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Nrf2 is a bZIP transcription factor regulating the expression of antioxidant and detoxification genes. We have
found that Nrf2 knockout mice have an increased infarction size in response to regional ischemic reperfusion
and have a reduced degree of cardiac protection by means of ischemic preconditioning. With cycles of brief
ischemia and reperfusion (5′I/5′R) that induce cardiac protection in wild type mice, an elevated Nrf2 protein
was observed without prior increases of Nrf2 mRNA. When an mRNA species is being translated into a protein,
it is occupied by multiple ribosomes. The level of ribosome-associated Nrf2 mRNA increased following cycles
of 5′I/5′R, supporting de novo Nrf2 protein translation. A dicistronic reporter assay indicated a role of the 5′ un-
translated region (5′ UTR) of Nrf2 mRNA in oxidative stress induced Nrf2 protein translation in isolated
cardiomyocytes. Western blot analyses after isolation of proteins binding to biotinylated Nrf2 5′ UTR from the
myocardium or cultured cardiomyocytes demonstrated that cycles of 5′I/5′R or oxidants caused an increased as-
sociation of La proteinwithNrf2 5′UTR. Ribonucleoprotein complex immunoprecipitation assays confirmed such
association indeed occurring in vivo. Knocking down La using siRNA was able to prevent Nrf2 protein elevation
by oxidants in cultured cardiomyocytes and by cycles of 5′I/5′R in the myocardium. Our data point out a novel
mechanism of cardiac protection by de novo Nrf2 protein translation involving interaction of La protein with
5′ UTR of Nrf2 mRNA in cardiomyocytes.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Chemical stress is known to result in an inhibition of protein synthesis
in general [1–3]. How certain genes bypass the general control of protein
synthesis and be translated selectively remains unclear. Under normal
physiological conditions, protein synthesis is initiated following the
recognition of 7-methyl guanine cap at the 5′ end of mRNA species by
eukaryotic initiation factor-4E (eIF4E), the binding of poly (A) tail binding
proteins (PABPs), and the recruitment of 43S preinitiation complex onto
themRNA species [1,2]. After scanning of 5′ untranslated region (5′UTR)
for the start codon, eIF2 bound GTP is hydrolyzed, followed by joining of
tRNA and the 60S subunit of the ribosome, marking the final step for
translation initiation. Under stress conditions, 5′ methyl guanine cap
dependent translation is inhibited.

Certain mRNA species can bypass 5′methyl guanine cap dependent
translation and undergo protein translation via an internal ribosome
entry site (IRES) [2–5]. IRES trans-acting factors (ITAFs) play an impor-
tant role in recognizing themRNA species and for coordinating stress in-
duced protein translation [5,6]. Stress induced protein translation can
1 520 626 2204.
.

occur rapidly, often within 1 h or sooner following the insult [7–9]. A
number of viral proteins have been shown to undergo IRES dependent
translation in host cells during viral infection. Yeast is another popular
model for studying the impact of stress on protein translation.Whether
cellular proteins undergo stress induced translation has not been
studied in an animal model of cardiac injury.

Ischemic preconditioning is a well documented phenomenonwhere
cycles of brief ischemic episodes induce protection against myocardial
injury. Despite the fact that this phenomenon has been known for
over 25 years [10], the mechanism underlying such protection remains
not fully understood. With ischemia, an increased amount of H2O2 is
detectable in the heart [11–13]. Reperfusion enhances oxidant genera-
tion through abnormal mitochondrial function and activated xanthine
oxidase [14]. Patients withmyocardial ischemia undergoing percutane-
ous transluminal coronary angioplasty to restore the blood flow show
elevation of biomarkers of oxidative stress in the blood [15,16]. Despite
the overwhelming evidence suggesting an association of oxidative
stress with ischemia and reperfusion, clinical trials with antioxidants
have not yielded a clear protective effect against cardiac injury
[17–21]. High doses of antioxidant vitamins may even be harmful [22].
These lines of evidence are consistentwith our hypothesis that an initial
exposure to low or mild doses of oxidants may serve to activate endog-
enous defense mechanisms.
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A list of genes found upregulated during ischemic preconditioning
suggests activation of NF-E2 related factor-2 (Nrf2) transcription factor.
These genes, for example, heme oxygenase-1 (HO-1), glutamate-
cysteine ligase catalytic subunit (GCLC), NAD(P)H: quinoneoxidoreduc-
tase-1, thioredoxin, cytochrome b and aldose reductase, contain the
antioxidant response cis-element (ARE) in the promoters [23–25].
ARE is a consensus sequence of TGACnnnGC and a binding site of
Nrf2 transcription factor [26,27]. Genome-wide profiling studies
indicate that Nrf2 participates in regulation of a long list of genes, in-
cluding growth factors, signaling molecules and transcription factors
[28,29]. These studies suggest that Nrf2 not only is a controller for
cellular defense but also mediates cellular repair and proliferation
or regeneration.

With isolated cardiomyocytes, oxidants induce elevation of Nrf2
protein rapidly, within 10 min [30]. Measurements of Nrf2 mRNA and
pharmacological approaches with actinomycin D have eliminated
transcription as a cause of Nrf2 protein increase. Lack of Nrf2 protein
stabilization, evidence of [35S]-methionine incorporation, and an inhib-
itory effect of cycloheximide point to de novo translation contributing
to Nrf2 protein increase [30]. With HeLa cells, we have identified La
autoantigen as a protein binding to Nrf2 mRNA using LC–MS/MS
based proteomics [31]. Here we address whether de novo Nrf2 protein
translation occurs in an animal model of ischemic reperfusion, and
whether La binding to Nrf2mRNAmediates de novoNrf2 protein trans-
lation in cardiomyocytes in vitro and in vivo.
2. Material and methods

2.1. Ischemia and reperfusion in mice

Male C57BL/6J mice (8–10 weeks old, Harlan) were cared for in
accordance with NIH guideline for laboratory animals. The surgical
protocol was approved by the Institutional Animal Care and Use
Committee. After induction of deep anesthesia with Avertin (2.5%), a
tracheotomy was performed to ventilate animals. Upon exposure of
the pericardium through a left lateral thoracotomy at the third intercos-
tal space, an 8–0 sterile suture was placed underneath the left anterior
descending (LAD) artery 1–3 mm from the tip of the left atrium. Two
ends of the suture were passed through a 1–2 mm PE50 hollow tube
to form a cross so that by pulling two ends of the suture, the tube was
placed perpendicular to the LAD. Ischemia was produced by clamping
the suture against the tube tightly and was evidenced by a visible
blanched area distal to the ligation site. For reperfusion, the suture
was released from the clamps to allow restoration of blood flow. For
ischemic preconditioning, two cycles of 5 min ischemia and 5 min re-
perfusion (2× 5′I/5′R) were performed. The protective effect of precon-
ditioning was determined by permanent LAD occlusion to induce
myocardial infarction following 2× 5′I/5′R.

Toquantify the area-at-risk (AAR), heartswere perfusedwith 1ml of
1% trypan blue via the abdominal aorta catheter following retrograde
perfusion with saline. Upon excision, the hearts were sliced into 1 mm
thick transverse sections. The sections were incubated in 1% 2,3,5-
triphenyl-tetrazolium chloride (TTC) in phosphate buffered saline solu-
tion (pH 7.4) at 37 °C for 30 min. The sections were then fixed in 10%
formalin overnight at 4 °C. Total ventricle area, AAR and infarct area
were quantified from the sections using ImageJ (NIH) planimetry.
When the infarct area was quantified without comparing to AAR, the
left ventricle was sectioned into 5 even transverse slices for incubation
in 1% TTC for 20min at 37 °C followed by fixation in 10% formalin over-
night at 4 °C. Each TTC-stained tissue slice was photographed on both
sides for measurements of infarct areas by computerized planimetry
using NIH image J software [32]. To measure cardiac troponin I (cTnI),
the blood was collected via the abdominal vena cava and subsequently
centrifuged for serum collection, which was used for cTnI measure-
ments using an ELISA kit (Life Diagnostics).
2.2. Western blot analyses

Heart tissues were quickly frozen and later ground into powder in a
liquid nitrogen bath. Tissue lysates in extraction buffer (Cell Signaling
Technology) were centrifuged at 14,000 ×g for collection of superna-
tants. The 5× Laemmli sample buffer [65 mM Tris, pH 6.8, 10% (v/v)
glycerol, 2% (w/v) SDS, with 5% fresh β-mercaptoethanol] was added
to the extracts and boiled for 10-min. After SDS-PAGE, Western blot
was performed using primary antibodies against Nrf2 (ab62352,
Abcam) and secondary antibodies conjugated with horseradish peroxi-
dase for an enhanced chemiluminescence reaction.
2.3. Isolation of RNA associated with ribosomes

The quick frozen left ventricular tissue (~20 mg) was ground in a
liquid nitrogen bath into powder to render it soluble in 1ml of lysis buff-
er (10mMTris–HCl, pH8.0, 150mMNaCl, 5mMMgCl2, 1%Nonidet-P40,
40 mM dithiothreitol, 500 U/ml RNAsin, 1% deoxycholate). After centri-
fugation (12,000 g, 10 s, at 4 °C) to remove nuclei and insoluble debris,
the supernatantswere supplementedwith 0.5ml of 2×extraction buffer
(0.2 M Tris–HCl, pH 7.5, 0.3 M NaCl, 150 μg/ml cycloheximide,
650 μg/ml heparin, and 10 mM phenyl-methyl-sulfonyl fluoride)
for further centrifugation (14,000 g, 10 min, at 4 °C) to removemito-
chondria andmembranous debris. The supernatant was layered onto
a 5 ml linear sucrose gradient (10%–35% sucrose, supplemented with
10mMTris–HCl at pH 7.5, 140mMNaCl, 1.5 mMMgCl2, 10 mMdithio-
threitol, 100 μg/ml cycloheximide, 0.5 mg/ml heparin) and centrifuged
in a SW41Ti rotor (Beckman) at 38,000 rpm, 4 °C for 180min [33]. RNAs
were extracted from ribosomal fractions using Trizol and ethanol
precipitation.
2.4. Real time RT-PCR

Total RNA or ribosome-associated RNA (1 μg) was converted to
cDNA with a Revertaid kit (Fermentas). An equal amount of cDNA
was mixed with SYBR Green Master Mix for real-time PCR in a
CFX96 thermocycler (Bio-Rad) for detection of Nrf2 mRNA using
the primer pair of TCCATTTCCGAGTCACTGAACCCA (forward) and
TGACTCTGACTCCGGCATTTCACT (reverse) with 50 °C for 30 min
followed by 95 °C for 15 min to activate the Taq polymerase, and
then PCR for 39 cycles at 95 °C for 15 s and 60 °C for 60 s. After
PCR, melting curves were acquired by temperature shift from 55 °C
to 95 °C to ensure that a single product was amplified during PCR.
The 18S rRNA was measured in parallel with the primer pair of
TCAACTTTCGATGGTAGTCGCCGT (forward) and TCCTTGGATGTGGT
AGCCGTTTCT (reverse) to demonstrate an equal amount of RNA tem-
plates between samples.
2.5. Cell culture, H2O2 treatment and transfection

Neonatal rat cardiomyocytes were prepared as described [30]. After
seeding at 0.3 × 106 cells per well of 6-well plates or 2.5 × 106 cells per
100-mm dish, myocytes were cultured in low glucose Dulbecco's
modified Eagle's medium (DMEM) containing 10% fetal bovine serum
(FBS) for 3 days before 24-h culture in 0.5% FBS/DMEM and then treat-
ment with 100 μMH2O2 for 10 min. The cells were placed in fresh 0.5%
FBS/DMEM after H2O2 treatment. Forty eight hours before H2O2 treat-
ment, cells were transfected using Fugene 6with a dicistronic luciferase
reporter plasmid, which was constructed with SV40 promoter driven
transcription and 5′ methyl guanine cap driven Renilla luciferase in
front of human Nrf2 5′ UTR and Firefly luciferase [34]. Following H2O2

treatment, Firefly versus Renilla luciferase was measured using a dual
luciferase kit (Promega).
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2.6. Protein pull down by biotinylated RNA

Human Nrf2 5′ UTR (555 nucleotides) was cloned into pJET 1.2
vector for in vitro transcription using T7 polymerase in the presence
of biotin-11-UTP. Gel purified biotinylated RNA of Nrf2 5′ UTR (3 μg)
was incubated with tissue lysates (500 μg proteins) for 1 h at 25 °C.
Bound proteins were isolated with Streptavidin Sepharose beads
(Amersham Biosciences) for analysis by SDS-PAGE and Western blots.

2.7. Ribonucleoprotein immunoprecipitation (RIP)

Endogenous RNA–protein complex was isolated by immunoprecipi-
tation using antibodies against La protein [35]. Proteins were extracted
from cardiomyocytes (10 × 106 cells) or left ventricular tissues (10mg)
with swelling buffer (5 mM HEPES, pH 8.0, 85 mM KCl, 0.5% Nonidet
P-40) for removal of the nuclei. Cytoplasmic extracts were incubated
with Protein A/G plus agarose beads precoated with 3 μg of antibodies
against La protein, or rabbit IgG for controlling nonspecific binding.
“Inputs” represent cytoplasmic extracts without antibody or IgG incu-
bation for Western blot to show equal loading. After protein binding,
the beads were washed 5 times with NT2 buffer (50 mM Tris pH 7.4,
150 mM NaCl, 1 mM NgCl2, 0.05% Nonidet P-40), then incubated at
30 °C with 20 units of RNase-free DNase I in 100 μl NT2 buffer for
15 min. Following washes, proteins in the immunoprecipitates were
digested in 0.5 mg/ml proteinase K at 55 °C for 15 min. RNAs were
extracted from the immunoprecipitates using Trizol with isopropyl
ethanol precipitation for RT-PCR.

2.8. siRNA design and synthesis

The siRNA (TGCTAGAGACAAGTAGTTTATTTAGTA) against mouse
and rat La mRNA was designed with IDT online tools (http://www.
idtdna.com). An oligonucleotide containing T7 promoter sequence
was used for in vitro transcription to produce the siRNA. For transfecting
cardiomyocytes, siRNA (300 pmol for final 300 nM) was mixed with
oligofectamine (Invitrogen, Carlsbad, CA) in the Opti-MEM media for
6 h incubation with cells. At 48 h after transfection, cells were treated
with 100 μM H2O2. To deliver siRNA in vivo, mice were cannulated
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with a PE10 polyethylene tube in the jugular vein and 15 μg of siRNA
in 300 μl PBSwas injected. Ischemic reperfusion surgerywas performed
24 h after siRNA injection.

2.9. Statistical analyses

The statistical difference was determined by 2-tailed Student's t test
when two samples were compared or by one way ANOVA when multi-
ple groups of data were compared.

3. Results

3.1. Nrf2 knockout mice are more sensitive to ischemic reperfusion injury

Nrf2 has been reported as a cytoprotective gene in multiple organs
and tissues. Whether it plays a role in myocardial infarction has not
been determined.We performed LAD coronary artery occlusion surgery
in wild type (WT) littermates or Nrf2 knockout (KO) mice to determine
whether lack of Nrf2 results in an increased myocardial injury. Infarc-
tion size is about 15%of the left ventricle if LAD coronary artery is ligated
for 30 min followed by 24 h of reperfusion [36]. By not inducing the
maximal level of infarct, we can address whether knocking out Nrf2
sensitizes the animals to ischemic reperfusion injury. In our hands,
30 min ischemia followed by 24 h of reperfusion caused an average of
13% infarction in the left ventricle of wild type mice. The same protocol
caused Nrf2 KOmice to havemuch bigger infarct size (Fig. 1A, B). In ad-
dition to an increase in infarct size or infarct size over the area-at-the
risk (AAR, Fig. 1C), serum cardiac troponin I (cTnI) concentration was
measured for quantitative comparison of cardiac injury. The data
show that Nrf2 KO mice had much higher level of cTnI in the blood
(Fig. 1D), indicating worse cardiac injury.

Permanent occlusion of LAD causes about 30% infarction of the left
ventricle in wild type animals [32]. Since this is the maximal level of
cardiac injury for an animal to survive the surgery [32,36,37], this
model allows us to study cardiac protection by ischemic precondition-
ing and test whether Nrf2 KO mice have lost cardiac protection. WT
littermates with 2 cycles of 5 min ischemia and 5 min of reperfusion
(2× 5′I/5′R) showed a marked protection against myocardial infarction
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bypermanent LAD occlusion, resulting in an approximate 50% reduction
in infarct size (15.6 ± 2.4% versus 31.2 ± 7.0%; p b 0.001, Fig. 2A, B).
Significant reduction in blood cTnI levels provides additional measure-
ments of cardiac protection by 2× 5′I/5′R in WT mice (Fig. 2C). In con-
trast, 2× 5′I/5′R did not elicit as much protective effect in Nrf2 KO
mice, as measured by infarct size and blood cTnI, compared to WT
mice (Fig. 2). The average infarct size of Nrf2 KO mice with precondi-
tioning was not significantly different from that without precondi-
tioning (28.5 ± 7.6% versus 31.2 ± 7.0%; p N 0.5). These data
support that Nrf2mediates cardiac protection as measured by ischemic
preconditioning.
3.2. Brief cycles of I/R caused elevation of Nrf2 protein

Previous works from our laboratory found that oxidative stress
causes de novo Nrf2 protein translation at the cellular level [30,31]. To
address whether such stress induced Nrf2 protein translation occurs
in vivo, we measured Nrf2 protein levels in the myocardium following
ischemic reperfusion,which is known to induce oxidative stress. Biolog-
ical relevant Nrf2 is detected at 95–110 kDa by Western blot following
denaturing SDS-gel electrophoresis [38]. With 2× or 4× 5′I/5′R, rapid
elevation of Nrf2 proteinwas detectable with whole heart tissue lysates
(Fig. 3A). When the ischemic region was dissected from the non-
ischemic region after Evan's blue perfusion, elevated Nrf2was observed
in the ischemic region and the border zone (Fig. 3B). Severe ischemia
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not cause Nrf2 protein elevation (data not shown).

To demonstrate that rapid increase of Nrf2 protein resulted from
de novo protein translation in the myocardium, we measured the
association of Nrf2 mRNA with ribosomes. When an mRNA strand
is being translated, it is occupied with multiple ribosomes. Ribo-
somes were isolated by sucrose gradient ultracentrifugation from
the heart tissue after sham operation, and 2× or 4× 5′I/5′R for mea-
surements of Nrf2 mRNA. With total heart tissue lysates, 2× or 4× 5′
I/5′R did not cause an increase in Nrf2 mRNA, eliminating transcrip-
tion as a cause of Nrf2 protein increase (Fig. 3C). Increased Nrf2
mRNA was found in ribosomal fractions from hearts with 2× or 4×
5′I/5′R (Fig. 3C), supporting de novo Nrf2 protein translation
occurred in the ischemic area.

Nrf2 is a transcription factor regulating the expression of genes
containing ARE in the promoters [27,39]. To address whether
elevated Nrf2 protein is functional, we measured the transcripts
of Nrf2 downstream genes. Nrf2 gene contains an ARE in the pro-
moter and has been shown to undergo self regulated transcription
[40]. Increases of Nrf2 mRNA were observed at 4, 12 and 24 h after
2 cycles of 5′I/5′R (Fig. 4B). In the early time point when Nrf2
protein was first elevated, Nrf2 mRNA remained unchanged
(Fig. 4A, B), again supporting de novo Nrf2 protein translation in
the absence of transcription in the early time points. Two additional
ARE containing genes were measured: HO-1 and GCLC, both of
which showed elevated transcripts in later time points (Fig. 4C, D).
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Therefore elevated Nrf2 protein appears to be functional as a
transcription factor.

3.3. La protein binds to Nrf2 mRNA in cardiomyocytes

Genes that undergo stress induced protein translation often harbor
IRES in 5′ UTR [2–5]. Human Nrf2 gene encodes an mRNA species con-
taining 555 nucleotides of 5′ UTR with 70% sequence being G or C,
which contributes to formation of a “stems and loops” secondary struc-
ture typical of IRES based on the prediction by Zucker'sMFold algorithm
(Fig. 5). An IRES interactswith its trans-acting factors (ITAFs) to regulate
protein translation under stress conditions [5,6]. In order to test that
Nrf2 5′ UTR plays a role in stress induced Nrf2 protein translation, we
cloned the sequence of Nrf2 5′ UTR into a dicistronic vector with two
luciferases: SV40 promoter and 5′ m7GpppN driven Renilla luciferase
in front of Nrf2 5′UTR regulated Firefly luciferase [34]. The Renilla lucif-
erase corrects for transcription rate and general translation, whereas
Firefly luciferase activity reflects Nrf2 5′ UTR driven translation. We
used primary cultured cardiomyocytes to test the activation of Nrf2 5′
UTR by oxidative stress, since it is possible to transfect the cells
with the reporter construct. Treatment of 100 μM H2O2 caused rapid
elevation of Nrf2 protein in cultured cardiomyocytes (Fig. 6A).
Measurements of Nrf2 mRNA in ribosomal fractions indicate that
H2O2 caused an increased association of Nrf2 mRNA with ribosomes
(Fig. 6B). When the dicistronic reporter construct was transfected into
cardiomyocytes, a dose and timedependent elevation of Firefly luciferase
was observed (Fig. 6C, D), indicating a role of Nrf2 5′UTR in Nrf2 protein
translation.

Using LC–MS/MS based proteomics, we have found La autoantigen
as a protein binding to Nrf2 mRNA [31]. With myocardial tissue lysates,
a protein bound to Nrf2 5′ UTR at themolecular weight equivalent to La
autoantigen was found following 2× 5′I/5′R (Fig. 7A). In vitro biotinyl-
ated Nrf2 5′UTR binding assay using tissue or cell lysates demonstrated
that La indeed increased binding to Nrf2 5′ UTR in response to 2× 5′I/5′
R in the myocardium (Fig. 7B) or to H2O2 treatment in cardiomyocytes
(Fig. 7C). Ribonucleoprotein complex immunoprecipitation (RIP) assays
allowed us to demonstrate protein–RNA interaction indeed occurring at
cellular or organismic levels. This assay utilizes antibodies against La
autoantigen for immunoprecipitation using cell lysates or myocardial
tissue lysates, and measures Nrf2 mRNA by RT-PCR using the
immunocomplex of La protein. This approach has led to the finding
that 2× and 4× 5′I/5′R in the myocardium caused an increased asso-
ciation of La with Nrf2 mRNA (Fig. 7D). With H2O2 treatment in
cardiomyocytes, a dose dependent La association with Nrf2 mRNA
was observed (Fig. 7E).
3.4. La protein mediates de novo Nrf2 protein translation

To demonstrate that La autoantigen indeed regulates Nrf2 protein
translation, we used an RNA interference strategy to reduce La protein
expression. With cardiomyocytes in culture, Nrf2 protein was induced
with H2O2 treatment in cells transfected with the negative control, i.e.
a scrambled RNA sequence (Fig. 8A). With siRNA against La, transfected
cardiomyocytes showed reduction of La protein and corresponding
inhibition of H2O2 induced Nrf2 protein (Fig. 8A). The siRNA also
blocked La interaction with Nrf2mRNA asmeasured by in vitro binding
to biotinylated Nrf2 5′ UTR and RIP assays (Fig. 8B & C). Measurements
of Nrf2 5′ UTR activity using cardiomyocytes transfected with the
dicistronic reporter construct also indicated an inhibitory effect of La
siRNA against H2O2 induced activation (Fig. 8D).

When siRNA was delivered in vivo, we found an approximate 60%
reduction of La protein in the myocardium after a bolus injection of
siRNA via the jugular vein (15 μg, ~500 μg/kg, Fig. 9A). Compared to
the effect of 2× 5′I/5′R on elevation of Nrf2 protein, mice with La
siRNA failed to elevate Nrf2 protein in the myocardium (Fig. 9B).
These results demonstrate that La autoantigen was a key factor for
regulating Nrf2 protein translation.
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4. Discussion

This study reveals that Nrf2 KOmice have an increased sensitivity to
ischemic injury. Nrf2 protein elevation correlates with cardiac protec-
tion by ischemic preconditioning. We found that 2× or 4× 5′I/5′R
caused elevation of Nrf2 protein likely through de novo translation in
the myocardium. An increase of La protein binding to Nrf2 5′ UTR
appeared to mediate oxidant or I/R induced de novo Nrf2 protein trans-
lation in cardiomyocytes or the myocardium. Since Nrf2 controls the
transcription of a cluster of antioxidant and detoxification genes, de
novo translation of Nrf2 protein constitutes an effective measure for
rapid activation of endogenous defense.

Infarct size quantification and blood cTnI measurements indicate
that Nrf2 KO mice have reduced but not completely abolished pro-
tection by ischemic preconditioning. Our data are consistent with
the literature suggesting the cardiac protective function of Nrf2 [37,
41–44]. How Nrf2 protects the myocardium from tissue injury
remains to be addressed. The protective effect of ischemic precondi-
tioning is observed in two phases: early phase, immediately after
cycles of brief ischemic reperfusion, and late phase, typically 24 h
after the initial episode of brief ischemia [45]. The time course
studies of Nrf2 and its downstream genes suggest that Nrf2 may
participate in both early and late phases of preconditioning induced
cardiac protection.
Induction of Nrf2 protein is unlikely the sole mechanism of cardiac
protection by ischemic preconditioning. In addition to elevated oxidant
generation, ischemic reperfusion causes increases in reactive nitrogen
species, profound changes in energy metabolism and altered ionic
homeostasis. These biochemical events may trigger cellular defense
mechanisms in addition to Nrf2. The classic view of the mechanism of
cardiac protection by preconditioning includes release of adenosine,
bradykinin, endothelin and endorphins. Some of these factors activate
survival signal pathways following binding to G-protein coupled recep-
tors on cell surface, including phosphoinositide 3 kinase (PI3K)/Akt,
ERK1/2, and protein kinase C [46–48]. PI3K/Akt, p38 MAPK and protein
kinase C have been suggested to promote Nrf2 expression and nuclear
translocation [43,49]. Activation of HIF-1 and NF-kB transcription
factors, and elevated expression of inducible nitric oxide synthase
(iNOS), manganese superoxide dismutase, heat shock proteins and
cyclooxygenase-2 also mediate the cardiac protective effect of precon-
ditioning [50–53]. Among the genes under the control of Nrf2, HO-1 is
also a downstream target of the redox sensing transcription factor
HIF-1 [54,55]. Overexpression of HO-1 alone in the myocardium via a
genetic approach is sufficient for cardiac protection [56]. In parallel
with protective roles of individual genes, preserving mitochondrial
integrity and function appears to be a key event in preconditioning
induced cardiac protection [57]. Therefore Nrf2 governed pathway is
one among several parallel or cross-talking pathways contributing to
cardiac protection.

Most importantly, our data here suggest that stress induced protein
translation occurs in experimental animals. Yeast and cell lines have
been typically used to demonstrate selective protein translation under
stress. IRES in 5′ UTR enables translation initiation of selective proteins,
bypassing the global decline of protein translation by 5′ m7GpppN cap
dependent mechanism [2–5]. IRES mediated protein translation was
first discovered with viral proteins, and is heavily studied in cell lines
during viral infection. About 50 cellular genes have now been reported
to undergo IRES mediated translation. Examples of these genes include
c-myc, c-Jun, HIF-1α, p27/Kip1, Apaf1, bcl-2, XIAP and GRP78 (http://
ifr31w3.toulouse.inserm.fr/iresdatabase). It is commonly thought that
IRES sequences are GC rich, a feature essential for formation of second-
ary structures containing “stems and loops”. The sequence of Nrf2 5′
UTR fits this characteristics (Fig. 5). Transfection experiments with the
dicistronic reporter construct support Nrf2 5′ UTR indeed containing
an IRES. Since over 50% of cellular ATP is utilized for general protein
translation and ATP synthesis is impaired during stress, selective pro-
tein translation serves to conserve energy [2]. Evolutionarily, selective
protein translation has the advantage of increasing the ratio of the pro-
teins necessary for dealing with stress.

An IRES recruits ITAFs, which promote the binding of eIFs and ribo-
somes for translation initiation. With Nrf2 5′ UTR, we have found that
La protein acts as an ITAF responding to oxidants or brief cycles of I/R
by turning on Nrf2 protein translation. The La protein was first discov-
ered as an autoantigen in 20–30% of lupus patients or 60% of patients
with Sjögren's syndrome, and is therefore named Sjögren's syndrome
antigen B [58]. This protein is encoded by a gene well conserved
among eukaryotes, and contains two RNA recognition motifs. Isolation
of ribonucleoprotein complex with antibodies specific to La revealed
the binding of La to a large variety of RNA species [58]. Newly synthe-
sized transcripts from RNA polymerase III, including ribosomal RNA
and tRNA, appear to bind to La at their common UUU-3′ OH end in the
nuclei [59]. Such interaction contributes to nuclear retention and
protection against nuclease digestion of the nascent transcripts.
Cytoplasmic La protein binds to 5′-UTR terminal oligopyrimidine
track (5′-TOP) and activates translation of mRNAs containing 5′-
TOP, which encode ribosomal proteins and translation elongation
factors [60]. In the cytoplasm, La regulates translation of viral pro-
teins and a few cellular proteins through binding to IRES [58,61,
62]. La protein has been reported to be phosphorylated, acetylated
or sumoylated. Immunoassays including 2-D Western blot have not
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revealed alteration of these posttranslational modifications with
H2O2 treatment (data not shown). Therefore although we have
found a role of La in oxidative stress induced Nrf2 protein translation,
how oxidative stress causes an increased binding of La to Nrf2 5′ UTR
remains to be investigated.
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