Von Neumann-Jordan Constant of Absolute Normalized Norms on \mathbb{C}^{2}

Kichi-Suke Saito ${ }^{1}$

Mikio Kato ${ }^{1}$
Department of Mathematics, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
E-mail: katom@tobata.isc.kyutech.ac.jp
and
Yasuji Takahashi ${ }^{1}$
Department of System Engineering, Okayama Prefectural University, Soja 719-1197, Japan E-mail: takahasi@cse.oka-pu.ac.jp
Submitted by Paul S. Muhly
Received September 7, 1999

We determine and estimate the von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^{2} by means of their corresponding continuous convex functions on $[0,1]$. This provides many new interesting examples including those of non- ℓ_{p}-type as well as some previous ones. It is also shown that all such norms are uniformly non-square except ℓ_{1} - and ℓ_{∞}-norms. © 2000 Academic Press

Key Words: absolute normalized norm; convex function; non- ℓ_{p}-type norm; von Neumann-Jordan constant; uniform non-squareness.

1. INTRODUCTION

The notion of the von Neumann-Jordan constant of Banach spaces (hereafter referred to as NJ constant) was introduced by Clarkson in [5]

[^0]and recently it has been studied by several authors (cf. [5, 6, 8-11, 13], etc.). The NJ constant $C_{\mathrm{NJ}}(X)$ of a Banach space X is the smallest constant C for which
$$
\frac{1}{C} \leq \frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)} \leq C
$$
holds for all $x, y \in X$, not both 0 . From Jordan and von Neumann [6], we have $1 \leq C_{\mathrm{NJ}}(X) \leq 2$ for any Banach space X, and X is a Hilbert space if and only if $C_{\mathrm{NJ}}(X)=1$. Clarkson [5] calculated the NJ constant of L_{p} by using Clarkson's inequalities. Recently, following his way, it was determined for a sequence of other Banach spaces such as $L_{p}\left(L_{q}\right)\left(L_{q}\right.$-valued L_{p}-space), $W_{p}^{k}(\Omega)$ (Sobolev space), c_{p} (Schatten p-class operators), and so on ($[9,11]$, etc.). On the other hand, thanks to the NJ constant we can describe some geometrical and topological structures of Banach spaces. For example, the second and third authors proved that $C_{\mathrm{NJ}}(X)<2$ if and only if X is uniformly non-square, whence X is super-reflexive if and only if X admits an equivalent norm with NJ constant less than 2 ($[10,13]$). We also have that, if $C_{\mathrm{NJ}}(X)<5 / 4$, then the Banach space X has the fixed point property for nonexpansive mappings (cf. [8]). For some other results concerning Rademacher type and cotype we refer the reader to [10].

A norm $\|\cdot\|$ on \mathbb{C}^{2} is said to be absolute if $\|(z, w)\|=\|(|z|,|w|)\|$ for all $z, w \in \mathbb{C}$ and normalized if $\|(1,0)\|=\|(0,1)\|=1$. Let N_{a} denote the family of all absolute normalized norms on \mathbb{C}^{2}, and let Ψ denote the family of all continuous convex functions on $[0,1]$ such that $\psi(0)=\psi(1)=1$ and $\max \{1-t, t\} \leq \psi(t) \leq 1(0 \leq t \leq 1)$. Then as in Bonsall and Duncan [3, Section 21, Lemma 3], N_{a} and Ψ are in one-to-one correspondence under the equation $\psi(t)=\|(1-t, t)\|(0 \leq t \leq 1)$. In particular, owing to this we can consider many non- l_{p}-type norms easily.

In this paper, we shall determine and estimate the NJ constant of absolute normalized norms on \mathbb{C}^{2} by means of the corresponding convex functions. In particular, this provides a new way to calculate it with no use of Clarkson's inequalities. The main results are stated as follows. Let $\|\cdot\|_{\psi}$ be an absolute normalized norm associated with a convex function $\psi \in \Psi$. Let $M_{1}=\max _{0 \leq t \leq 1} \psi(t) / \psi_{2}(t)$ and $M_{2}=\max _{0 \leq t \leq 1} \psi_{2}(t) / \psi(t)$, respectively, where $\psi_{2}(t):=\left\{(1-t)^{2}+t^{2}\right\}^{1 / 2}$ corresponds to the ℓ_{2}-norm. First we show that, if $\psi \geq \psi_{2}$ (resp. $\psi \leq \psi_{2}$), then $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=M_{1}^{2}$ (resp. M_{2}^{2}) (Theorem 1). In general, we prove that $\max \left\{M_{1}^{2}, M_{2}^{2}\right\} \leq C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right) \leq$ $M_{1}^{2} M_{2}^{2}$ (Theorem 2). Theorem 1 gives a class of convex functions for which $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=\max \left\{M_{1}^{2}, M_{2}^{2}\right\}$. We further present a sufficient condition that $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=M_{1}^{2} M_{2}^{2}\left(\max \left\{M_{1}^{2}, M_{2}^{2}\right\}<C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)\right)$ (Theorem 3) and that $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)<M_{1}^{2} M_{2}^{2}$ (Theorem 4), respectively. These results enable us to
present many new interesting examples, especially those of non- ℓ_{p}-type, for instance, $\ell_{p, 2}$-norm, $p \geq 2$ (Lorentz norm), etc. As a corollary we show that all absolute normalized norms are uniformly non-square except ℓ_{1} and ℓ_{∞}-norms.

2. ABSOLUTE NORMALIZED NORMS ON \mathbb{C}^{2}

A norm $\|\cdot\|$ on \mathbb{C}^{2} is said to be absolute if

$$
\|(z, w)\|=\|(|z|,|w|)\| \quad \text { for all } z, w \in \mathbb{C}
$$

and normalized if $\|(1,0)\|=\|(0,1)\|=1$. The ℓ_{p}-norms $\|\cdot\|_{p}(1 \leq p \leq \infty)$ are basic examples,

$$
\|(z, w)\|_{p}= \begin{cases}\left(|z|^{p}+|w|^{p}\right)^{1 / p} & \text { if } 1 \leq p<\infty \\ \max (|z|,|w|) & \text { if } p=\infty\end{cases}
$$

Let N_{a} denote the family of absolute normalized norms on \mathbb{C}^{2}. We recall some basic facts about these norms; for the convenience of the reader we give their proofs following Bonsall and Duncan [3].

Lemma 1 ([3, p. 36]). For any norm $\|\cdot\| \in N_{a}$

$$
\begin{equation*}
\|\cdot\|_{\infty} \leq\|\cdot\| \leq\|\cdot\|_{1} . \tag{1}
\end{equation*}
$$

Indeed, for any $z, w \in \mathbb{C}$

$$
\begin{aligned}
\|(z, w)\|_{\infty} & =\max \{\|(z, 0)\|,\|(0, w)\|\} \\
& =\frac{1}{2} \max \{\|(z, w)+(z,-w)\|,\|(z, w)+(-z, w)\|\} \\
& \leq \frac{1}{2} \max \{\|(z, w)\|+\|(z,-w)\|,\|(z, w)\|+\|(-z, w)\|\} \\
& =\|(z, w)\| \\
& \leq\|(z, 0)\|+\|(0, w)\| \\
& =\|(z, w)\|_{1} .
\end{aligned}
$$

Now let Ψ denote the family of all continuous convex functions ψ on $[0,1]$ with $\psi(0)=\psi(1)=1$ satisfying

$$
\begin{equation*}
\max \{1-t, t\} \leq \psi(t) \leq 1 \quad(0 \leq t \leq 1) \tag{2}
\end{equation*}
$$

Then N_{a} and Ψ are in one-to-one correspondence as follows.
Lemma 2 ([3, p. 37]). (i) Let $\|\cdot\| \in N_{a}$ and let

$$
\begin{equation*}
\psi(t)=\|(1-t, t)\| \quad(0 \leq t \leq 1) . \tag{3}
\end{equation*}
$$

Then $\psi \in \Psi$: Conversely,
(ii) For a given $\psi \in \Psi$ define

$$
\|(z, w)\|_{\psi}= \begin{cases}(|z|+|w|) \psi\left(\frac{|w|}{|z|+|w|}\right) & \text { if }(z, w) \neq(0,0) \tag{4}\\ 0 & \text { if }(z, w)=(0,0)\end{cases}
$$

Then $\|\cdot\|_{\psi} \in N_{a}$, and $\|\cdot\|_{\psi}$ satisfies (3).
Proof. (i) This is easy to see (ψ satisfies (2) by Lemma 1).
(ii) Let $\psi \in \Psi$. We only show the triangle inequality. Let us first see that

$$
\begin{equation*}
\|(p, q)\|_{\psi} \leq\|(r, s)\|_{\psi} \quad \text { if } 0 \leq p \leq r, 0 \leq q \leq s . \tag{5}
\end{equation*}
$$

When $p=0$ or $q=0$, (5) is clear (recall Lemma 1). Thus it is enough to show that

$$
\begin{equation*}
(p+q) \psi\left(\frac{q}{p+q}\right) \leq(r+s) \psi\left(\frac{s}{r+s}\right) \quad \text { if } 0<p \leq r, 0<q \leq s \tag{6}
\end{equation*}
$$

Since ψ is convex and $\psi(t) \geq t$, the function $\psi(t) / t$ is non-increasing. Indeed, let $0<s<t \leq 1$. Then

$$
\psi(t)=\psi\left(\frac{1-t}{1-s} s+\frac{t-s}{1-s} 1\right) \leq \frac{1-t}{1-s} \psi(s)+\frac{t-s}{1-s} \psi(1) .
$$

Hence

$$
\begin{aligned}
\frac{\psi(s)}{s}-\frac{\psi(t)}{t} & \geq \frac{\psi(s)}{s}-\frac{1}{t}\left\{\frac{1-t}{1-s} \psi(s)+\frac{t-s}{1-s}\right\} \\
& \geq \psi(s)\left\{\frac{1}{s}-\frac{1-t}{t(1-s)}\right\}-\frac{t-s}{t(1-s)} \\
& \geq s\left\{\frac{1}{s}-\frac{1-t}{t(1-s)}\right\}-\frac{t-s}{t(1-s)}=0 .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
(p+q) \psi\left(\frac{q}{p+q}\right) \leq(r+q) \psi\left(\frac{q}{r+q}\right) . \tag{7}
\end{equation*}
$$

In the same way the function $\psi(t) /(1-t)$ is non-decreasing (use $\psi(t) \geq$ $1-t$ in this case), which implies

$$
\begin{equation*}
(r+q) \psi\left(\frac{q}{r+q}\right) \leq(r+s) \psi\left(\frac{s}{r+s}\right) \tag{8}
\end{equation*}
$$

Combining (7) and (8), we have (6). Now let $(u, v),(z, w) \in \mathbb{C}^{2}$. Then by (5)

$$
\begin{aligned}
\|(u, v)+(z, w)\|_{\psi} & =\|(|u+z|,|v+w|)\|_{\psi} \\
& \leq\|(|u|+|z|,|v|+|w|)\|_{\psi} \\
& =(|u|+|z|+|v|+|w|) \psi\left(\frac{|v|+|w|}{|u|+|z|+|v|+|w|}\right)
\end{aligned}
$$

Noting here that

$$
\begin{aligned}
& \frac{|v|+|w|}{|u|+|v|+|z|+|w|} \\
& \quad=\frac{|u|+|v|}{|u|+|v|+|z|+|w|} \cdot \frac{|v|}{|u|+|v|}+\frac{|z|+|w|}{|u|+|v|+|z|+|w|} \cdot \frac{|w|}{|z|+|w|}
\end{aligned}
$$

we have by the convexity of ψ

$$
\begin{aligned}
\|(u, v)+(z, w)\|_{\psi} & \leq(|u|+|v|) \psi\left(\frac{|v|}{|u|+|v|}\right)+(|z|+|w|) \psi\left(\frac{|w|}{|z|+|w|}\right) \\
& =\|(u, v)\|_{\psi}=\|(z, w)\|_{\psi}
\end{aligned}
$$

as desired.
Now let $\psi_{p}(t)=\left\{(1-t)^{p}+t^{p}\right\}^{1 / p} \in \Psi$. Then, as is easily seen, the ℓ_{p}-norm $\|\cdot\|_{p}$ is associated with $\psi_{p} \in N_{a}$. In what follows we write $\varphi \leq \psi$ if $\varphi(t) \leq \psi(t)$ for all $0 \leq t \leq 1$. We shall need the following simple facts later.

Lemma 3. Let $\varphi, \psi \in \Psi$ and let $\varphi \leq \psi$. Put

$$
M=\max _{0 \leq t \leq 1} \frac{\psi(t)}{\varphi(t)}
$$

Then

$$
\|\cdot\|_{\varphi} \leq\|\cdot\|_{\psi} \leq M\|\cdot\|_{\varphi}
$$

Proof. For any $z, w \in \mathbb{C}$

$$
\begin{aligned}
\|(z, w)\|_{\varphi} & =(|z|+|w|) \varphi\left(\frac{|w|}{|z|+|w|}\right) \\
& \leq(|z|+|w|) \psi\left(\frac{|w|}{|z|+|w|}\right) \\
& =\|(z, w)\|_{\psi} \\
& \leq M(|z|+|w|) \varphi\left(\frac{|w|}{|z|+|w|}\right) \\
& =M\|(z, w)\|_{\varphi} .
\end{aligned}
$$

Lemma 4. Let $\varphi, \psi \in \Psi$ and let $1 / 2 \leq \lambda \leq 1$. Then

$$
\max \left\{\|\cdot\|_{\varphi}, \lambda\|\cdot\|_{\psi}\right\}=\|\cdot\|_{\max \{\varphi, \lambda \psi\}} .
$$

Proof. Note first that $\max \{\varphi, \lambda \psi\} \in \Psi$. Then for any $(z, w) \in \mathbb{C}^{2}$

$$
\begin{aligned}
\|(z, w)\|_{\max \{\varphi, \lambda \psi\}} & =(|z|+|w|) \max \left\{\varphi\left(\frac{|w|}{|z|+|w|}\right), \lambda \psi\left(\frac{|w|}{|z|+|w|}\right)\right\} \\
& =\max \left\{\|(z, w)\|_{\varphi}, \lambda\|(z, w)\|_{\psi}\right\} .
\end{aligned}
$$

3. NJ CONSTANT OF ABSOLUTE NORMALIZED NORMSTHE COMPARABLE CASE WITH ψ_{2}

The von Neumann-Jordan constant of a Banach (or normed) space X ([5]; cf. [12, p. 550]), we denote by $C_{\mathrm{NJ}}(X)$, is the smallest constant C for which

$$
\frac{1}{C} \leq \frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)} \leq C
$$

holds for all $x, y \in X$, not both 0 .
Let us recall some geometrical notions of a Banach space X (cf. [1]). X or its norm $\|\cdot\|$ is called uniformly convex if for any $\varepsilon>0(0<\varepsilon<2)$ there exists a $\delta>0$ such that $\|x-y\| \geq \varepsilon,\|x\| \leq 1,\|y\| \leq 1$ implies $\|(x+y) / 2\| \leq 1-\delta . X$ is called uniformly non-square provided there exists a $\delta>0$ such that if $\|(x-y) / 2\| \geq 1-\delta,\|x\| \leq 1$ and $\|y\| \leq 1$, then $\|(x+y) / 2\| \leq 1-\delta$. Clearly uniformly convex spaces are uniformly non-square, for the converse uniform non-squareness does not even imply
strict convexity, whereas X admits an equivalent uniformly non-square norm if and only if X is uniformly convexifiable (such a Banach space is precisely super-reflexive).

We summarize some basic facts about the NJ constant.
Proposition A. (i) $1 \leq C_{\mathrm{NJ}}(X) \leq 2$ for any Banach space $X ; C_{\mathrm{NJ}}(X)$ $=1$ if and only if X is a Hilbert space (Jordan and von Neumann [6]).
(ii) $C_{\mathrm{NJ}}(X)<2$ if and only if X is uniformly non-square (Takahashi and Kato [13]; see also [10]).
(iii) $\quad C_{\mathrm{NJ}}\left(L_{p}\right)=C_{\mathrm{NJ}}\left(\ell_{p}\right)=2^{(2 / t)-1}$, where $1 \leq p \leq \infty, 1 / p+1 / p^{\prime}=$ 1, and $t=\min \left\{p, p^{\prime}\right\}$ (Clarkson [5]).

For a norm $\|\cdot\|$ on \mathbb{C}^{2} we write $C_{\mathrm{NJ}}(\|\cdot\|)$ for $C_{\mathrm{NJ}}\left(\left(\mathbb{C}^{2},\|\cdot\|\right)\right)$. We first see that the NJ constant is stable under the symmetric transformation of ψ with respect to the line $t=1 / 2$.

Proposition 1. Let $\psi \in \Psi$ and let $\tilde{\psi}(t)=\psi(1-t)$. Then $C_{N J}\left(\|\cdot\|_{\psi}\right)=$ $C_{\mathrm{NJ}}\left(\|\cdot\|_{\tilde{\psi}}\right)$.

Proof. For $x=(z, w) \in \mathbb{C}^{2}$ put $\tilde{x}=(w, z)$. Then

$$
\|x\|_{\psi}=(|z|+|w|) \psi\left(\frac{|w|}{|z|+|w|}\right)=(|w|+|z|) \tilde{\psi}\left(\frac{|z|}{|w|+|z|}\right)=\|\tilde{x}\|_{\tilde{\psi}}
$$

Therefore we have

$$
\begin{aligned}
C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right) & =\sup _{\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2} \neq 0} \frac{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}}{2\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right)} \\
& =\sup _{\|\tilde{x}\|_{\tilde{\psi}}^{2}+\|\tilde{y}\|_{\tilde{\psi}}^{2} \neq 0} \frac{\|\tilde{x}+\tilde{y}\|_{\tilde{\psi}}^{2}+\|\tilde{x}-\tilde{y}\|_{\tilde{\psi}}^{2}}{2\left(\|\tilde{x}\|_{\tilde{\psi}}^{2}+\|\tilde{y}\|_{\tilde{\psi}}^{2}\right)} \\
& =C_{\mathrm{NJ}}\left(\|\cdot\|_{\tilde{\psi}}\right)
\end{aligned}
$$

Theorem 1. Let $\psi \in \Psi$.
(i) Assume that $\psi \geq \psi_{2}$. Then

$$
\begin{equation*}
C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=\max _{0 \leq t \leq 1} \frac{\psi(t)^{2}}{\psi_{2}(t)^{2}} \tag{9}
\end{equation*}
$$

(ii) Assume that $\psi \leq \psi_{2}$. Then

$$
\begin{equation*}
C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=\max _{0 \leq t \leq 1} \frac{\psi_{2}(t)^{2}}{\psi(t)^{2}} \tag{10}
\end{equation*}
$$

Proof. (i) Put $M_{1}=\max _{0 \leq t \leq 1} \psi(t) / \psi_{2}(t)$. Then by Lemma 3

$$
\begin{aligned}
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} & \leq M_{1}^{2}\left(\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}\right) \\
& =2 M_{1}^{2}\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \\
& \leq 2 M_{1}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right) .
\end{aligned}
$$

Now let ψ / ψ_{2} attain the maximum at $t=t_{1}\left(0 \leq t_{1} \leq 1\right)$. Put $x_{1}=(1-$ $\left.t_{1}, 0\right), y_{1}=\left(0, t_{1}\right)$. Then

$$
\begin{align*}
\left\|x_{1}+y_{1}\right\|_{\psi}^{2}+\left\|x_{1}-y_{1}\right\|_{\psi}^{2} & =\left\|\left(1-t_{1}, t_{1}\right)\right\|_{\psi}^{2}+\left\|\left(1-t_{1},-t_{1}\right)\right\|_{\psi}^{2} \\
& =2 \psi\left(t_{1}\right)^{2} \\
& =2 M_{1}^{2}\left\{\left(1-t_{1}\right)^{2}+t_{1}^{2}\right\} \\
& =2 M_{1}^{2}\left(\left\|x_{1}\right\|_{\psi}^{2}+\left\|y_{1}\right\|_{\psi}^{2}\right), \tag{11}
\end{align*}
$$

which implies (9).
(ii) Put $M_{2}=\max _{0 \leq t \leq 1} \psi_{2}(t) / \psi(t)$. Then

$$
\begin{aligned}
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} & \leq\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2} \\
& =2\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \\
& \leq 2 M_{2}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right) .
\end{aligned}
$$

Assume $M_{2}=\psi_{2}\left(t_{2}\right) / \psi\left(t_{2}\right)$ with some $t_{2}\left(0 \leq t_{2} \leq 1\right)$. Put $x_{2}=(1-$ $\left.t_{2}, t_{2}\right), y_{2}=\left(1-t_{2},-t_{2}\right)$. Then

$$
\begin{align*}
\left\|x_{2}+y_{2}\right\|_{\psi}^{2}+\left\|x_{2}-y_{2}\right\|_{\psi}^{2} & =4\left\{\left(1-t_{2}\right)^{2}+t_{2}^{2}\right\} \\
& =4 M_{2}^{2} \psi\left(t_{2}\right)^{2} \\
& =2 M_{2}^{2}\left\{\left\|\left(1-t_{2}, t_{2}\right)\right\|_{\psi}^{2}+\left\|\left(1-t_{2},-t_{2}\right)\right\|_{\psi}^{2}\right\} \\
& =2 M_{2}^{2}\left(\left\|x_{2}\right\|_{\psi}^{2}+\left\|y_{2}\right\|_{\psi}^{2}\right), \tag{12}
\end{align*}
$$

whence we have (10). This completes the proof.
Theorem 1 indicates that the NJ constant of $\|\cdot\|_{\psi}$ does not depend on the shape of ψ. This is stated in a little more general form:

Corollary 1. Let $\varphi, \psi \in \Psi$ be comparable with ψ_{2}.
(i) Let $\varphi \geq \psi_{2}$ and $\psi \geq \psi_{2}$. Then

$$
\begin{equation*}
C_{\mathrm{NJ}}\left(\|\cdot\|_{\varphi}\right)=C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right) \tag{13}
\end{equation*}
$$

if and only if

$$
\max _{0 \leq t \leq 1} \frac{\varphi(t)}{\psi_{2}(t)}=\max _{0 \leq t \leq 1} \frac{\psi(t)}{\psi_{2}(t)}
$$

(ii) Let $\varphi \geq \psi_{2}$ and $\psi \leq \psi_{2}$. Then (13) holds if and only if

$$
\max _{0 \leq t \leq 1} \frac{\varphi(t)}{\psi_{2}(t)}=\max _{0 \leq t \leq 1} \frac{\psi_{2}(t)}{\psi(t)} .
$$

The same is true for the other cases.
Corollary 2 (Clarkson [5]). Let $1 \leq p \leq \infty$ and $1 / p+1 / p^{\prime}=1$. Let $t=\min \left\{p, p^{\prime}\right\}$. Then

$$
\begin{equation*}
C_{\mathrm{NJ}}\left(\|\cdot\|_{p}\right)=2^{(2 / t)-1} . \tag{14}
\end{equation*}
$$

In particular, $C_{\mathrm{NJ}}\left(\|\cdot\|_{1}\right)=C_{\mathrm{NJ}}\left(\|\cdot\|_{\infty}\right)=2$.
Indeed, if $1 \leq p \leq 2$,

$$
\psi_{2}(t) \leq \psi_{p}(t) \leq 2^{(1 / p)-(1 / 2)} \psi_{2}(t) \quad(0 \leq \forall t \leq 1)
$$

where the constant $2^{(1 / p)-(1 / 2)}$ is the best possible. Hence we have (14) by Theorem 1. For the case $2 \leq p \leq \infty$ a parallel argument works.
Remark 1. The only known way to calculate NJ constants needs Clarkson's inequalities (cf. [5, 9, 11]), whereas the above discussion to derive (14) does not require them.
Further, Theorem 1 enables us to obtain many examples easily. Let us present some. The following easy lemma is helpful for applying Theorem 1.

Lemma 5. Let $\varphi(t) \geq \psi(t)>0$ on $[a, b]$. Assume that $\varphi-\psi$ has the maximum, resp. ψ has the minimum, at $t=c$ in $[a, b]$. Then φ / ψ attains the maximum at $t=c$.

Indeed, the conclusion is immediate from the identity

$$
\frac{\varphi(t)}{\psi(t)}-1=\frac{\varphi(t)-\psi(t)}{\psi(t)}
$$

Example 1. Let $\|\cdot\|=\max \left\{\|\cdot\|_{2}, \lambda\|\cdot\|_{1}\right\}(1 / \sqrt{2} \leq \lambda \leq 1)$. Then

$$
C_{\mathrm{NJ}}(\|\cdot\|)=2 \lambda^{2} .
$$

In fact by Lemma $4,\|\cdot\|=\|\cdot\|_{\max \left\{\psi_{2}, \lambda \psi_{1}\right\}}$. Then by Theorem 1 we have

$$
\begin{aligned}
C_{\mathrm{NJ}}(\|\cdot\|) & =\max _{0 \leq t \leq 1}\left[\frac{\max \left\{\psi_{2}(t), \lambda \psi_{1}(t)\right\}}{\psi_{2}(t)}\right]^{2} \\
& =\max _{0 \leq t \leq 1}\left\{\frac{\lambda \psi_{1}(t)}{\psi_{2}(t)}\right\}^{2}=\frac{\lambda^{2}}{1 / 2}=2 \lambda^{2} .
\end{aligned}
$$

The following example treats a nonnormalized norm.
Example $2\left(\left[10\right.\right.$, Proposition 1]). Let $\|\cdot\|=\max \left\{\|\cdot\|_{2}, \lambda\|\cdot\|_{\infty}\right\}(1 \leq \lambda$ $\leq \sqrt{2}$). Then

$$
C_{\mathrm{NJ}}(\|\cdot\|)=\lambda^{2} .
$$

Indeed, put $\|\cdot\|_{0}=\max \left\{\lambda^{-1}\|\cdot\|_{2},\|\cdot\|_{\infty}\right\}$. Then $\|\cdot\|_{0}=\|\cdot\|_{\max \left\{\lambda^{-1} \psi_{2}, \psi_{\infty}\right\}}$ by Lemma 4 and $\|\cdot\|=\lambda\|\cdot\|_{0}$. Hence we have

$$
\begin{aligned}
C_{\mathrm{NJ}}(\|\cdot\|) & =C_{\mathrm{NJ}}\left(\lambda\|\cdot\|_{0}\right) \\
& =C_{\mathrm{NJ}}\left(\|\cdot\|_{0}\right) \\
& =\max _{0 \leq t \leq 1}\left[\frac{\psi_{2}(t)}{\max \left\{\lambda^{-1} \psi_{2}(t), \psi_{x}(t)\right\}}\right]^{2}
\end{aligned}
$$

by Theorem 1 . Now clearly $\psi_{2}(t) /\left[\max \left\{\lambda^{-1} \psi_{2}(t), \psi_{\infty}(t)\right\}\right]$ is symmetric with respect to $t=1 / 2$. Let t_{0} be such that $\lambda^{-1} \psi_{2}\left(t_{0}\right)=\psi_{o x}\left(t_{0}\right)\left(0 \leq t_{0} \leq 1 / 2\right)$. Then we have

$$
\max _{0 \leq t \leq t_{0}}\left[\frac{\psi_{2}(t)}{\max \left\{\lambda^{-1} \psi_{2}(t), \psi_{\infty}(t)\right\}}\right]^{2}=\lambda^{2}
$$

by Lemma 5, and clearly

$$
\max _{t_{0} \leq t \leq 1 / 2}\left[\frac{\psi_{2}(t)}{\max \left\{\lambda^{-1} \psi_{2}(t), \psi_{\infty}(t)\right\}}\right]^{2}=\max _{t_{0} \leq t \leq 1 / 2}\left[\frac{\psi_{2}(t)}{\lambda^{-1} \psi_{2}(t)}\right]^{2}=\lambda^{2}
$$

Therefore we have $C_{\mathrm{NJ}}(\|\cdot\|)=\lambda^{2}$.
Example 3. Let $2 \leq p<\infty$. Let $\|\cdot\|_{p, 2}$ be the (Lorentz) $\ell_{p, 2}$-norm.

$$
\|(z, w)\|_{p, 2}=\left\{|z|^{* 2}+2^{(2 / p)-1}|w|^{* 2}\right\}^{1 / 2}
$$

where $\left\{|z|^{*},|w|^{*}\right\}$ is the non-increasing rearrangement of $\{|z|,|w|\}$; that is, $|z|^{*} \geq|w|^{*}$. (Note that if $p<2,\|\cdot\|_{p, 2}$ is a quasi-norm; cf. [7, Proposition 1; 14, p. 126; 2, p. 8]). Then

$$
C_{\mathrm{NJ}}\left(\|\cdot\|_{p, 2}\right)=\frac{2}{1+2^{2 / p-1}} .
$$

Indeed, $\|\cdot\|_{p, 2} \in N_{a}$, and the corresponding convex function is given by

$$
\psi_{p, 2}(t)= \begin{cases}\left\{(1-t)^{2}+2^{2 / p-1} t^{2}\right\}^{1 / 2} & \text { if } 0 \leq t \leq 1 / 2 \\ \left\{t^{2}+2^{2 / p-1}(1-t)^{2}\right\}^{1 / 2} & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

Since $\psi_{p, 2} \leq \psi_{2}$ and $\psi_{2} / \psi_{p, 2}$ is symmetric with respect to $t=1 / 2$, we find the maximum of $\psi_{2}^{2} / \psi_{p, 2}^{2}$ in the interval [$0,1 / 2$]. The difference $\psi_{2}(t)^{2}-\psi_{p, 2}(t)^{2}=\left(1-2^{2 / p-1}\right) t^{2}$ takes its maximum at $t=1 / 2$, and $\psi_{p, 2}$ has the minimum at $t=1 / 2$. Therefore by Lemma 5 we have

$$
\max _{0 \leq t \leq 1} \frac{\psi_{2}(t)^{2}}{\psi_{p, 2}(t)^{2}}=\frac{\psi_{2}(1 / 2)^{2}}{\psi_{p, 2}(1 / 2)^{2}}=\frac{2}{1+2^{2 / p-1}}
$$

which implies the conclusion by Theorem 1.

4. NJ CONSTANT OF ABSOLUTE NORMALIZED NORMSTHE GENERAL CASE

Lemma 6. Let $1 / 2 \leq \alpha \leq 1$ and let

$$
\psi_{\alpha}(t)=\left\{\begin{array}{cl}
\frac{\alpha-1}{\alpha} t+1 & \text { if } 0 \leq t \leq \alpha \\
t & \text { if } \alpha \leq t \leq 1
\end{array}\right.
$$

Then

$$
\begin{align*}
& M_{1}=\max _{0 \leq t \leq 1} \frac{\psi_{\alpha}(t)}{\psi_{2}(t)}=\left\{\left(2-\frac{1}{\alpha}\right)^{2}+1\right\}^{1 / 2}, \tag{15}\\
& M_{2}=\max _{0 \leq t \leq 1} \frac{\psi_{2}(t)}{\psi_{\alpha}(t)}=\left\{\left(\frac{1}{\alpha}-1\right)^{2}+1\right\}^{1 / 2} \tag{16}
\end{align*}
$$

Proof. If $\alpha=1 / 2$ or $\alpha=1$, the conclusion is clear by Lemma 5 . Let $1 / 2<\alpha<1$. Easy calculation shows that the function ψ_{α} / ψ_{2} attains the maximum at $t=(2 \alpha-1) /(3 \alpha-1)$, which gives (15). The function ψ_{2} / ψ_{α} clearly has the maximum at $t=\alpha$, which implies (16).

Although the notation ψ_{α} is not consistent with ψ_{p} corresponding to the ℓ_{p}-norm, there will be no confusion in the following.

Theorem 2. Let $\psi \in \Psi$ and let

$$
\begin{equation*}
M_{1}=\max _{0 \leq t \leq 1} \frac{\psi(t)}{\psi_{2}(t)} \quad \text { and } \quad M_{2}=\max _{0 \leq t \leq 1} \frac{\psi_{2}(t)}{\psi(t)} . \tag{17}
\end{equation*}
$$

Then

$$
\begin{equation*}
\max \left\{M_{1}^{2}, M_{2}^{2}\right\} \leq C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right) \leq M_{1}^{2} M_{2}^{2} . \tag{18}
\end{equation*}
$$

Further we have

$$
\begin{equation*}
1 \leq \max \left\{M_{1}^{2}, M_{2}^{2}\right\} \leq M_{1}^{2} M_{2}^{2} \leq 2 \tag{19}
\end{equation*}
$$

Proof. For all $x, y \in \mathbb{C}^{2}$ we have

$$
\begin{align*}
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} & \leq M_{1}^{2}\left(\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}\right) \\
& =2 M_{1}^{2}\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \\
& \leq 2 M_{1}^{2} M_{2}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right) \tag{20}
\end{align*}
$$

which implies that $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right) \leq M_{1}^{2} M_{2}^{2}$. Next let

$$
\begin{equation*}
M_{1}=\frac{\psi\left(t_{1}\right)}{\psi_{2}\left(t_{1}\right)}, \quad M_{2}=\frac{\psi_{2}\left(t_{2}\right)}{\psi\left(t_{2}\right)} \tag{21}
\end{equation*}
$$

with some $0 \leq t_{1}, t_{2} \leq 1$. Put $x_{1}=\left(1-t_{1}, 0\right), y_{1}=\left(0, t_{1}\right)$. Then by (11) we have $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right) \geq M_{1}^{2}$. In the same way, by putting $x_{2}=\left(1-t_{2}, t_{2}\right)$, $y_{2}=\left(1-t_{2},-t_{2}\right)$, we have $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right) \geq M_{2}^{2}$ by (12).

Now we prove (19). The first two inequalities are obvious. If $\psi \geq \psi_{2}$ or $\psi \leq \psi_{2}$, the last inequality in (19) is easy to see (merely note that ψ_{1} / ψ_{2} $\leq \sqrt{2}$ and $\psi_{2} / \psi_{\infty} \leq \sqrt{2}$). So assume this is not the case. Then $M_{1}, M_{2}>1$, whence we have (21) with $0<t_{1}, t_{2}<1$. Owing to Proposition 1 we may assume that $t_{1}<t_{2}$. Let (α, α) be the intersection of the line $s=t$ and the line combining the points $(0,1)$ and $\left(t_{2}, \psi\left(t_{2}\right)\right)$. Then evidently $1 / 2<\alpha$ <1 and $t_{2}<\alpha$. Hence

$$
M_{2}=\frac{\psi_{2}\left(t_{2}\right)}{\psi\left(t_{2}\right)}=\frac{\psi_{2}\left(t_{2}\right)}{\psi_{\alpha}\left(t_{2}\right)} \leq \frac{\psi_{2}(\alpha)}{\psi_{\alpha}(\alpha)},
$$

where ψ_{α} is as in Lemma 6. On the other hand, since $\psi_{2}\left(t_{1}\right) \leq \psi\left(t_{1}\right) \leq$ $\psi_{\alpha}\left(t_{1}\right)$ by the convexity of $\psi(t)$ and (21), we have

$$
M_{1}=\frac{\psi\left(t_{1}\right)}{\psi_{2}\left(t_{1}\right)} \leq \frac{\psi_{\alpha}\left(t_{1}\right)}{\psi_{2}\left(t_{1}\right)} .
$$

Therefore by Lemma 6 we have

$$
\begin{aligned}
M_{1} M_{2} & =\frac{\psi\left(t_{1}\right)}{\psi_{2}\left(t_{1}\right)} \frac{\psi_{2}\left(t_{2}\right)}{\psi\left(t_{2}\right)} \\
& \leq \max _{0 \leq t \leq 1} \frac{\psi_{\alpha}(t)}{\psi_{2}(t)} \max _{0 \leq t \leq 1} \frac{\psi_{2}(t)}{\psi_{\alpha}(t)} \\
& =\left\{\left(2-\frac{1}{\alpha}\right)^{2}+1\right\}^{1 / 2}\left\{\left(\frac{1}{\alpha}-1\right)^{2}+1\right\}^{1 / 2}
\end{aligned}
$$

Put $u=1 / \alpha-1$. Then, $0<u<1$ and

$$
\begin{align*}
M_{1}^{2} M_{2}^{2} & \leq\left(u^{2}+1\right)\left\{(1-u)^{2}+1\right\} \\
& =u(u-1)\left(u^{2}-u+2\right)+2 \\
& <2 . \tag{22}
\end{align*}
$$

This completes the proof.
Remark 2. (i) In Theorem 2 we have $M_{1}^{2} M_{2}^{2}=2$ if and only if $\alpha=1$ or $\alpha=1 / 2$; in this case $\psi=\psi_{1}$ or $\psi=\psi_{\infty}$. In fact, the "if" part is clear, and the opposite follows directly from (22).
(ii) $\max \left\{M_{1}, M_{2}\right\}=1$ if and only if $\psi=\psi_{2}$.
(iii) $\max \left\{M_{1}, M_{2}\right\}=M_{1} M_{2}$ if and only if $\psi \geq \psi_{2}$ or $\psi \leq \psi_{2}$: In particular, Theorem 1 is also a result of this fact.

As a consequence of Theorem 2 we have
Corollary 3. Let $\|\cdot\| \in N_{a}$. Then $C_{\mathrm{NJ}}(\|\cdot\|)=2$ if and only if $\|\cdot\|$ is an ℓ_{1} - or ℓ_{∞}-norm: In other words, all norms in N_{a} except ℓ_{1} - and ℓ_{∞}-norms are uniformly non-square.
Proof. By Theorem 2, $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=2$ if and only if $M_{1}^{2} M_{2}^{2}=2$, which occurs only when $\psi=\psi_{1}$ or $\psi=\psi_{\infty}$ by Remark 2 (i).
Now, according to Theorem 1, the identity $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=\max \left\{M_{1}^{2}, M_{2}^{2}\right\}$ holds in the estimate (18) of Theorem 2 if ψ is comparable with ψ_{2}. The next theorem asserts that for another wide class of convex functions we have $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=M_{1}^{2} M_{2}^{2}$ and $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)>\max \left\{M_{1}^{2}, M_{2}^{2}\right\}$.

Theorem 3. Let $\psi \in \Psi$ and let $\psi(t)=\psi(1-t)$ for all $0 \leq t \leq 1$. Assume that $M_{1}=\max _{0 \leq t \leq 1} \psi(t) / \psi_{2}(t)$ or $M_{2}=\max _{0 \leq t \leq 1} \psi_{2}(t) / \psi(t)$ is taken at $t=1 / 2$. Then

$$
\begin{equation*}
C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=M_{1}^{2} M_{2}^{2} \tag{23}
\end{equation*}
$$

Moreover, if neither $\psi \geq \psi_{2}$ nor $\psi \leq \psi_{2}$,

$$
\begin{equation*}
\max \left\{M_{1}^{2}, M_{2}^{2}\right\}<C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right) \tag{24}
\end{equation*}
$$

Proof. Suppose first $M_{1}=\psi(1 / 2) / \psi_{2}(1 / 2)$. Take an arbitrary t with $0 \leq t \leq 1$ and put $x=(t, 1-t)$ and $y=(1-t, t)$. Then

$$
\|x\|_{\psi}^{2}=\psi(1-t)^{2}=\psi(t)^{2}, \quad\|y\|_{\psi}^{2}=\psi(t)^{2}
$$

On the other hand

$$
\begin{aligned}
& \|x+y\|_{\psi}^{2}=\|(1,1)\|_{\psi}^{2}=4 \psi(1 / 2)^{2} \\
& \|x-y\|_{\psi}^{2}=\|(2 t-1,1-2 t)\|_{\psi}^{2}=4(2 t-1)^{2} \psi(1 / 2)^{2}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}}{2\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right)} & =\frac{4 \psi(1 / 2)^{2}\left\{(2 t-1)^{2}+1\right\}}{4 \psi(t)^{2}} \\
& =\frac{\psi(1 / 2)^{2}\left\{(1-t)^{2}+t^{2}\right\}}{\psi(t)^{2} / 2} \\
& =\frac{\psi(1 / 2)^{2} \psi_{2}(t)^{2}}{\psi_{2}(1 / 2)^{2} \psi(t)^{2}}=M_{1}^{2} \frac{\psi_{2}(t)^{2}}{\psi(t)^{2}}
\end{aligned}
$$

Since t is arbitrary, we have

$$
\begin{equation*}
C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right) \geq M_{1}^{2} M_{2}^{2} \tag{25}
\end{equation*}
$$

which, combined with (18), implies (23). In case of $M_{2}=\psi_{2}(1 / 2) / \psi(1 / 2)$, let x and y be as above and put $u=x+y$ and $v=x-y$. Then since

$$
\begin{aligned}
\frac{\|u+v\|_{\psi}^{2}+\|u-v\|_{\psi}^{2}}{2\left(\|u\|_{\psi}^{2}+\|v\|_{\psi}^{2}\right)} & =\frac{2\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right)}{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}} \\
& =\frac{\psi_{2}(1 / 2)^{2} \psi(t)^{2}}{\psi(1 / 2)^{2} \psi_{2}(t)^{2}}=M_{2}^{2} \frac{\psi(t)^{2}}{\psi_{2}(t)^{2}}
\end{aligned}
$$

we have (25) and hence (23). The inequality (24) is a direct consequence of (23) and Remark 2 (iii).

Example 4. Let $1 / 2 \leq \beta \leq 1$ Let $\varphi_{\beta}(t)=\max \{1-t, t, \beta\}$ (note that neither $\varphi_{\beta} \geq \psi_{2}$ nor $\varphi_{\beta} \leq \psi_{2}$ if $1 / \sqrt{2}<\beta<1$). Then

$$
C_{\mathrm{NJ}}\left(\|\cdot\|_{\varphi_{\beta}}\right)= \begin{cases}\frac{1}{\beta^{2}}\left\{(1-\beta)^{2}+\beta^{2}\right\} & \text { if } \frac{1}{2} \leq \beta \leq \frac{1}{\sqrt{2}} \\ 2\left\{(1-\beta)^{2}+\beta^{2}\right\} & \text { if } \frac{1}{\sqrt{2}} \leq \beta \leq 1\end{cases}
$$

Indeed, by Lemma 5

$$
M_{1}= \begin{cases}1 & \text { if } \frac{1}{2} \leq \beta \leq \frac{1}{\sqrt{2}} \\ \frac{\varphi_{\beta}(1 / 2)}{\psi_{2}(1 / 2)}=\frac{\beta}{1 / \sqrt{2}}=\sqrt{2} \beta & \text { if } \frac{1}{\sqrt{2}} \leq \beta \leq 1\end{cases}
$$

and

$$
M_{2}=\frac{\psi_{2}(\beta)}{\varphi_{\beta}(\beta)}=\frac{1}{\beta}\left\{(1-\beta)^{2}+\beta^{2}\right\}^{1 / 2},
$$

whence we have the conclusion by Theorem 3 .
Finally we see a class of convex functions for which the identity $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)=M_{1}^{2} M_{2}^{2}$ fails to hold.

Theorem 4. Let $\psi \in \Psi$. Let M_{1} and M_{2} be as in Theorem 2. Assume that

$$
\begin{equation*}
\max \left\{t ; M_{1}=\frac{\psi(t)}{\psi_{2}(t)}\right\}<\min \left\{s ; M_{2}=\frac{\psi_{2}(s)}{\psi(s)}\right\} \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
\min \left\{t ; M_{1}=\frac{\psi(t)}{\psi_{2}(t)}\right\}>\max \left\{s ; M_{2}=\frac{\psi_{2}(s)}{\psi(s)}\right\} \tag{27}
\end{equation*}
$$

(hence ψ is not symmetric with respect to $t=1 / 2$). Then

$$
\begin{equation*}
C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)<M_{1}^{2} M_{2}^{2} . \tag{28}
\end{equation*}
$$

Proof. It is enough to show (28) in the case (26) by Proposition 1. Put

$$
t_{0}=\max \left\{t ; M_{1}=\frac{\psi(t)}{\psi_{2}(t)}\right\}, \quad s_{0}=\min \left\{s ; M_{2}=\frac{\psi_{2}(s)}{\psi(s)}\right\} .
$$

Then clearly $0<t_{0}<s_{0}<1$. Assume that (28) is not valid. Then there are $x, y \in \mathbb{C}^{2}$, not both 0 , such that

$$
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}=2 M_{1}^{2} M_{2}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right) .
$$

It should be noted that all of $x, y, x+y$, and $x-y$ are not 0 because $\psi \neq \psi_{2}$. Then by (20) we have

$$
\begin{equation*}
\|x+y\|_{\psi}=M_{1}\|x+y\|_{2}, \quad\|x-y\|_{\psi}=M_{1}\|x-y\|_{2} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x\|_{2}=M_{2}\|x\|_{\psi}, \quad\|y\|_{2}=M_{2}\|y\|_{\psi} \tag{30}
\end{equation*}
$$

Put $x=(a, b)$ and $y=(c, d)$. Then by (29)

$$
\begin{aligned}
& \psi\left(\frac{|b+d|}{|a+c|+|b+d|}\right)=M_{1} \psi_{2}\left(\frac{|b+d|}{|a+c|+|b+d|}\right) \\
& \psi\left(\frac{|b-d|}{|a-c|+|b-d|}\right)=M_{1} \psi_{2}\left(\frac{|b-d|}{|a-c|+|b-d|}\right)
\end{aligned}
$$

from which it follows that

$$
\frac{|b+d|}{|a+c|+|b+d|} \leq t_{0}, \quad \frac{|b-d|}{|a-c|+|b-d|} \leq t_{0}
$$

In the same way, by (30) we have

$$
\frac{|b|}{|a|+|b|} \geq s_{0}, \quad \frac{|d|}{|c|+|d|} \geq s_{0} .
$$

Therefore

$$
\begin{aligned}
& |b+d| \leq \frac{t_{0}}{1-t_{0}}|a+c| \\
& |b-d| \leq \frac{t_{0}}{1-t_{0}}|a-c|
\end{aligned}
$$

and

$$
|b| \geq \frac{s_{0}}{1-s_{0}}|a|, \quad|d| \geq \frac{s_{0}}{1-s_{0}}|c|
$$

Hence we have

$$
\begin{aligned}
|b+d|^{2}+|b-d|^{2} & \leq\left(\frac{t_{0}}{1-t_{0}}\right)^{2}\left(|a+c|^{2}+|a-c|^{2}\right) \\
& =2\left(\frac{t_{0}}{1-t_{0}}\right)^{2}\left(|a|^{2}+|c|^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
|b+d|^{2}+|b-d|^{2} & =2\left(|b|^{2}+|d|^{2}\right) \\
& \geq 2\left(\frac{s_{0}}{1-s_{0}}\right)^{2}\left(|a|^{2}+|c|^{2}\right) .
\end{aligned}
$$

Consequently we have $t_{0} /\left(1-t_{0}\right) \geq s_{0} /\left(1-s_{0}\right)$ because $|a|^{2}+|c|^{2} \neq 0$, and hence $t_{0} \geq s_{0}$, which contradicts our assumption. This completes the proof.

Corollary 4. Let $\psi \in \Psi$. Let M_{1} and M_{2} be as in Theorem 2. If there exists uniquely one point such that $\psi / \psi_{2}\left(\right.$ resp. $\left.\psi_{2} / \psi\right)$ attains $M_{1}\left(\right.$ resp. $\left.M_{2}\right)$, then

$$
C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi}\right)<M_{1}^{2} M_{2}^{2} .
$$

In fact, these points at which M_{1} and M_{2} are attained are different by the assumption.
Remark 3. (i) In Theorem 3 the condition $\psi(t)=\psi(1-t)$ is essential. Indeed, modify the function φ_{β} in Example 4 as follows: Let $1 / \sqrt{2}<\gamma<1$. Let t_{0} be the smaller solution of the equation, $\psi_{2}(t)=\gamma$. Define

$$
\omega_{\gamma}(t)= \begin{cases}\psi_{2}(t) & \text { if } 0 \leq t \leq t_{0} \\ \gamma & \text { if } t_{0} \leq t \leq \gamma \\ t & \text { if } \gamma \leq t \leq 1\end{cases}
$$

Then, $\omega_{\gamma} / \psi_{2}$ has the maximum at $t=1 / 2$, but ω_{γ} is not symmetric with respect to $t=1 / 2$. On the other hand, ω_{γ} satisfies the condition in Corollary 4, and hence we have $C_{\mathrm{NJ}}\left(\|\cdot\|_{\omega_{\gamma}}\right)<M_{1}^{2} M_{2}^{2}$.
(ii) For ψ_{α} in Lemma 6 we have $C_{\mathrm{NJ}}\left(\|\cdot\|_{\psi_{\alpha}}\right)<M_{1}^{2} M_{2}^{2}$ by Corollary 4, where M_{1} and M_{2} are as in Lemma 6 .

REFERENCES

1. B. Beauzamy, "Introduction to Banach Spaces and Their Geometry," 2nd ed., North-Holland, Amsterdam/New York/Oxford, 1985.
2. J. Bergh and J. Löfström, "Interpolation Spaces," Springer-Verlag, Berlin/Heidelberg/ New York, 1976.
3. F. F. Bonsall and J. Duncan, "Numerical Ranges II," Lecture Note Series, Vol. 10, London Math. Soc., London, 1973.
4. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
5. J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math. 38 (1937), 114-115.
6. P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. of Math. 36 (1935), 719-723.
7. M. Kato, On Lorentz spaces $\ell_{p, q}(E)$, Hiroshima Math. J. 6 (1976), 73-93.
8. M. Kato, L. Maligranda, and Y. Takahashi, On the Jordan-von Neumann constant and some related geometrical constants of Banach spaces, preprint.
9. M. Kato and K. Miyazaki, On generalized Clarkson's inequalities for $L_{p}\left(\mu ; L_{q}(\nu)\right)$ and Sobolev spaces, Math. Japon. 43 (1996), 505-515.
10. M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 1055-1062.
11. M. Kato and Y. Takahashi, Von Neumann-Jordan constant for Lebesgue-Bochner spaces, J. Inequal. Appl. 2 (1998), 89-97.
12. D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, "Classical and New Inequalities in Analysis," Kluwer Academic, Dordrecht/Boston/London, 1993.
13. Y. Takahashi and M. Kato, Von Neumann-Jordan constant and uniformly non-square Banach spaces, Nihonkai Math. J. 9 (1998), 155-169.
14. H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland, Amsterdam/New York/Oxford, 1978.

[^0]: ${ }^{1}$ The authors are supported in part by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

