TCT-640
Optical Coherence Tomography can be combined with angiography to create highly accurate patient-specific models of human coronary anatomy in a rapid automated manner
Chrysia A. Kousera1, Sakhbinder S. Nijjer1, Ryo Torii2, Ricardo Petracco3, Sayan Sen1, Nicolas Foin1, Christopher Broyd3, Alan D. Hughes1, Yun X. Xu1, Darrel P. Francis1, Justin E. Davies1
1Imperial College London, London, London, 2University College London, London, London, 3University of California, Los Angeles, Los Angeles, CA, 4David Geffen School of Medicine, UCLA, Los Angeles, United States

Background: Optical coherence tomography (OCT) presents high fidelity intra-coronary imaging, which may improve the spatial resolution offered by current coronary reconstruction methods. In this study, we applied a new approach to generate patient-specific virtual coronary anatomy models by combining OCT imaging with angiography.

Methods: Invasive angiography and OCT was prospectively acquired in 21 coronary vessels from 19 patients using the routine clinical approach for both. A custom algorithm traced the OCT contours and mapped them in 3D-space upon the angiographically derived centreline to produce a patient specific 3D-model of the coronary vessel.

Results: The reconstructions showcase the high in-plane and longitudinal resolution of OCT, capturing the geometrical irregularities in detail. The final construction had the high resolution of the original OCT (in-plane:10μm longitudinal:0.2mm). Phantom modeling confirms that the technique process produces realistic models. Reconstruction was semi-automated with minimal input and output was produced within 7±0.5 seconds/frame (average 232 frames/vessel).

Conclusions: High fidelity, high resolution, realistic patient-specific models can be constructed using available clinical tools, without additional acquisition time in the catheter lab. By applying OCT-derived contours, the models more accurately reflect patient geometry and overcome the inherent limitations of angiographic reconstruction which assumes elliptical lumen. This may facilitate greater accuracy from computer flow dynamic studies. The speed and automated nature may allow real-time use in the catheter lab.

TCT-641
Comparison of Intravascular Ultrasound (IVUS) and Optical Coherence Tomography (OCT) assessment of Coronary Allograft Vasculopathy (CAV) in patients after orthotopic heart transplantation
Koichiro Matsamura1, Rubine Gevorgyan2, William M. Suh3, Jonathan Tobis4

Background: Coronary allograft vasculopathy (CAV) in patients after orthotopic heart transplantation utilizing IVUS and OCT.

Methods: 17 patients with OHT were enrolled in this study. The left anterior descending coronary artery (LAD) was imaged by IVUS and OCT. 20 sections distributed evenly along the LAD were used to compare the measurements of the diameter and the area of the external elastic membrane (EEM), calculated plaque area, and intima-media thickness (IMT) between IVUS and OCT.

Results: The borders of the EEM were visualized and the vessel area was measured in 37% of OCT cases, compared to 90% of IVUS images (p<0.001). Figure1 shows the ability to detect the EEM on OCT and IVUS was compared for smaller and larger plaques determined by IVUS measurements.

Conclusions: We identified a significant difference in the ability of IVUS and OCT to detect the EEM in patients following cardiac transplantation. The lack of EEM border detection affects the measurements of plaque volume and IMT. Larger volume of plaque and IMT affect the ability of OCT to assess plaque volume and IMT. For accurate assessment of plaque volume and thickness, intravascular ultrasound imaging is more reliable than OCT especially for the assessment of transplant vasculopathy.

TCT-642
Association between Glycemic Variability and Coronary Tissue Characteristics in Patients with Acute Coronary Syndromes
Kozy Okaeda1, Kiyoshi Hibi1, Yasahiro Honda1, Masaoi Gobara1, Shunsuke Katouka1, Toshiaki Ebina1, Masamitsu Kosuge1, Toshiro Tahara1, Kenji Tsukahara2, Nobuhiko Murajima1, Noritaki Ishiwashi1, Masanori Komishi1, Yasushi Matsuzawa1, Eiichi Akiyama1, Naoki Nakayama1, Zenko Nagashima1, Hiroaki Suzuki1, Satoshi Umemura1, Kacuo Kimura1
1Yokohama City University Medical Center, Yokohama, Japan, 2Stanford University, Stanford, CA, 3Yokohama City University Medical Center, Yokohama, Kanagawa, Japan, 4Yokohama City University Medical Center, Yokohama, Japan, 5Yokohama City University Graduate School of Medicine, Yokohama, Japan

Background: Glycemic variability is receiving considerable attention as a new risk factor for coronary artery disease. This study aimed to assess the effect of glycemic variability on tissue characteristics of coronary atherosclerotic plaques as assessed by integrated backscatter intravascular ultrasound (IB-IVUS).

Methods: In 66 patients with acute coronary syndromes, culprit vessels were evaluated at 1-mm intervals (length analyzed: 62.±24 mm) by gray-scale and IB-IVUS before balloon dilatation or stent implantation. Thrombus aspiration was performed prior to IVUS as necessary. Standard IVUS parameters were assessed as a volume index (volume/length), and plaque components were evaluated by IB-IVUS as % tissue volume. In addition to conventional glycemic parameters, glycemic variability in a stable state was determined by calculating the mean amplitude of glycemic excursions (MAGE) using a continuous glucose monitoring system.

Results: While fasting plasma glucose and HbA1c levels were not related to any IVUS parameters, higher MAGE correlated with larger vessel and plaque volumes, higher % lipid volume, and lower % fibrous volume (Figure). Insulin resistance as assessed by HOMA-IR positively correlated with vessel and plaque volumes, but not with % plaque components. In multiple regression analysis, higher MAGE was independently associated with higher % lipid volume.

Conclusions: Higher glucose variability was associated with increased lipid and decreased fibrous contents with larger plaque burden, suggesting glycemic variability as one of the important factors related to coronary plaque vulnerability.