Journal of Mathematical Analysis and Applications 244, 515-532 (2000)
doi:10.1006 /jmaa.2000.6727, available online at http: //www.idealibrary.com on ||IE§|.®

Von Neumann—Jordan Constant of Absolute
Normalized Norms on C?

Kichi-Suke Saito!

lmetadata, citation and similar papers at core.ac.uk

Mikio Kato'

Department of Mathematics, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
E-mail: katom@tobata.isc.kyutech.ac.jp

and

Yasuji Takahashi'

Department of System Engineering, Okayama Prefectural University, Soja 719-1197, Japan
E-mail: takahasi@cse.oka-pu.ac.jp

Submitted by Paul S. Muhly

Received September 7, 1999

We determine and estimate the von Neumann-Jordan constant of absolute
normalized norms on C2 by means of their corresponding continuous convex
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1. INTRODUCTION

The notion of the von Neumann—Jordan constant of Banach spaces
(hereafter referred to as NJ constant) was introduced by Clarkson in [5]
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and recently it has been studied by several authors (cf. [5, 6, 8-11, 13],
etc.). The NJ constant Cy,;(X) of a Banach space X is the smallest
constant C for which

1 lx +yl? + llx —yll?

<
C = (Il + Iyl

holds for all x, y € X, not both 0. From Jordan and von Neumann [6], we
have 1 < Cy;(X) < 2 for any Banach space X, and X is a Hilbert space if
and only if Cy;(X) = 1. Clarkson [5] calculated the NJ constant of L, by
using Clarkson’s inequalities. Recently, following his way, it was deter-
mined for a sequence of other Banach spaces such as L,(L,) (L -valued

L -space), W,X(Q) (Sobolev space), ¢, (Schatten p-class operators) and so
on ([9, 11], etc) On the other hand thanks to the NJ constant we can
describe some geometrical and topological structures of Banach spaces.
For example, the second and third authors proved that Cy;(X) < 2 if and
only if X is uniformly non-square, whence X is super-reflexive if and only
if X admits an equivalent norm with NJ constant less than 2 ([10, 13]). We
also have that, if C;(X) < 5/4, then the Banach space X has the fixed
point property for nonexpansive mappings (cf. [8]). For some other results
concerning Rademacher type and cotype we refer the reader to [10].

A norm |- ]| on C? is said to be absolute if ||(z, w)Il = |I(|z], [w)]| for all
z,w € C and normalized if |[(1,0)|| = |I(0, DI = 1. Let N, denote the family
of all absolute normalized norms on C?, and let ¥ denote the family of all
continuous convex functions on [0,1] such that (0) = (1) =1 and
max{l —¢,¢} < ¢(t) <1 (0 <t < 1). Then as in Bonsall and Duncan [3,
Section 21, Lemma 3], N, and ¥ are in one-to-one correspondence under
the equation (¢) = |[(1 — ¢,1)I| (0 < ¢ < 1). In particular, owing to this we
can consider many non-/-type norms easily.

In this paper, we shall determine and estimate the NJ constant of
absolute normalized norms on C? by means of the corresponding convex
functions. In particular, this provides a new way to calculate it with no use
of Clarkson’s inequalities. The main results are stated as follows. Let [ - ||,
be an absolute normalized norm associated with a convex function ¢ € V.
Let M, = max,_,_, ¢()/y,(t) and M, = max,_,_, ¢,(t)/¥(t), respec-
tively, where ¢,(¢) == {(1 — £)* + *}!/? corresponds to the Z,-norm. First
we show that, if ¢ > ¢, (resp. < i), then C;(ll-1l,) = M} (resp. M3)
(Theorem 1). In general, we prove that max{M}?, M7} < Cy,(l-1l,) <
MM} (Theorem 2). Theorem 1 gives a class of convex functions for which
Cny (- 11,) = max{M?, M3}. We further present a sufficient condition that
Cay(l-11y) = MIMF (max{M?, M3} < Cy,(ll-1l,)) (Theorem 3) and that

Cny(l-11,) < MZM3} (Theorem 4), respectively. These results enable us to
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present many new interesting examples, especially those of non-Z -type,
for instance, /, ,-norm, p > 2 (Lorentz norm), etc. As a corollary we show
that all absolute normalized norms are uniformly non-square except /-
and /Z_ -norms.

2. ABSOLUTE NORMALIZED NORMS ON C?

A norm || -] on C? is said to be absolute if
I(z,w) | =lI(Iz],Iw)||  forall z,w € C
and normalized if ||(1,0)| = |0, D|| = 1. The /,norms |- I, 1<p=<w

are basic examples,

(I + w|")"? if1<p <o,
max(|zl, [wl) if p=oco,

ICzw)lp =

Let N, denote the family of absolute normalized norms on C2. We recall
some basic facts about these norms; for the convenience of the reader we
give their proofs following Bonsall and Duncan [3].

LeEMMA 1 (3, p. 36]). For any norm ||-|| € N,
-tk < M- 1F< M1 Il (1)
Indeed, for any z,w € C
I(z,w) I = max{[|(z,0),1I(0,w) |}
= smax{|l(z,w) + (z, =w) . l(z,w) + (=z,w)lI}
ymax{|[(z,w) | +1(z, =w) L [[(z.w) | +[[(=z.w) [}
ICz.w)
<lICz,0) [ +1I(0,w)
=z W)l

Now let ¥ denote the family of all continuous convex functions i on
[0, 1] with ¢(0) = (1) = 1 satisfying

max{1 —¢,t} <y(t) <1 (0<r<1). (2)

IA

Then N, and ¥ are in one-to-one correspondence as follows.

LEMMA 2 ([3, p. 37D. () Let ||-]l € N, and let
p(0) =l -6 (0=r<1). (3)



518 SAITO, KATO, AND TAKAHASHI

Then € V: Conversely,
(ii) For a given ¢ € V define

if (z,w) # (0,0),

(2l + Wbl
0 if (z,w) = (0,0).

ICz.w)lls = (4)
Then ||-1ly € N,, and |-, satisfies (3).
Proof. (i) This is easy to see (i satisfies (2) by Lemma 1).

(i) Let ¢ € ¥. We only show the triangle inequality. Let us first see
that

ICpsa)ly <l(rys)ly  fO<p<r,0<gq<s. (5)

When p =0 or g =0, (5) is clear (recall Lemma 1). Thus it is enough to
show that

(p+q)1//( )s(r+s)¢(rsTs) f0<p=<r,0<g<s. (6)

pPtq

Since ¢ is convex and (¢) > ¢, the function (¢)/t is non-increasing.
Indeed, let 0 < s <t < 1. Then

1—1¢ t—s 1—1t¢
W) = s b 1) £ o) + ).
Hence
W) B W) L(L-i iy
st = s t{ dl() s}

%

1 1 -1 t—s
"’(S){E_ t(l—s)} T i(1-y)

1 1 -1t t—s
ZS{E_t(l—s)}_ TE

Therefore we have

(r+ () < o). )

r+gq
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In the same way the function ¢(¢)/(1 — ¢) is non-decreasing (use (¢) >
1 — ¢ in this case), which implies

(8)

r+s)

(| =) < o+

Combining (7) and (8), we have (6). Now let (u, v),(z,w) € C?. Then by (5)

(e, 0) + (z,w) |y =l + zl, 10 + wi) |,
<[[(lul + 121, lo] + W) |y

o] + |wl

= (lul + |z| + lv] + W) ¢
lul + 2] + vl + |wl

Noting here that

o] + |wl
lul + [o] + |z] + [wl

lul + |v] vl |z| + |wl lwl
= . + . 5
lul + [ol + |zl + 1wl Jul + 1ol Jul + ol + 1zl + W] |z] + |w]

we have by the convexity of

vl
Jul + [v]

=l (. 0) s =z w) [l

I, 0) + (z.w) [ly < (lul + Dol ; + (lzl + WDy

+ |wl

as desired.

Now let l/lp(t) ={(1 — )’ +t7}//? € W. Then, as is easily seen, the
/P-norm II-1l, is associated with ¥, € N,. In what follows we write ¢ < ¢

if o(¢) < (¢) for all 0 < ¢ < 1. We shall need the following simple facts
later.

LEMMA 3. Let ¢,y € V and let ¢ < . Put

w(1)

M = max
0<t<1 go(t)

Then
l-lle < I-1ly < M-,
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Proof. For any z,w € C

Iwl
I(z,w)lle = (Iz] + Iwl) ¢ R
wl
< (DU T
=[l(z,w) |y
lwl
<M(lzl + wD) ¢ Tl

= M|(z,w).
LEmMMA 4. Let o,y € Vandlet 1/2 < A < 1. Then
max{[| - lg, All -y} = I lmaxe, av-
Proof. Note first that max{¢, Ay} € W. Then for any (z,w) € C?
wl

lz| + [w]

[wl

|z + [w]

”(Z’W)”math,Mll) >, A

|

3. NJ CONSTANT OF ABSOLUTE NORMALIZED NORMS—
THE COMPARABLE CASE WITH ¢,

(lzl + le)max{go

max{[(z,w) o, Al(z,w) Iy}

The von Neumann—Jordan constant of a Banach (or normed) space X
([5]; cf. [12, p. 550D, we denote by Cy,;(X), is the smallest constant C for
which

T e +yl*+1x =yl

<
C = 2(IlxlP + Iyl

holds for all x, y € X, not both 0.

Let us recall some geometrical notions of a Banach space X (cf. [1]). X
or its norm ||-|| is called uniformly convex if for any £ >0 (0 < &£ < 2)
there exists a 6 > 0 such that [[x —yll> ¢, llxll <1, |lyll <1 implies
l(x +y)/2ll<1— 6. X is called uniformly non-square provided there
exists a & > 0 such that if [(x —y)/2ll=1—6, llx|<1 and [yl <1,
then [[(x + y)/2|l < 1 — 8. Clearly uniformly convex spaces are uniformly
non-square, for the converse uniform non-squareness does not even imply
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strict convexity, whereas X admits an equivalent uniformly non-square
norm if and only if X is uniformly convexifiable (such a Banach space is
precisely super-reflexive).

We summarize some basic facts about the NJ constant.

PROPOSITION A. (1) 1 < Cy;(X) < 2 for any Banach space X; Cy;(X)
=1 if and only if X is a Hilbert space (Jordan and von Neumann [6)).

(i) Cn\y(X) <2 if and only if X is uniformly non-square (Takahashi
and Kato [13]; see also [10]).
(i) Cny(L,) = Cyy(£,) =2%/7"1 where 1 <p <, 1/p+1/p' =
1, and t = min{ p, p'} (Clarkson [5)).
For a norm || || on C? we write Cy; (|| - ) for C;((C?, || - D). We first see

that the NJ constant is stable under the symmetric transformation of
with respect to the line ¢ = 1/2.

PROPOSITION 1. Let s € W and let §s(t) = (1 — t). Then Cy, (Il - Il,) =

Proof. For x = (z,w) € C? put & = (w, z). Then

ol
llxlly = (lz| + Wl wl + |2]) ¢ = [|xll;.
Therefore we have
llx + ylly + llx = ylI}
Cas(l-1ly) = sup 2 2
i eiyigo (Il + 11y115)
1% + 5% + 115 - I
= sup — —
pizeisizeo  2(1E1G + 15115)
= Cry(I1-117).-
THEOREM 1. Let y € V.
(1)  Assume that y > ,. Then
w1 )?
Cry (111l 9
(Il = 0<<1¢(t) %)
(i)  Assume that < r,. Then
()’
Crs(Il- 1) = (10)

0351 (1)’
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Proof. (1) Put M| = max,_,_, y(t)/,(¢t). Then by Lemma 3
lx + ylIg + llx =yl < ME(Ilx + yli3 + llx — yli3)
= 2M2(lIxl5 + lIyll3)
< 2M7(I1xll5 + lIyll5).

Now let /4, attain the maximum at t =¢, (0 <¢, < 1). Put x; = (1 —
t;,0), y, = (0, £,). Then

llx, +Y1“2¢ + llx _J’l”lz/f :”(1 - tl’tl)”?/l +||(1 — Iy, —t1)||i,

= 24(1,)’
M1 1)+ 13
= 2M; (Il 5 + lyaly), (11)

which implies (9).
(i) Put M, = max,_,_, ¢,(t)/y(¢). Then
lx +ylly + llx = ylly < llx +yl5 + llx — yll3
= 211l + llyI3)
< 2M3 (lxll + lIyll3).

Assume M, = ,(t,)/¢(t,) with some ¢, (0 <t, <1). Put x, =(1 —
ty,t,), y, = (1 —t,, —t,). Then

26, + y,lly + 11, — y,ll5 = 4{(1 - 1) + 13}

= AM2p(t,)
= 2M22{||(1 - tz,t2)||?,, +[(1 -1, _t2)||?11>
= 2M7 (Ilx, 15 + 11y,115), (12)

whence we have (10). This completes the proof.

Theorem 1 indicates that the NJ constant of [/-[|,, does not depend on
the shape of . This is stated in a little more general form:

COROLLARY 1. Let ¢,y € W be comparable with s,.

() Let ¢ = i, and > ,. Then
Crs(Il1le) = Cry(ll-1ly) (13)
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if and only if
o(t) (1)

max = max ——.
0<i<1 P,(t)  o=i<1 Py(2)

(i) Let ¢ = W, and & < ,. Then (13) holds if and only if

o(t) (1)

max = max .
0<r=<1 (1) o<t<1 (1)

The same is true for the other cases.
CoROLLARY 2 (Clarkson [5]). Let 1 <p <wand 1/p +1/p = 1. Let
t = min{ p, p'}. Then
Cr(ll-11) = 22707 (14)

In particular, C (|l - ll,) = C(ll - 1l.) = 2.
Indeed, if 1 <p < 2,

Uy(t) < (1) <20/P70 2 (1) (0<Ve <),
where the constant 2(1/7)~1/2 ig the best possible. Hence we have (14) by

Theorem 1. For the case 2 < p < « a parallel argument works.

Remark 1. The only known way to calculate NJ constants needs Clark-
son’s inequalities (cf. [5, 9, 11]), whereas the above discussion to derive (14)
does not require them.

Further, Theorem 1 enables us to obtain many examples easily. Let us
present some. The following easy lemma is helpful for applying Theorem 1.

LEMMA 5. Let ¢o(t) = ¢(t) > 0 on [a,b]. Assume that ¢ —  has the
maximum, resp. ¥ has the minimum, at t = c in [a, b]. Then ¢/ attains the
maximum at t = c.

Indeed, the conclusion is immediate from the identity

o) el — k()

P (1) ¥ (1)
ExampLE 1. Let |||l = max{|| - llo, Al - I} 1/ V2 < A < 1). Then

Cay (111 =222
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In fact by Lemma 4, || || = || [Imax(y,, A¢,)- Then by Theorem 1 we have

Ca(ll-1) = max [max{wz(r),wl(t)}l

Po(1)

{wl(t) }2 RS

_ 2
wn | 12 0

= max
O0<r<1

The following example treats a nonnormalized norm.

ExaMmpPLE 2 ([10, Proposition 1]). Let |- [l = max{||- [l,, All-[l.} (1 < A
< v2). Then
CNJ(” ’ ”) =\
Indeed, put |- llg = max{A~"[|-1l2, Il - [l}. Then [I-llo = Il - llmax(r-1u,, 4oy bY
Lemma 4 and || || = All - |lo. Hence we have
CNJ(” : “) = CNJ()\” : ”0)
= CNJ(” : ”0)
2
. 20
o<r=1 | max{A~ ', (1), (1)}

by Theorem 1. Now clearly ,(¢) /[max{A~"yr,(¢), yo(t)}] is symmetric with
respect to ¢ = 1/2. Let ¢, be such that A~ 'y,(7,) = #(t,) (0 <t, < 1/2).
Then we have

- [ (1) r _ )2
0<t<t, maX{A71¢2(t)7¢w(t)}

by Lemma 5, and clearly

max ¥a(t) 2 =  max M 2 = A2
ty<t<1/2 maX{)\_ll,[IZ(l‘),l[Iw(t)} tyst<1/2 | A7 (1) '

Therefore we have Cy; (|| - ) = A%

EXAMPLE 3. Let 2 < p <. Let |||, » be the (Lorentz) /, ,-norm.

1/2
”(Z,W)”p,z = {|z|’i<2 + 2(2/p)—1|w|*2} ’
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where {|z[*, |w|*} is the non-increasing rearrangement of {|z|, |wl}; that is,

|z]* > [w[*. (Note that if p <2, || ll,,» is a quasi-norm; cf. [7, Proposition
1; 14, p. 126; 2, p. 8]). Then

Cralll*llp2) = T3

Indeed, |- 1l,,» € N,, and the corresponding convex function is given by

1/2
(-0 +272)"" if0<i<12,

b, ,2(t) =
' {2+ 227711 - t)z}l/2 if1/2<t<1.

Since i, , < i, and ¢, /¢, , is symmetric with respect to ¢ = 1/2, we
find the maximum of 7 /¢, in the interval [0,1/2]. The difference
Uy (1)* = 4, (1) = (1 — 2*/P7")? takes its maximum at ¢ =1/2, and
i, » has the minimum at 7 = 1/2. Therefore by Lemma 5 we have

()’ a(1/2)° 2
max 7 = 7 = 2/p—1°
0<t<1 11[/p,2(t) (v[/p,Z(l/z) L+2

which implies the conclusion by Theorem 1.

4. NJ CONSTANT OF ABSOLUTE NORMALIZED NORMS—
THE GENERAL CASE

LEMMA 6. Let 1/2 < a <1 and let

L1 o
—t <t<a,
wa(t) = (04 ! “«
t fa<t<l.

Then

1/2

t 1)\?

M]=max%()= (2—— +1; (15)
0<t<1 P,(1) o

no) (1
0zie1 o {( a !

2+ 1} . (16)
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Proof. If @ =1/2 or @ = 1, the conclusion is clear by Lemma 5. Let
1/2 < a < 1. Easy calculation shows that the function ¢/, attains the
maximum at ¢t = 2Qa — 1)/(Ba — 1), which gives (15). The function ¢, /i,
clearly has the maximum at ¢t = «, which implies (16).

Although the notation ¢, is not consistent with ¢, corresponding to the
¢,-norm, there will be no confusion in the following.

THEOREM 2. Let ¢ € ¥ and let

t t
M= :pi((t)) and My = max, lf;((z)) - 1D
Then
max{M{, M3} < Cy(II-1ly) < MIM3. (18)
Further we have
1 < max{M{, M7} < MIM3 < 2. (19)
Proof. For all x,y € C* we have
lx + ylly + llx =yl < ME(Ilx + ylI3 + llx = yli3)
= 2M7(IlxII3 + [Iyll3)
< 2MMZ(Ilxlly + Iyl3), (20)
which implies that Cy, (Il [l,) < M{M;. Next let
(1) M. = ¥a(15) (21)

L) 2 u()

with some 0 < ¢,,¢, < 1. Put x, = (1 —¢,,0), y, = (0,¢,). Then by (11) we
have Cy(ll-1l,) = M. In the same way, by putting x, = (1 — 1,,1,),
y, = (1 —t,, —t,), we have Cy,(|l-Il,) = M} by (12).

Now we prove (19). The first two inequalities are obvious. If > ¢, or
i < i, the last inequality in (19) is easy to see (merely note that s, /i,
< V2 and ,/4, < V2). So assume this is not the case. Then M, M, > 1,
whence we have (21) with 0 < ¢,,¢, < 1. Owing to Proposition 1 we may
assume that ¢, <t,. Let (a, a) be the intersection of the line s = ¢ and
the line combining the points (0, 1) and (¢,, (¢,)). Then evidently 1 /2 < «
< 1and ¢, < a. Hence

_ ¥y (1y) _ Py (1,) - (@)
Pow(n) () T d(a)’
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where ¢, is as in Lemma 6. On the other hand, since ¢,(#,) < ¢(#)) <
i, (¢,) by the convexity of (¢) and (21), we have

_ ¥(ty) - (1)
Co(t) T ()
Therefore by Lemma 6 we have
P (1) ¥a(ty)
(1) ¥(1y)
(1) (1)

< max max
0<i<1 P,(1) o<i<t Y, (1)

MM, =

1\2 120 5 1/2
= (2——)+1 (——1)+1
a a
Put u =1/a — 1. Then, 0 <u < 1 and
MIM? < (u? + 1){(1 — u)’ + 1}
=u(u—1)(u*—u+2)+2
<2. (22)

This completes the proof.

Remark 2. (i) In Theorem 2 we have MM} = 2 if and only if a = 1 or
a = 1/2; in this case ¢ = ¢, or ¢ = . In fact, the “if” part is clear, and
the opposite follows directly from (22).

(i) max{M,, M,} = 1 if and only if = ,.
(iii) max{M,, M,} = MM, if and only if > ¢, or < ¢,: In
particular, Theorem 1 is also a result of this fact.

As a consequence of Theorem 2 we have

COROLLARY 3. Let |[-]l € N,. Then Cy,(Il-I) = 2 if and only if |- |l is
an /- or /, -norm: In other words, all norms in N, except /- and /. -norms
are uniformly non-square.

Proof. By Theorem 2, C(ll-1l,) = 2 if and only if M?M3; = 2, which
occurs only when ¢ = i, or = ¢, by Remark 2 (D).

Now, according to Theorem 1, the identity Cy,;(ll-Il,) = max{M?, M3}
holds in the estimate (18) of Theorem 2 if s is comparable with ,. The
next theorem asserts that for another wide class of convex functions we
have Cy; (Il Il,) = MM} and Cy,(ll-1l,) > max{M}, M3}.
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THEOREM 3. Let 4 €V and let ¢(t) = ¢y(1 — 1) for all 0 <t < 1.
Assume that M, = max,_,_, y(t)/,(t) or M, = max,_, _, y,(t) /(1) is
taken att = 1/2. Then

Moreover, if neither > , nor < i,
max{Mlz,Mzz} < CNJ(”'“z//)- (24)

Proof.  Suppose first M, = ¢(1/2)/¢,(1/2). Take an arbitrary ¢ with
0<t<landput x=(,1—-1¢) and y =1 —¢,1). Then

Il = (1= 0)7 = w()’s Iyl = w(0)”.
On the other hand
lx +yll5 = 1(1, DI = 49(1/2)%,
lx = yll5 =ll(2e = 1,1 = 20) [} = 42t — 1)°9(1/2)".
Therefore

e+ yl5 + e =yl 4p(1/2)%{(21 - 1)° + 1}

2(11x15, + lIyll3) 4 (1)*

v (/{1 -1 + )
v(1)’/2

(/2 (1) L tn(t)’

ba(1/2(0)° et

Since ¢ is arbitrary, we have
Cr(ll-lly) = MMy, (25)

which, combined with (18), implies (23). In case of M, = ,(1,/2)/¢:(1/2),
let x and y be as above and put u = x +y and v = x — y. Then since

lu + olly, + llu — vl B 2(||x||2,,, + ||y||l2p)
2(Ileelly + Nloll) lx +ylly + llx = yly
(/%) ()’
2 2

(12 (1) ()
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we have (25) and hence (23). The inequality (24) is a direct consequence of
(23) and Remark 2 (iii).

ExampLE 4. Let 1/2 < B < 1. Let ¢(¢) = max{1 — ¢, ¢, B} (note that
neither ¢z > ¢, nor g5 < ¢, if 1/V2 V2 < ,8 < 1). Then

1 1
Bz{(1—3)+3} 1fzsﬁsﬁ,
Crs(ll-1l,) = 2 .
2{(1-p)" +B? ifﬁsﬁsl.
Indeed, by Lemma 5
| 'fl 1
o 1 ESBS ﬁ,
| =
@3(1/2) _ B _ . i
%(1/2)—1/\5—\/55 if - <p=<1
and
%(B) 1 2 1/2
—{1 - 2

whence we have the conclusion by Theorem 3.

Finally we see a class of convex functions for which the identity
Cay(l-11y) = MM} fails to hold.

THEOREM 4. Let y € W. Let M, and M, be as in Theorem 2. Assume

that
¥(1) . ()
max{t;M1 = () } < mm{s;M2 = ﬁ} (26)
or
: (1) Pa(s)
mm{t;M] = () } > rnax{s;M2 = ‘;(S) } (27)
(hence ¢ is not symmetric with respect to t = 1/2). Then
Ca(Il-1ly) < MEM3. (28)

Proof. 1t is enough to show (28) in the case (26) by Proposition 1. Put

o O ()
to—max{t,M1 ¢2(t)}’ 0 mn{,M2 v(5) }
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Then clearly 0 < ¢, < s, < 1. Assume that (28) is not valid. Then there are
x,y € C?, not both 0, such that

lx + yllG + llx = yli5 = 2M2MZ(IIxIl5, + 11yll5).

It should be noted that all of x, y, x +y, and x —y are not 0 because
W # . Then by (20) we have

lx + ylly = Millx + yll2, lx —ylly = Millx = yll (29)
and
llxlla = Mpllxlly, — llylla = Myliyll,. (30)
Put x = (a,b) and y = (¢, d). Then by (29)

|b + d|
la + c| +|b + d|

|b — d| o b —d|
Nia—axw—a) MY\ —a+xp-al

from which it follows that

|b + d|
la + c| + |b + d|

172

b

|b + d| b — d|
<t,, <It,.
la +c| +|b + d| 0 la —c| + |b —d| 0

In the same way, by (30) we have

b |d| .
> — > ,.
lal +1b] =7 lc| + |d] 0
Therefore
Ly
b +d| < la + cl,
(]
Ly
b —dl| < la — |
g
and
So S
|b] > |al, |d| > Icl.

-8 1 -3,
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Hence we have

2
|b+d|2+|b—d|2s( )(|a+c|2+|a—c|2)

0
1-1,

t 2
0 2 2
=2 +
(1_t0)(|a| lcl”)
and

b +dl> +1b—dI* =2(b]" +1dI*)
. 2( ) (lal? + Icl).

Consequently we have ¢,/(1 —t,) > s5,/(1 —5,) because lal* + |c]* # 0,
and hence ¢, > s, which contradicts our assumption. This completes the
proof.

COROLLARY 4. Let y € V. Let M, and M, be as in Theorem 2. If there
exists uniquely one point such that 1/, (resp. o, /) attains M, (resp. M,),
then

Cay(II-1ly) < MEM3.

In fact, these points at which M, and M, are attained are different by the
assumption.

Remark 3. (i) In Theorem 3 the condition (¢) = (1 — 1) is essential.
Indeed, modify the function ¢, in Example 4 as follows: Let 1/ V2 <y<1.
Let ¢, be the smaller solution of the equation, #,(t) = vy. Define

(1) if0 <t <t
w,(t) =17 ifty<t<vy,
t ify<t<l.

Then, w,/4, has the maximum at 7 = 1/2, but w, is not symmetric with

respect to ¢ =1/2. On the other hand, w, satisfies the condition in
Corollary 4, and hence we have Cy,(ll-Il,,) < MZM2

(i) For ¢, in Lemma 6 we have Cy(ll-ll,) < MZM; by Corollary
4, where M, and M, are as in Lemma 6.
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