p-class operators), and so on ([9, 11], etc.). On the other hand, thanks to the NJ constant we can describe some geometrical and topological structures of Banach spaces. For example, the second and third authors proved that $C_{\rm NJ}(X) < 2$ if and only if X is uniformly non-square, whence X is super-reflexive if and only if X admits an equivalent norm with NJ constant less than 2 ([10, 13]). We also have that, if $C_{\rm NJ}(X) < 5/4$, then the Banach space X has the fixed point property for nonexpansive mappings (cf. [8]). For some other results concerning Rademacher type and cotype we refer the reader to [10].

A norm $\|\cdot\|$ on \mathbb{C}^2 is said to be *absolute* if $\|(z,w)\| = \|(|z|,|w|)\|$ for all $z,w\in\mathbb{C}$ and *normalized* if $\|(1,0)\| = \|(0,1)\| = 1$. Let N_a denote the family of all absolute normalized norms on \mathbb{C}^2 , and let Ψ denote the family of all continuous convex functions on [0,1] such that $\psi(0)=\psi(1)=1$ and $\max\{1-t,t\}\leq\psi(t)\leq 1$ ($0\leq t\leq 1$). Then as in Bonsall and Duncan [3,1] Section 21, Lemma 3], N_a and Ψ are in one-to-one correspondence under the equation $\psi(t)=\|(1-t,t)\|$ ($0\leq t\leq 1$). In particular, owing to this we can consider many non- I_p -type norms easily.

In this paper, we shall determine and estimate the NJ constant of absolute normalized norms on \mathbb{C}^2 by means of the corresponding convex functions. In particular, this provides a new way to calculate it with no use of Clarkson's inequalities. The main results are stated as follows. Let $\|\cdot\|_{\psi}$ be an absolute normalized norm associated with a convex function $\psi \in \Psi$. Let $M_1 = \max_{0 \le t \le 1} \psi(t)/\psi_2(t)$ and $M_2 = \max_{0 \le t \le 1} \psi_2(t)/\psi(t)$, respectively, where $\psi_2(t) \coloneqq \{(1-t)^2 + t^2\}^{1/2}$ corresponds to the ℓ_2 -norm. First we show that, if $\psi \ge \psi_2$ (resp. $\psi \le \psi_2$), then $C_{\rm NJ}(\|\cdot\|_{\psi}) = M_1^2$ (resp. M_2^2) (Theorem 1). In general, we prove that $\max\{M_1^2, M_2^2\} \le C_{\rm NJ}(\|\cdot\|_{\psi}) \le M_1^2 M_2^2$ (Theorem 2). Theorem 1 gives a class of convex functions for which $C_{\rm NJ}(\|\cdot\|_{\psi}) = \max\{M_1^2, M_2^2\}$. We further present a sufficient condition that $C_{\rm NJ}(\|\cdot\|_{\psi}) = M_1^2 M_2^2$ (max $\{M_1^2, M_2^2\} < C_{\rm NJ}(\|\cdot\|_{\psi})$) (Theorem 3) and that $C_{\rm NJ}(\|\cdot\|_{\psi}) < M_1^2 M_2^2$ (Theorem 4), respectively. These results enable us to

present many new interesting examples, especially those of non- ℓ_p -type, for instance, $\ell_{p,2}$ -norm, $p \geq 2$ (Lorentz norm), etc. As a corollary we show that all absolute normalized norms are uniformly non-square except ℓ_1 -and ℓ_{∞} -norms.

2. ABSOLUTE NORMALIZED NORMS ON \mathbb{C}^2

A norm $\|\cdot\|$ on \mathbb{C}^2 is said to be *absolute* if

$$||(z, w)|| = ||(|z|, |w|)||$$
 for all $z, w \in \mathbb{C}$

and normalized if $\|(1,0)\| = \|(0,1)\| = 1$. The ℓ_p -norms $\|\cdot\|_p$ $(1 \le p \le \infty)$ are basic examples,

$$\|(z,w)\|_p = \begin{cases} (|z|^p + |w|^p)^{1/p} & \text{if } 1 \le p < \infty, \\ \max(|z|,|w|) & \text{if } p = \infty. \end{cases}$$

Let N_a denote the family of absolute normalized norms on \mathbb{C}^2 . We recall some basic facts about these norms; for the convenience of the reader we give their proofs following Bonsall and Duncan [3].

LEMMA 1 ([3, p. 36]). For any norm $\|\cdot\| \in N_a$

$$\|\cdot\|_{\infty} \le \|\cdot\| \le \|\cdot\|_1. \tag{1}$$

Indeed, for any $z, w \in \mathbb{C}$

$$\begin{aligned} \|(z,w)\|_{\infty} &= \max\{\|(z,0)\|, \|(0,w)\|\} \\ &= \frac{1}{2}\max\{\|(z,w) + (z,-w)\|, \|(z,w) + (-z,w)\|\} \\ &\leq \frac{1}{2}\max\{\|(z,w)\| + \|(z,-w)\|, \|(z,w)\| + \|(-z,w)\|\} \\ &= \|(z,w)\| \\ &\leq \|(z,0)\| + \|(0,w)\| \\ &= \|(z,w)\|_{1}. \end{aligned}$$

Now let Ψ denote the family of all continuous convex functions ψ on [0,1] with $\psi(0)=\psi(1)=1$ satisfying

$$\max\{1 - t, t\} \le \psi(t) \le 1 \qquad (0 \le t \le 1). \tag{2}$$

Then N_a and Ψ are in one-to-one correspondence as follows.

Lemma 2 ([3, p. 37]). (i) Let $\|\cdot\| \in N_a$ and let

$$\psi(t) = \|(1 - t, t)\| \qquad (0 \le t \le 1). \tag{3}$$

Then $\psi \in \Psi$: *Conversely*,

(ii) For a given $\psi \in \Psi$ define

$$\|(z,w)\|_{\psi} = \begin{cases} (|z| + |w|) \psi \left(\frac{|w|}{|z| + |w|} \right) & \text{if } (z,w) \neq (0,0), \\ 0 & \text{if } (z,w) = (0,0). \end{cases}$$
(4)

Then $\|\cdot\|_{\psi} \in N_a$, and $\|\cdot\|_{\psi}$ satisfies (3).

Proof. (i) This is easy to see (ψ satisfies (2) by Lemma 1).

(ii) Let $\psi \in \Psi$. We only show the triangle inequality. Let us first see that

$$\|(p,q)\|_{\psi} \le \|(r,s)\|_{\psi} \quad \text{if } 0 \le p \le r, 0 \le q \le s.$$
 (5)

When p = 0 or q = 0, (5) is clear (recall Lemma 1). Thus it is enough to show that

$$(p+q)\psi\left(\frac{q}{p+q}\right) \le (r+s)\psi\left(\frac{s}{r+s}\right) \quad \text{if } 0$$

Since ψ is convex and $\psi(t) \ge t$, the function $\psi(t)/t$ is non-increasing. Indeed, let $0 < s < t \le 1$. Then

$$\psi(t) = \psi\left(\frac{1-t}{1-s}s + \frac{t-s}{1-s}1\right) \le \frac{1-t}{1-s}\psi(s) + \frac{t-s}{1-s}\psi(1).$$

Hence

$$\frac{\psi(s)}{s} - \frac{\psi(t)}{t} \ge \frac{\psi(s)}{s} - \frac{1}{t} \left\{ \frac{1-t}{1-s} \psi(s) + \frac{t-s}{1-s} \right\}$$

$$\ge \psi(s) \left\{ \frac{1}{s} - \frac{1-t}{t(1-s)} \right\} - \frac{t-s}{t(1-s)}$$

$$\ge s \left\{ \frac{1}{s} - \frac{1-t}{t(1-s)} \right\} - \frac{t-s}{t(1-s)} = 0.$$

Therefore we have

$$(p+q)\psi\left(\frac{q}{p+q}\right) \le (r+q)\psi\left(\frac{q}{r+q}\right). \tag{7}$$

In the same way the function $\psi(t)/(1-t)$ is non-decreasing (use $\psi(t) \ge 1-t$ in this case), which implies

$$(r+q)\psi\left(\frac{q}{r+q}\right) \le (r+s)\psi\left(\frac{s}{r+s}\right). \tag{8}$$

Combining (7) and (8), we have (6). Now let $(u, v), (z, w) \in \mathbb{C}^2$. Then by (5)

$$\begin{aligned} \|(u,v) + (z,w)\|_{\psi} &= \|(|u+z|,|v+w|)\|_{\psi} \\ &\leq \|(|u|+|z|,|v|+|w|)\|_{\psi} \\ &= (|u|+|z|+|v|+|w|)\psi\left(\frac{|v|+|w|}{|u|+|z|+|v|+|w|}\right). \end{aligned}$$

Noting here that

$$\begin{aligned} &\frac{|v| + |w|}{|u| + |v| + |z| + |w|} \\ &= \frac{|u| + |v|}{|u| + |v| + |z| + |w|} \cdot \frac{|v|}{|u| + |v|} + \frac{|z| + |w|}{|u| + |v| + |z| + |w|} \cdot \frac{|w|}{|z| + |w|}, \end{aligned}$$

we have by the convexity of ψ

$$\begin{split} \|(u,v) + (z,w)\|_{\psi} &\leq (|u| + |v|)\psi\left(\frac{|v|}{|u| + |v|}\right) + (|z| + |w|)\psi\left(\frac{|w|}{|z| + |w|}\right) \\ &= \|(u,v)\|_{\psi} = \|(z,w)\|_{\psi}, \end{split}$$

as desired.

Now let $\psi_p(t) = \{(1-t)^p + t^p\}^{1/p} \in \Psi$. Then, as is easily seen, the ℓ_p -norm $\|\cdot\|_p$ is associated with $\psi_p \in N_a$. In what follows we write $\varphi \leq \psi$ if $\varphi(t) \leq \psi(t)$ for all $0 \leq t \leq 1$. We shall need the following simple facts later.

LEMMA 3. Let $\varphi, \psi \in \Psi$ and let $\varphi \leq \psi$. Put

$$M = \max_{0 \le t \le 1} \frac{\psi(t)}{\varphi(t)}.$$

Then

$$\|\cdot\|_{\varphi} \leq \|\cdot\|_{\psi} \leq M\|\cdot\|_{\varphi}.$$

Proof. For any $z, w \in \mathbb{C}$

$$\begin{split} \|(z,w)\|_{\varphi} &= (|z| + |w|) \varphi\left(\frac{|w|}{|z| + |w|}\right) \\ &\leq (|z| + |w|) \psi\left(\frac{|w|}{|z| + |w|}\right) \\ &= \|(z,w)\|_{\psi} \\ &\leq M(|z| + |w|) \varphi\left(\frac{|w|}{|z| + |w|}\right) \\ &= M\|(z,w)\|_{\varphi}. \end{split}$$

LEMMA 4. Let $\varphi, \psi \in \Psi$ and let $1/2 \le \lambda \le 1$. Then

$$\max\{\|\cdot\|_{\varphi}, \lambda\|\cdot\|_{\psi}\} = \|\cdot\|_{\max\{\varphi, \lambda\psi\}}.$$

Proof. Note first that $\max\{\varphi, \lambda\psi\} \in \Psi$. Then for any $(z, w) \in \mathbb{C}^2$

$$\begin{aligned} \|(z,w)\|_{\max\{\varphi,\,\lambda\psi\}} &= (|z|+|w|)\max\left\{\varphi\left(\frac{|w|}{|z|+|w|}\right),\,\lambda\psi\left(\frac{|w|}{|z|+|w|}\right)\right\} \\ &= \max\{\|(z,w)\|_{\varphi},\,\lambda\|(z,w)\|_{\psi}\}. \end{aligned}$$

3. NJ CONSTANT OF ABSOLUTE NORMALIZED NORMS— THE COMPARABLE CASE WITH ψ_2

The von Neumann-Jordan constant of a Banach (or normed) space X ([5]; cf. [12, p. 550]), we denote by $C_{\rm NJ}(X)$, is the smallest constant C for which

$$\frac{1}{C} \le \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} \le C$$

holds for all $x, y \in X$, not both 0.

Let us recall some geometrical notions of a Banach space X (cf. [1]). X or its norm $\|\cdot\|$ is called *uniformly convex* if for any $\varepsilon > 0$ ($0 < \varepsilon < 2$) there exists a $\delta > 0$ such that $\|x-y\| \ge \varepsilon$, $\|x\| \le 1$, $\|y\| \le 1$ implies $\|(x+y)/2\| \le 1 - \delta$. X is called *uniformly non-square* provided there exists a $\delta > 0$ such that if $\|(x-y)/2\| \ge 1 - \delta$, $\|x\| \le 1$ and $\|y\| \le 1$, then $\|(x+y)/2\| \le 1 - \delta$. Clearly uniformly convex spaces are uniformly non-square, for the converse uniform non-squareness does not even imply

strict convexity, whereas X admits an equivalent uniformly non-square norm if and only if X is uniformly convexifiable (such a Banach space is precisely super-reflexive).

We summarize some basic facts about the NJ constant.

PROPOSITION A. (i) $1 \le C_{\rm NJ}(X) \le 2$ for any Banach space X; $C_{\rm NJ}(X) = 1$ if and only if X is a Hilbert space (Jordan and von Neumann [6]).

- (ii) $C_{\rm NJ}(X) < 2$ if and only if X is uniformly non-square (Takahashi and Kato [13]; see also [10]).
- (iii) $C_{NJ}(L_p) = C_{NJ}(\ell_p) = 2^{(2/t)-1}$, where $1 \le p \le \infty$, 1/p + 1/p' = 1, and $t = \min\{p, p'\}$ (Clarkson [5]).

For a norm $\|\cdot\|$ on \mathbb{C}^2 we write $C_{NJ}(\|\cdot\|)$ for $C_{NJ}((\mathbb{C}^2,\|\cdot\|))$. We first see that the NJ constant is stable under the symmetric transformation of ψ with respect to the line t = 1/2.

PROPOSITION 1. Let $\psi \in \Psi$ and let $\tilde{\psi}(t) = \psi(1-t)$. Then $C_{\rm NJ}(\|\cdot\|_{\psi}) = C_{\rm NJ}(\|\cdot\|_{\tilde{\psi}})$.

Proof. For $x = (z, w) \in \mathbb{C}^2$ put $\tilde{x} = (w, z)$. Then

$$||x||_{\psi} = (|z| + |w|)\psi\left(\frac{|w|}{|z| + |w|}\right) = (|w| + |z|)\tilde{\psi}\left(\frac{|z|}{|w| + |z|}\right) = ||\tilde{x}||_{\tilde{\psi}}.$$

Therefore we have

$$\begin{split} C_{\mathrm{NJ}}\big(\|\cdot\|_{\psi}\big) &= \sup_{\|x\|_{\psi}^{2} + \|y\|_{\psi}^{2} \neq 0} \frac{\|x + y\|_{\psi}^{2} + \|x - y\|_{\psi}^{2}}{2\big(\|x\|_{\psi}^{2} + \|y\|_{\psi}^{2}\big)} \\ &= \sup_{\|\tilde{x}\|_{\tilde{\psi}}^{2} + \|\tilde{y}\|_{\tilde{\psi}}^{2} \neq 0} \frac{\|\tilde{x} + \tilde{y}\|_{\tilde{\psi}}^{2} + \|\tilde{x} - \tilde{y}\|_{\tilde{\psi}}^{2}}{2\big(\|\tilde{x}\|_{\tilde{\psi}}^{2} + \|\tilde{y}\|_{\tilde{\psi}}^{2}\big)} \\ &= C_{\mathrm{NJ}}\big(\|\cdot\|_{\tilde{\psi}}\big). \end{split}$$

Theorem 1. Let $\psi \in \Psi$.

(i) Assume that $\psi \geq \psi_2$. Then

$$C_{\text{NJ}}(\|\cdot\|_{\psi}) = \max_{0 \le t \le 1} \frac{\psi(t)^2}{\psi_2(t)^2}.$$
 (9)

(ii) Assume that $\psi \leq \psi_2$. Then

$$C_{\text{NJ}}(\|\cdot\|_{\psi}) = \max_{0 \le t \le 1} \frac{\psi_2(t)^2}{\psi(t)^2}.$$
 (10)

Proof. (i) Put
$$M_1 = \max_{0 \le t \le 1} \psi(t)/\psi_2(t)$$
. Then by Lemma 3
$$\|x + y\|_{\psi}^2 + \|x - y\|_{\psi}^2 \le M_1^2 (\|x + y\|_2^2 + \|x - y\|_2^2)$$
$$= 2M_1^2 (\|x\|_2^2 + \|y\|_2^2)$$
$$\le 2M_1^2 (\|x\|_{\psi}^2 + \|y\|_{\psi}^2).$$

Now let ψ/ψ_2 attain the maximum at $t = t_1$ ($0 \le t_1 \le 1$). Put $x_1 = (1 - t_1, 0)$, $y_1 = (0, t_1)$. Then

$$||x_{1} + y_{1}||_{\psi}^{2} + ||x_{1} - y_{1}||_{\psi}^{2} = ||(1 - t_{1}, t_{1})||_{\psi}^{2} + ||(1 - t_{1}, -t_{1})||_{\psi}^{2}$$

$$= 2\psi(t_{1})^{2}$$

$$= 2M_{1}^{2}\{(1 - t_{1})^{2} + t_{1}^{2}\}$$

$$= 2M_{1}^{2}(||x_{1}||_{\psi}^{2} + ||y_{1}||_{\psi}^{2}), \tag{11}$$

which implies (9).

(ii) Put
$$M_2 = \max_{0 \le t \le 1} \psi_2(t) / \psi(t)$$
. Then
$$||x + y||_{\psi}^2 + ||x - y||_{\psi}^2 \le ||x + y||_2^2 + ||x - y||_2^2$$

$$= 2(||x||_2^2 + ||y||_2^2)$$

$$\le 2M_2^2(||x||_{\psi}^2 + ||y||_{\psi}^2).$$

Assume $M_2 = \psi_2(t_2)/\psi(t_2)$ with some t_2 $(0 \le t_2 \le 1)$. Put $x_2 = (1 - t_2, t_2)$, $y_2 = (1 - t_2, -t_2)$. Then

$$\begin{aligned} \|x_{2} + y_{2}\|_{\psi}^{2} + \|x_{2} - y_{2}\|_{\psi}^{2} &= 4\{(1 - t_{2})^{2} + t_{2}^{2}\} \\ &= 4M_{2}^{2}\psi(t_{2})^{2} \\ &= 2M_{2}^{2}\{\|(1 - t_{2}, t_{2})\|_{\psi}^{2} + \|(1 - t_{2}, -t_{2})\|_{\psi}^{2}\} \\ &= 2M_{2}^{2}(\|x_{2}\|_{\psi}^{2} + \|y_{2}\|_{\psi}^{2}), \end{aligned}$$
(12)

whence we have (10). This completes the proof.

Theorem 1 indicates that the NJ constant of $\|\cdot\|_{\psi}$ does not depend on the shape of ψ . This is stated in a little more general form:

COROLLARY 1. Let $\varphi, \psi \in \Psi$ be comparable with ψ_2 .

(i) Let $\varphi \geq \psi_2$ and $\psi \geq \psi_2$. Then

$$C_{\text{NI}}(\|\cdot\|_{\varphi}) = C_{\text{NI}}(\|\cdot\|_{\psi}) \tag{13}$$

if and only if

$$\max_{0 \le t \le 1} \frac{\varphi(t)}{\psi_2(t)} = \max_{0 \le t \le 1} \frac{\psi(t)}{\psi_2(t)}.$$

(ii) Let $\varphi \ge \psi_2$ and $\psi \le \psi_2$. Then (13) holds if and only if

$$\max_{0 \le t \le 1} \frac{\varphi(t)}{\psi_2(t)} = \max_{0 \le t \le 1} \frac{\psi_2(t)}{\psi(t)}.$$

The same is true for the other cases.

COROLLARY 2 (Clarkson [5]). Let $1 \le p \le \infty$ and 1/p + 1/p' = 1. Let $t = \min\{p, p'\}$. Then

$$C_{\text{NJ}}(\|\cdot\|_p) = 2^{(2/t)-1}.$$
 (14)

In particular, $C_{NJ}(\|\cdot\|_1) = C_{NJ}(\|\cdot\|_{\infty}) = 2$.

Indeed, if $1 \le p \le 2$,

$$\psi_2(t) \le \psi_p(t) \le 2^{(1/p)-(1/2)}\psi_2(t) \qquad (0 \le \forall t \le 1),$$

where the constant $2^{(1/p)-(1/2)}$ is the best possible. Hence we have (14) by Theorem 1. For the case $2 \le p \le \infty$ a parallel argument works.

Remark 1. The only known way to calculate NJ constants needs Clarkson's inequalities (cf. [5, 9, 11]), whereas the above discussion to derive (14) does not require them.

Further, Theorem 1 enables us to obtain many examples easily. Let us present some. The following easy lemma is helpful for applying Theorem 1.

LEMMA 5. Let $\varphi(t) \ge \psi(t) > 0$ on [a, b]. Assume that $\varphi - \psi$ has the maximum, resp. ψ has the minimum, at t = c in [a, b]. Then φ/ψ attains the maximum at t = c.

Indeed, the conclusion is immediate from the identity

$$\frac{\varphi(t)}{\psi(t)} - 1 = \frac{\varphi(t) - \psi(t)}{\psi(t)}.$$

Example 1. Let $\|\cdot\| = \max\{\|\cdot\|_2, \lambda\|\cdot\|_1\}$ $(1/\sqrt{2} \le \lambda \le 1)$. Then

$$C_{\text{NI}}(\|\cdot\|) = 2\lambda^2$$
.

In fact by Lemma 4, $\|\cdot\| = \|\cdot\|_{\max\{\psi_2, \lambda\psi_1\}}$. Then by Theorem 1 we have

$$C_{NJ}(\|\cdot\|) = \max_{0 \le t \le 1} \left[\frac{\max\{\psi_2(t), \lambda \psi_1(t)\}}{\psi_2(t)} \right]^2$$
$$= \max_{0 \le t \le 1} \left\{ \frac{\lambda \psi_1(t)}{\psi_2(t)} \right\}^2 = \frac{\lambda^2}{1/2} = 2\lambda^2.$$

The following example treats a nonnormalized norm.

Example 2 ([10, Proposition 1]). Let $\|\cdot\| = \max\{\|\cdot\|_2, \lambda\|\cdot\|_{\infty}\}$ ($1 \le \lambda \le \sqrt{2}$). Then

$$C_{\rm NI}(\|\cdot\|) = \lambda^2$$
.

Indeed, put $\|\cdot\|_0 = \max\{\lambda^{-1}\|\cdot\|_2, \|\cdot\|_\infty\}$. Then $\|\cdot\|_0 = \|\cdot\|_{\max\{\lambda^{-1}\psi_2, \psi_\infty\}}$ by Lemma 4 and $\|\cdot\| = \lambda \|\cdot\|_0$. Hence we have

$$\begin{split} C_{\mathrm{NJ}}(\|\cdot\|) &= C_{\mathrm{NJ}}(\lambda\|\cdot\|_0) \\ &= C_{\mathrm{NJ}}(\|\cdot\|_0) \\ &= \max_{0 \leq t \leq 1} \left[\frac{\psi_2(t)}{\max\{\lambda^{-1}\psi_2(t), \psi_\infty(t)\}} \right]^2 \end{split}$$

by Theorem 1. Now clearly $\psi_2(t)/[\max\{\lambda^{-1}\psi_2(t),\psi_\infty(t)\}]$ is symmetric with respect to t=1/2. Let t_0 be such that $\lambda^{-1}\psi_2(t_0)=\psi_\infty(t_0)$ $(0 \le t_0 \le 1/2)$. Then we have

$$\max_{0 \le t \le t_0} \left[\frac{\psi_2(t)}{\max\{\lambda^{-1}\psi_2(t), \psi_{\infty}(t)\}} \right]^2 = \lambda^2$$

by Lemma 5, and clearly

$$\max_{t_0 \le t \le 1/2} \left[\frac{\psi_2(t)}{\max\{\lambda^{-1} \psi_2(t), \psi_{\infty}(t)\}} \right]^2 = \max_{t_0 \le t \le 1/2} \left[\frac{\psi_2(t)}{\lambda^{-1} \psi_2(t)} \right]^2 = \lambda^2.$$

Therefore we have $C_{NI}(\|\cdot\|) = \lambda^2$.

EXAMPLE 3. Let $2 \le p < \infty$. Let $\|\cdot\|_{p,2}$ be the (Lorentz) $\ell_{p,2}$ -norm.

$$\|(z,w)\|_{p,2} = \{|z|^{*2} + 2^{(2/p)-1}|w|^{*2}\}^{1/2},$$

where $\{|z|^*, |w|^*\}$ is the non-increasing rearrangement of $\{|z|, |w|\}$; that is, $|z|^* \ge |w|^*$. (Note that if p < 2, $\|\cdot\|_{p,2}$ is a quasi-norm; cf. [7, Proposition 1; 14, p. 126; 2, p. 8]). Then

$$C_{\text{NJ}}(\|\cdot\|_{p,2}) = \frac{2}{1 + 2^{2/p-1}}.$$

Indeed, $\|\cdot\|_{p,2} \in N_a$, and the corresponding convex function is given by

$$\psi_{p,2}(t) = \begin{cases} \left\{ (1-t)^2 + 2^{2/p-1}t^2 \right\}^{1/2} & \text{if } 0 \le t \le 1/2, \\ \left\{ t^2 + 2^{2/p-1}(1-t)^2 \right\}^{1/2} & \text{if } 1/2 \le t \le 1. \end{cases}$$

Since $\psi_{p,2} \le \psi_2$ and $\psi_2/\psi_{p,2}$ is symmetric with respect to t=1/2, we find the maximum of $\psi_2^2/\psi_{p,2}^2$ in the interval [0,1/2]. The difference $\psi_2(t)^2 - \psi_{p,2}(t)^2 = (1-2^{2/p-1})t^2$ takes its maximum at t=1/2, and $\psi_{p,2}$ has the minimum at t=1/2. Therefore by Lemma 5 we have

$$\max_{0 \le t \le 1} \frac{\psi_2(t)^2}{\psi_{p,2}(t)^2} = \frac{\psi_2(1/2)^2}{\psi_{p,2}(1/2)^2} = \frac{2}{1 + 2^{2/p-1}},$$

which implies the conclusion by Theorem 1.

4. NJ CONSTANT OF ABSOLUTE NORMALIZED NORMS— THE GENERAL CASE

LEMMA 6. Let $1/2 \le \alpha \le 1$ and let

$$\psi_{\alpha}(t) = \begin{cases} \frac{\alpha - 1}{\alpha}t + 1 & \text{if } 0 \le t \le \alpha, \\ t & \text{if } \alpha \le t \le 1. \end{cases}$$

Then

$$M_1 = \max_{0 \le t \le 1} \frac{\psi_{\alpha}(t)}{\psi_2(t)} = \left\{ \left(2 - \frac{1}{\alpha} \right)^2 + 1 \right\}^{1/2}, \tag{15}$$

$$M_2 = \max_{0 \le t \le 1} \frac{\psi_2(t)}{\psi_\alpha(t)} = \left\{ \left(\frac{1}{\alpha} - 1 \right)^2 + 1 \right\}^{1/2}.$$
 (16)

Proof. If $\alpha = 1/2$ or $\alpha = 1$, the conclusion is clear by Lemma 5. Let $1/2 < \alpha < 1$. Easy calculation shows that the function ψ_{α}/ψ_{2} attains the maximum at $t = (2\alpha - 1)/(3\alpha - 1)$, which gives (15). The function ψ_{2}/ψ_{α} clearly has the maximum at $t = \alpha$, which implies (16).

Although the notation ψ_{α} is not consistent with ψ_{p} corresponding to the ℓ_{p} -norm, there will be no confusion in the following.

Theorem 2. Let $\psi \in \Psi$ and let

$$M_1 = \max_{0 \le t \le 1} \frac{\psi(t)}{\psi_2(t)}$$
 and $M_2 = \max_{0 \le t \le 1} \frac{\psi_2(t)}{\psi(t)}$. (17)

Then

$$\max\{M_1^2, M_2^2\} \le C_{\text{NJ}}(\|\cdot\|_{\psi}) \le M_1^2 M_2^2. \tag{18}$$

Further we have

$$1 \le \max\{M_1^2, M_2^2\} \le M_1^2 M_2^2 \le 2. \tag{19}$$

Proof. For all $x, y \in \mathbb{C}^2$ we have

$$||x + y||_{\psi}^{2} + ||x - y||_{\psi}^{2} \le M_{1}^{2} (||x + y||_{2}^{2} + ||x - y||_{2}^{2})$$

$$= 2M_{1}^{2} (||x||_{2}^{2} + ||y||_{2}^{2})$$

$$\le 2M_{1}^{2} M_{2}^{2} (||x||_{\psi}^{2} + ||y||_{\psi}^{2}), \tag{20}$$

which implies that $C_{NJ}(\|\cdot\|_{\psi}) \leq M_1^2 M_2^2$. Next let

$$M_1 = \frac{\psi(t_1)}{\psi_2(t_1)}, \qquad M_2 = \frac{\psi_2(t_2)}{\psi(t_2)}$$
 (21)

with some $0 \le t_1, t_2 \le 1$. Put $x_1 = (1 - t_1, 0), y_1 = (0, t_1)$. Then by (11) we have $C_{\rm NJ}(\|\cdot\|_{\psi}) \ge M_1^2$. In the same way, by putting $x_2 = (1 - t_2, t_2), y_2 = (1 - t_2, -t_2)$, we have $C_{\rm NJ}(\|\cdot\|_{\psi}) \ge M_2^2$ by (12).

Now we prove (19). The first two inequalities are obvious. If $\psi \geq \psi_2$ or $\psi \leq \psi_2$, the last inequality in (19) is easy to see (merely note that $\psi_1/\psi_2 \leq \sqrt{2}$ and $\psi_2/\psi_\infty \leq \sqrt{2}$). So assume this is not the case. Then $M_1, M_2 > 1$, whence we have (21) with $0 < t_1, t_2 < 1$. Owing to Proposition 1 we may assume that $t_1 < t_2$. Let (α, α) be the intersection of the line s = t and the line combining the points (0,1) and $(t_2, \psi(t_2))$. Then evidently $1/2 < \alpha < 1$ and $t_2 < \alpha$. Hence

$$M_2 = \frac{\psi_2(t_2)}{\psi(t_2)} = \frac{\psi_2(t_2)}{\psi_\alpha(t_2)} \le \frac{\psi_2(\alpha)}{\psi_\alpha(\alpha)},$$

where ψ_{α} is as in Lemma 6. On the other hand, since $\psi_2(t_1) \le \psi(t_1) \le \psi_{\alpha}(t_1)$ by the convexity of $\psi(t)$ and (21), we have

$$M_1 = \frac{\psi(t_1)}{\psi_2(t_1)} \le \frac{\psi_{\alpha}(t_1)}{\psi_2(t_1)}.$$

Therefore by Lemma 6 we have

$$\begin{split} M_1 M_2 &= \frac{\psi(t_1)}{\psi_2(t_1)} \frac{\psi_2(t_2)}{\psi(t_2)} \\ &\leq \max_{0 \leq t \leq 1} \frac{\psi_{\alpha}(t)}{\psi_2(t)} \max_{0 \leq t \leq 1} \frac{\psi_2(t)}{\psi_{\alpha}(t)} \\ &= \left\{ \left(2 - \frac{1}{\alpha}\right)^2 + 1 \right\}^{1/2} \left\{ \left(\frac{1}{\alpha} - 1\right)^2 + 1 \right\}^{1/2}. \end{split}$$

Put $u = 1/\alpha - 1$. Then, 0 < u < 1 and

$$M_1^2 M_2^2 \le (u^2 + 1) \{ (1 - u)^2 + 1 \}$$

$$= u(u - 1)(u^2 - u + 2) + 2$$

$$< 2. \tag{22}$$

This completes the proof.

Remark 2. (i) In Theorem 2 we have $M_1^2M_2^2=2$ if and only if $\alpha=1$ or $\alpha=1/2$; in this case $\psi=\psi_1$ or $\psi=\psi_\infty$. In fact, the "if" part is clear, and the opposite follows directly from (22).

- (ii) $\max\{M_1, M_2\} = 1$ if and only if $\psi = \psi_2$.
- (iii) $\max\{M_1, M_2\} = M_1 M_2$ if and only if $\psi \ge \psi_2$ or $\psi \le \psi_2$: In particular, Theorem 1 is also a result of this fact.

As a consequence of Theorem 2 we have

COROLLARY 3. Let $\|\cdot\| \in N_a$. Then $C_{\rm NJ}(\|\cdot\|) = 2$ if and only if $\|\cdot\|$ is an ℓ_1 - or ℓ_∞ -norm: In other words, all norms in N_a except ℓ_1 - and ℓ_∞ -norms are uniformly non-square.

Proof. By Theorem 2, $C_{NJ}(\|\cdot\|_{\psi}) = 2$ if and only if $M_1^2 M_2^2 = 2$, which occurs only when $\psi = \psi_1$ or $\psi = \psi_{\infty}$ by Remark 2 (i).

Now, according to Theorem 1, the identity $C_{\rm NJ}(\|\cdot\|_{\psi})=\max\{M_1^2,M_2^2\}$ holds in the estimate (18) of Theorem 2 if ψ is comparable with ψ_2 . The next theorem asserts that for another wide class of convex functions we have $C_{\rm NJ}(\|\cdot\|_{\psi})=M_1^2M_2^2$ and $C_{\rm NJ}(\|\cdot\|_{\psi})>\max\{M_1^2,M_2^2\}$.

THEOREM 3. Let $\psi \in \Psi$ and let $\psi(t) = \psi(1-t)$ for all $0 \le t \le 1$. Assume that $M_1 = \max_{0 \le t \le 1} \psi(t)/\psi_2(t)$ or $M_2 = \max_{0 \le t \le 1} \psi_2(t)/\psi(t)$ is taken at t = 1/2. Then

$$C_{\rm NJ}(\|\cdot\|_{\psi}) = M_1^2 M_2^2.$$
 (23)

Moreover, if neither $\psi \geq \psi_2$ *nor* $\psi \leq \psi_2$,

$$\max\{M_1^2, M_2^2\} < C_{NJ}(\|\cdot\|_{\psi}). \tag{24}$$

Proof. Suppose first $M_1 = \psi(1/2)/\psi_2(1/2)$. Take an arbitrary t with $0 \le t \le 1$ and put x = (t, 1 - t) and y = (1 - t, t). Then

$$||x||_{\psi}^{2} = \psi(1-t)^{2} = \psi(t)^{2}, \qquad ||y||_{\psi}^{2} = \psi(t)^{2}.$$

On the other hand

$$||x + y||_{\psi}^{2} = ||(1, 1)||_{\psi}^{2} = 4\psi(1/2)^{2},$$

$$||x - y||_{\psi}^{2} = ||(2t - 1, 1 - 2t)||_{\psi}^{2} = 4(2t - 1)^{2}\psi(1/2)^{2}.$$

Therefore

$$\frac{\|x+y\|_{\psi}^{2} + \|x-y\|_{\psi}^{2}}{2(\|x\|_{\psi}^{2} + \|y\|_{\psi}^{2})} = \frac{4\psi(1/2)^{2}\{(2t-1)^{2} + 1\}}{4\psi(t)^{2}}$$

$$= \frac{\psi(1/2)^{2}\{(1-t)^{2} + t^{2}\}}{\psi(t)^{2}/2}$$

$$= \frac{\psi(1/2)^{2}\psi_{2}(t)^{2}}{\psi_{2}(1/2)^{2}\psi(t)^{2}} = M_{1}^{2}\frac{\psi_{2}(t)^{2}}{\psi(t)^{2}}.$$

Since t is arbitrary, we have

$$C_{\text{NI}}(\|\cdot\|_{\psi}) \ge M_1^2 M_2^2,$$
 (25)

which, combined with (18), implies (23). In case of $M_2 = \psi_2(1/2)/\psi(1/2)$, let x and y be as above and put u = x + y and v = x - y. Then since

$$\frac{\|u+v\|_{\psi}^{2}+\|u-v\|_{\psi}^{2}}{2(\|u\|_{\psi}^{2}+\|v\|_{\psi}^{2})} = \frac{2(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2})}{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}}
= \frac{\psi_{2}(1/2)^{2}\psi(t)^{2}}{\psi(1/2)^{2}\psi_{2}(t)^{2}} = M_{2}^{2}\frac{\psi(t)^{2}}{\psi_{2}(t)^{2}},$$

we have (25) and hence (23). The inequality (24) is a direct consequence of (23) and Remark 2 (iii).

Example 4. Let $1/2 \le \beta \le 1$. Let $\varphi_{\beta}(t) = \max\{1 - t, t, \beta\}$ (note that neither $\varphi_{\beta} \ge \psi_2$ nor $\varphi_{\beta} \le \psi_2$ if $1/\sqrt{2} < \beta < 1$). Then

$$C_{\mathrm{NJ}}\big(\|\cdot\|_{\varphi_{\beta}}\big) = \begin{cases} \frac{1}{\beta^2} \big\{ (1-\beta)^2 + \beta^2 \big\} & \text{if } \frac{1}{2} \leq \beta \leq \frac{1}{\sqrt{2}} \,, \\ 2 \big\{ (1-\beta)^2 + \beta^2 \big\} & \text{if } \frac{1}{\sqrt{2}} \leq \beta \leq 1. \end{cases}$$

Indeed, by Lemma 5

$$M_1 = \begin{cases} 1 & \text{if } \frac{1}{2} \le \beta \le \frac{1}{\sqrt{2}}, \\ \frac{\varphi_{\beta}(1/2)}{\psi_2(1/2)} = \frac{\beta}{1/\sqrt{2}} = \sqrt{2}\beta & \text{if } \frac{1}{\sqrt{2}} \le \beta \le 1 \end{cases}$$

and

$$M_2 = \frac{\psi_2(\beta)}{\varphi_\beta(\beta)} = \frac{1}{\beta} \{ (1-\beta)^2 + \beta^2 \}^{1/2},$$

whence we have the conclusion by Theorem 3.

Finally we see a class of convex functions for which the identity $C_{\rm NJ}(\|\cdot\|_{\psi})=M_1^2M_2^2$ fails to hold.

Theorem 4. Let $\psi \in \Psi$. Let M_1 and M_2 be as in Theorem 2. Assume that

$$\max\left\{t; M_1 = \frac{\psi(t)}{\psi_2(t)}\right\} < \min\left\{s; M_2 = \frac{\psi_2(s)}{\psi(s)}\right\}$$
 (26)

or

$$\min\left\{t; M_1 = \frac{\psi(t)}{\psi_2(t)}\right\} > \max\left\{s; M_2 = \frac{\psi_2(s)}{\psi(s)}\right\}$$
 (27)

(hence ψ is not symmetric with respect to t = 1/2). Then

$$C_{\text{NJ}}(\|\cdot\|_{\psi}) < M_1^2 M_2^2.$$
 (28)

Proof. It is enough to show (28) in the case (26) by Proposition 1. Put

$$t_0 = \max \left\{ t; M_1 = \frac{\psi(t)}{\psi_2(t)} \right\}, \qquad s_0 = \min \left\{ s; M_2 = \frac{\psi_2(s)}{\psi(s)} \right\}.$$

Then clearly $0 < t_0 < s_0 < 1$. Assume that (28) is not valid. Then there are $x, y \in \mathbb{C}^2$, not both 0, such that

$$||x + y||_{\psi}^{2} + ||x - y||_{\psi}^{2} = 2M_{1}^{2}M_{2}^{2}(||x||_{\psi}^{2} + ||y||_{\psi}^{2}).$$

It should be noted that all of x, y, x + y, and x - y are not 0 because $\psi \neq \psi_2$. Then by (20) we have

$$||x + y||_{\psi} = M_1 ||x + y||_2, \qquad ||x - y||_{\psi} = M_1 ||x - y||_2$$
 (29)

and

$$||x||_2 = M_2 ||x||_{\psi}, \qquad ||y||_2 = M_2 ||y||_{\psi}.$$
 (30)

Put x = (a, b) and y = (c, d). Then by (29)

$$\begin{split} &\psi\left(\frac{|b+d|}{|a+c|+|b+d|}\right) = M_1\psi_2\bigg(\frac{|b+d|}{|a+c|+|b+d|}\bigg),\\ &\psi\bigg(\frac{|b-d|}{|a-c|+|b-d|}\bigg) = M_1\psi_2\bigg(\frac{|b-d|}{|a-c|+|b-d|}\bigg), \end{split}$$

from which it follows that

$$\frac{|b+d|}{|a+c|+|b+d|} \le t_0, \qquad \frac{|b-d|}{|a-c|+|b-d|} \le t_0.$$

In the same way, by (30) we have

$$\frac{|b|}{|a|+|b|} \ge s_0, \qquad \frac{|d|}{|c|+|d|} \ge s_0.$$

Therefore

$$|b+d| \le \frac{t_0}{1-t_0}|a+c|,$$

 $|b-d| \le \frac{t_0}{1-t_0}|a-c|$

and

$$|b| \ge \frac{s_0}{1 - s_0} |a|, \qquad |d| \ge \frac{s_0}{1 - s_0} |c|.$$

Hence we have

$$|b+d|^2 + |b-d|^2 \le \left(\frac{t_0}{1-t_0}\right)^2 (|a+c|^2 + |a-c|^2)$$

$$= 2\left(\frac{t_0}{1-t_0}\right)^2 (|a|^2 + |c|^2)$$

and

$$|b + d|^{2} + |b - d|^{2} = 2(|b|^{2} + |d|^{2})$$

$$\geq 2\left(\frac{s_{0}}{1 - s_{0}}\right)^{2}(|a|^{2} + |c|^{2}).$$

Consequently we have $t_0/(1-t_0) \ge s_0/(1-s_0)$ because $|a|^2 + |c|^2 \ne 0$, and hence $t_0 \ge s_0$, which contradicts our assumption. This completes the proof.

COROLLARY 4. Let $\psi \in \Psi$. Let M_1 and M_2 be as in Theorem 2. If there exists uniquely one point such that ψ/ψ_2 (resp. ψ_2/ψ) attains M_1 (resp. M_2), then

$$C_{\rm NJ}(\|\cdot\|_{\psi}) < M_1^2 M_2^2.$$

In fact, these points at which M_1 and M_2 are attained are different by the assumption.

Remark 3. (i) In Theorem 3 the condition $\psi(t) = \psi(1-t)$ is essential. Indeed, modify the function φ_{β} in Example 4 as follows: Let $1/\sqrt{2} < \gamma < 1$. Let t_0 be the smaller solution of the equation, $\psi_2(t) = \gamma$. Define

$$\omega_{\gamma}(t) = \begin{cases} \psi_{2}(t) & \text{if } 0 \leq t \leq t_{0}, \\ \gamma & \text{if } t_{0} \leq t \leq \gamma, \\ t & \text{if } \gamma \leq t \leq 1. \end{cases}$$

Then, ω_{γ}/ψ_2 has the maximum at t=1/2, but ω_{γ} is not symmetric with respect to t=1/2. On the other hand, ω_{γ} satisfies the condition in Corollary 4, and hence we have $C_{\rm NJ}(\|\cdot\|_{\omega_{\gamma}}) < M_1^2 M_2^2$.

(ii) For ψ_{α} in Lemma 6 we have $C_{\rm NJ}(\|\cdot\|_{\psi_{\alpha}}) < M_1^2 M_2^2$ by Corollary 4, where M_1 and M_2 are as in Lemma 6.

REFERENCES

- B. Beauzamy, "Introduction to Banach Spaces and Their Geometry," 2nd ed., North-Holland, Amsterdam/New York/Oxford, 1985.
- J. Bergh and J. Löfström, "Interpolation Spaces," Springer-Verlag, Berlin/Heidelberg/ New York, 1976.
- F. F. Bonsall and J. Duncan, "Numerical Ranges II," Lecture Note Series, Vol. 10, London Math. Soc., London, 1973.
- 4. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- J. A. Clarkson, The von Neumann–Jordan constant for the Lebesgue space, Ann. of Math. 38 (1937), 114–115.
- 6. P. Jordan and J. von Neumann, On inner products in linear metric spaces, *Ann. of Math.* **36** (1935), 719–723.
- 7. M. Kato, On Lorentz spaces $\ell_{p,q}(E)$, Hiroshima Math. J. 6 (1976), 73–93.
- 8. M. Kato, L. Maligranda, and Y. Takahashi, On the Jordan-von Neumann constant and some related geometrical constants of Banach spaces, preprint.
- 9. M. Kato and K. Miyazaki, On generalized Clarkson's inequalities for $L_p(\mu; L_q(\nu))$ and Sobolev spaces, *Math. Japon.* **43** (1996), 505–515.
- M. Kato and Y. Takahashi, On the von Neumann–Jordan constant for Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 1055–1062.
- 11. M. Kato and Y. Takahashi, Von Neumann–Jordan constant for Lebesgue–Bochner spaces, *J. Inequal. Appl.* 2 (1998), 89–97.
- D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, "Classical and New Inequalities in Analysis," Kluwer Academic, Dordrecht/Boston/London, 1993.
- Y. Takahashi and M. Kato, Von Neumann–Jordan constant and uniformly non-square Banach spaces, Nihonkai Math. J. 9 (1998), 155–169.
- H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland, Amsterdam/New York/Oxford, 1978.