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a b s t r a c t

The immersed boundary method is a practical and effective method for fluid–structure
interaction problems. It has been applied to a variety of problems. Most of the time-
stepping schemes used in the method are explicit, which suffer a drawback in terms of
stability and restriction on the time step. We propose a lattice Boltzmann based implicit
immersed boundary method where the immersed boundary force is computed at the
unknown configuration of the structure at each time step. The fully nonlinear algebraic
system resulting from discretizations is solved by an Inexact Newton–Krylov method in a
Jacobian-free manner. The test problem of a flexible filament in a flowing viscous fluid
is considered. Numerical results show that the proposed implicit immersed boundary
method is much more stable with larger time steps and significantly outperforms the
explicit version in terms of computational cost.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The immersed boundary (IB)method is a very practical and effectivemethod for solving problemsof interactions between
fluids and elastic structures. It was initially developed by Peskin to model and simulate blood flow in the human heart [1,2].
Since then it has been applied to a variety of problems, such as deformation of red blood cells [3], platelet aggregation in
blood clotting [4], swimming of bacteria and sperm [5,6], waving motions of cilia [7], and insect flight [8]. For an extensive
list of applications, see the references [9,10]. In an IB method, the fluid equations are discretized on a fixed Eulerian grid
over the entire domain; the immersed boundary is discretized on amoving Lagrangian array of points that contribute to the
force term in the fluid equations. The interaction of the fluid and the elastic structure is carried out through the Dirac delta
function [9]. Thus, the IB method is very powerful in terms of computational efficiency, regardless of the geometry of the
structure.
There exist other methods in the literature that are closely related to the IB method. The immersed interface method,

a variant of the IB method, was developed by LeVeque and Li to address the first-order accuracy in the IB method for the
problems with sharp interfaces [11,12]. The IB method also shares some features in common with the Fictitious Domain
(FD) method for fluid–particle interactions in which the flow computation is done on a fixed space domain, and the rigid
body motion for the particle is enforced through a Lagrange multiplier in the equations [13]. We refer the reader to [13–16]
for the FD method and its applications.
Inspired by application needs, various versions of the IB method have been developed. In addition to the original

versions [1,2,17–19], there exist the vortex-method version [20], the volume-conserved version [21,22], the adaptive mesh
version [23], the (formally) second-order versions [24–26], the multigrid version [27,10], the penalty version [28], and the
stochastic version [29,30]. Most of the time-stepping schemes in the IB methods in the literature are explicit where the
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elastic force is calculated on the known configuration of a structure at each time step. An explicit IB method results in a
severe restriction on the time step [9,31]. The dimensionless time step was of the order of 10−4 in the work [27,10,32,33].
The author in [34] reported that the dimensional time step for the 3D applicationwas taken as small as the order of 10−8 (s).
To overcome the stiffness in the explicit IBmethod,much effort has beenmade in recent years to develop implicit or semi-

implicit IB methods [11,35–42]. Wang presented an iterative matrix-free implicit immersed boundary/continuum method
by using finite element formulations [42]. Mori and Peskin developed implicit second-order IB methods with boundary
mass and compared their implicit methods with explicit ones [40]. Newren et al. compared several implicit solvers for
their schemes in terms of computational costs [41]. Hou and Shi proposed an efficient semi-implicit scheme to remove
the stiffness of the IB method [39]. The authors in [40,41] reported that implicit IB methods sometimes are actually more
computationally expensive than the explicit methods. As pointed out by the authors in [39], so far the computational cost of
using implicit IB methods is still too high to be effective for any practical computations. One possible reason may be solving
the viscous incompressible Navier–Stokes (N–S) equations in the implicit IB methods is too costly.
As a first step to develop a practical implicit 3D IB method, we present a lattice Boltzmann (LB) based implicit immersed

boundarymethod for fluid–structure-interaction problems. The LBmethod is an alternative approach for solving the viscous
incompressible Navier–Stokes equations. It is second order accurate in both time and space, and is very computationally
efficient, especially for 3D problems [43–45]. As expected the LB approach significantly reduces the computational cost in
solving the N–S equations which renders the implicit IB method appropriate for practical computations. In our implicit IB
method, the elastic force is based on the unknown configuration of the structure at next time step, instead of on the current
known configuration. Consequently a highly nonlinear algebraic system needs to be solved after discretizations. We use a
Jacobian-free Inexact Newton–Krylov method to solve the nonlinear system. The numerical results show that our implicit
IB method is very stable with larger time steps, and outperforms the corresponding explicit version for the test problem in
terms of computational cost.
This paper is organized as follows. In Section 2, we give mathematical formulation for the LB/IB method. In Section 3, we

propose an implicit scheme and briefly describe the numerical solvers. In Section 4, we present the numerical results for the
test problem. In Section 5, conclusions are drawn.

2. Mathematical formulation by the LB/IB method

2.1. The LB/IB formulation

Consider an elastic structure in a viscous incompressible fluid flow. Choosing appropriate reference quantities for length,
velocity and mass density, our lattice Boltzmann IB formulation for general fluid–structure interaction is formulated in
dimensionless form as follows:

∂g(x, ξ, t)
∂t

+ ξ ·
∂g(x, ξ, t)

∂x
+ f(x, t) ·

∂g(x, ξ, t)
∂ξ

= −
1
τ
(g(x, ξ, t)− g(0)(x, ξ, t)), (1)

Eq. (1) is the Bhatnagar–Gross–Krook (BGK) equation [46] which is used to describe the motion of both the fluid
and the immersed boundary. The function g(x, ξ, t) is the single particle velocity distribution function, where x is the
spatial coordinate, ξ is the particle velocity, and t is time. g(x, ξ, t)dxdξ represents the probability of finding a particle at
time t located in [x, x + dx] moving with a velocity between ξ and ξ + dξ. The term − 1

τ
(g − g(0)) is the well-known

BGK approximation to the complex collision operator in the Boltzmann equation, where the τ is the relaxation time
(dimensionless). It is connected to the fluid kinematic viscosity ν (dimensionless) in the LBM. The g(0) is the Maxwellian
distribution. The external force term f(x, t) = fib(x, t) + fext(x, t). The fib(x, t) is the force imparted by the immersed
boundary to the fluid. The fext(x, t) is other external forces acting on the fluid, e.g. the gravity. The macroscopic variables
such as fluid mass density (ρ) and momentum (ρu) can be computed from the velocity distribution function g via Eqs. (2)
and (3).

ρ(x, t) =
∫
g(x, ξ, t)dξ, (2)

(ρu)(x, t) =
∫
g(x, ξ, t)ξdξ. (3)

The Eulerian force density fib(x, t) defined on the fixed Eulerian lattice is calculated from the Lagrangian force density
F(α, t) defined on the Lagrangian grid by Eq. (4). See the Reference [9].

fib(x, t) =
∫

F(α, t)δ(x− X(α, t))dα (4)

where the function δ(x) is the Dirac δ-function. The Lagrangian force density F is computed as follows:

F(α, t) = −
∂E

∂X
= −

∂(Es + Eb)

∂X
. (5)
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Fig. 1. D2Q9 lattice model.

In Eq. (5) the elastic potential energy density (E ) generated by stretching/compression (Es) and bending (Eb) are defined
by Eqs. (6) and (7), respectively.

Es =
1
2
Ks

∫ (∣∣∣∣∂X∂α
∣∣∣∣− 1)2 dα (6)

Eb =
1
2
Kb

∫ ∣∣∣∣∂2X(α, t)∂α2

∣∣∣∣2 dα. (7)

In the above formulation for Es and Eb we assume that the immersed boundary is an elastic fiber. For other immersed
boundaries, similar integrals are used for computing the elastic potential energy. The energy density E = Es + Eb. The
constant Ks is the stretching/compression coefficient and constant Kb is the bending rigidity. Both constants are related to
the Young’s modulus of the structure.
The motion of the immersed structure is described by a system of first-order ordinary differential equations, Eq. (8).

∂X
∂t
(α, t) = U(α, t). (8)

The X(α, t) is the Eulerian coordinate of the immersed structure at time t whose Lagrangian coordinate is α. The
immersed boundary velocityU(α, t) is interpolated from the fluid velocity u(x, t) by the same δ-function as used to convert
the force from the boundary to the fluid. See Eq. (9).

U(α, t) =
∫

u(x, t)δ(x− X(α, t))dx. (9)

Although the Eqs. (6) and (7) are formulated for an elastic fiber, the above lattice Boltzmann IB formulation is generic
and applicable to any immersed boundaries. It remains the same for any discretization, explicit or implicit.

3. An implicit immersed boundary method

We consider the 2D case. In order to compare the stability and the computational cost, we first introduce the explicit
version of the LB/IB method. Also it will make the presentation of the implicit LB/IB method more convenient.

3.1. Explicit discretization

The above nonlinear system of differential-integral equations (Eqs. (1)–(9)) is discretized on a uniform fixed Eulerian
square lattice for the fluid with the uniform mesh width h (the number of grid nodes is Nx and Ny in x and y directions,
respectively), plus a collection ofmoving Lagrangian discrete points for the immersed boundarywithmeshwidth1α ' 1

2h.
The D2Q9 model is used to discretize the BGK equation Eq. (1) (see Fig. 1). In the D2Q9 model particles impinging and
exiting at each lattice node can move along 8 different directions. They are also allowed to stay together with rest state at
the node. Thus, the particle velocity space ξ is discretized by a finite set of 9 velocities. The discrete velocity can be written
as ξ0 = (0, 0), ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (−1, 0), ξ4 = (0,−1), ξ5 = (1, 1), ξ6 = (−1, 1), ξ7 = (−1,−1), and
ξ8 = (1,−1).
Let gj(x, t) be the distribution function along ξj. A second-order space and time discretization in a Lagrangian coordinate

system is applied to derive the lattice Boltzmann equation (LBE) that advances gj(x, t) forward by one step

gj(x+ ξj, t + 1) = gj(x, t)−
1
τ
(gj(x, t)− g0j (x, t))+

(
1−

1
2τ

)
wj

(
ξj − u
cs2
+

ξj · u
cs4

ξj

)
· f. (10)
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Here cs = c/
√
3 is speed of sound of the model, and c is the lattice speed which is as follows for the D2Q9 model: c = 0

for j = 0; 1 for j = 1, . . . , 4;
√
2 for j = 5, . . . , 8.

In this model, the relaxation time τ is related to the dimensionless fluid viscosity ν by the equation ν = 2τ−1
6 . We treat

the external forces in Eq. (10) in a similar way to that proposed by Guo et al. in [47]. It can be proved that this treatment is
more accurate than the one used in the IB-LBM [48,49]. Here the fluid velocity u, forces fib and fext are evaluated at time t .
The macroscopic variables such as density ρ(x, t) and momentum ρu(x, t) are related to the gj(x, t) at each node by

ρ(x, t) =
∑
j

gj(x, t), (11)

(ρu)(x, t) =
∑
j

ξjgj(x, t)+
f(x, t)
2

. (12)

For an isothermal fluid, the equilibrium distribution function g0j (which is a function of ρ and u) in the D2Q9 model is
given by

g0j (x, t) = ρ(x, t)wj
(
1+ 3ξj · u(x, t)+

9
2
(ξj · u(x, t))

2
−
3
2
u(x, t) · u(x, t)

)
(13)

wherewj is the weight, which takes the values:wj = 4/9 for j = 0; 1/9 for j = 1, . . . , 4;1/36 for j = 5, . . . , 8.
The bounce-back scheme is used to model the no-slip boundary condition for a fixed rigid wall. Notice that no special

treatment for the freely-moving immersed flexible boundary is needed on the LBM part. It is handled by the IB method
through the immersed boundary force. The LBE ‘‘feels’’ the existence of the immersed flexible boundary through the force.
The duration of the time step is set to 1 in the LBM. Let n be the time step index: gn = g(x, ξ, n), Xn(α) = X(α, n),

un = u(x, n), pn = p(x, n), ρn = ρ(x, n). Let each fiber be represented by a discrete collection of points whose Lagrangian
coordinate is α. Let α = m1α, where m is an integer. The ‘‘half-integer’’ points are given by α = (m + 1/2)1α. For any
function φ(α), let

(Dαφ)(α) =
φ(α + 1α

2 )− φ(α −
1α
2 )

1α
. (14)

Then the stretching energy and the corresponding force are discretized as the following:

Es =
1
2
Ks
∑
m

(|Dαx| − 1)21α =
1
2
Ks
nf−1∑
m=1

(
|Xm+1 − Xm|

1α
− 1

)2
1α (15)

(Fs)l =
Ks

(1α)2

nf−1∑
m=1

(|Xm+1 − Xm| −1α)
Xm+1 − Xm
|Xm+1 − Xm|

(δml − δm+1,l). (16)

Here (Fs)l, l = 1, 2, is the component of Fs along the l direction. The bending energy and the corresponding force are dis-
cretized as follows:

Eb =
1
2
Kb
∑
m

|DαDαX|21α =
1
2
Kb
nf−1∑
m=2

[
|Xm+1 + Xm−1 − 2Xm|2

(1α)4

]
1α (17)

(Fb)l =
Kb

(1α)4

nf−1∑
m=2

(Xm+1 + Xm−1 − 2Xm)(2δml − δm+1,l − δm−1,l). (18)

Here (Fb)l, l = 1, 2, is the component of Fb along the l direction; nf is the total number of grid points of the fiber, the δkl
is the Kronecker symbol.
Note that the total Lagrangian force density F(α, t) = Fs(α, t) + Fb(α, t). The two integral relations can be discretized

as follows:

fnib(x) =
∑
α

Fn(α)δh(x− Xn(α))1α (19)

Un+1(α) =
∑
x

un+1(x)δh(x− Xn(α))h2. (20)

Here the notation
∑

α means the sum over all the discrete collection of points (sum over all discrete points of a fiber
in the form α = m1α, where m is an integer). The notation

∑
x means the sum over all the discrete points of the form
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x = (ih, jh), where i, and j are integers, h is the mesh width. The δh is a smoothed approximation of the Dirac δ function. In
the IB method, the δh is written in the following form:

δh(x) = h−2ψ
( x
h

)
ψ
( y
h

)
(21)

where h is the mesh spacing, x = (x, y), and ψ is chosen as:

ψ(r) =

{1
4

(
1+ cos

(πr
2

))
, if |r| ≤ 2

0, otherwise.

Note that the support of δh is a square with width 4h at each discrete fiber point. With Un+1(α) known from Eq. (20), the
structure motion equations are discretized as follows:

Xn+1(α) = Xn(α)+ Un+1(α). (22)

An explicit version of LB/IB scheme is summarized as follows.
Given the values of all variables at time step n, then:

(1) compute elastic force Fn+1 from Xn by Eqs. (16) and (18),
(2) spread the Lagrangian force density Fn+1 onto fluid lattice by Eq. (19),
(3) compute particle collision, i.e. calculate 1

τ
(g − g0) in Eq. (10) via equilibrium velocity distribution from Eq. (13),

(4) update velocity distribution function via streaming and external forcing by Eq. (10),
(5) compute new fluid velocity un+1 from Eqs. (11) and (12),
(6) interpolate velocity of the immersed boundary Un+1 from the velocity un+1 of the ambient fluid by Eq. (20),
(7) finally, update the configuration of the immersed boundary (i.e. computing Xn+1(α)) via Eq. (22).

3.2. An implicit scheme

The general idea of our implicit scheme is as follows: Suppose all variables are known at a discrete time step indexed by
n, and we want to compute the values of variables at next time step n+ 1. In an explicit method, the IB force fib is computed
from the known configuration of the immersed structure at previous time step n. In an implicit method, fib is computed
from the unknown configuration at next time step n + 1. This results in a large-scale highly nonlinear system of algebraic
equations as follows. Let F denote the operator acting on the configuration X(α, t + 1) to produce the Lagrangian elastic
force density, S denote the spreading operator of Lagrangian force density to fluid lattice,L denote the operator to advance
the velocity distribution function from n to n+1,U denote the operator to recover fluid velocity from distribution function,
I denote the operator to interpolate the immersed boundary velocity from the fluid, then the nonlinear algebraic equation
system (after gn+1 is eliminated) for advancing the solutions from n to n+ 1 is given by (note the time step size1t is 1)

IULSF Xn+1 =
Xn+1 − Xn

1t
(23)

Note that the particle velocity distribution functions are eliminated and only the unknown Xn+1 is present in the above
system of nonlinear algebraic equations. Still the above nonlinear system is very complex, and the Jacobian of the system
is not available. A Jacobian-free Newton–Krylov (JFNK) method is applied to solve the nonlinear system (23). The Krylov
method we use here is the GMRES (Generalized Minimal Residual Method). It is used to solve the linear system at each
Newton’s step for updating the correction to the solution of the nonlinear system. Also note that the implicit IB scheme we
propose here is similar to the one in [40]. The major differences are: (1) the LB method is used for solving the N–S equations
in our work while a conventional approach was used in [40]; (2) the JFNK is used to solve the discrete nonlinear algebraic
systems while the DFFT (Discrete Fast Fourier Transform) was used to solve the linearized discrete system.

3.3. Implementation of the implicit IB method

The above formulation (23) of the implicit IB method via the lattice Boltzmann approach is generic: it remains the same
for both two and three dimensions (in space). The only difference is that the dimensions of the unknown vector X (i.e. the
configuration of the immersed structure) depending on the specific structure of the immersed object is usually smaller in
2D than in 3D (in space). To test and validate our implicit IB method, the implementation in FORTRAN has been done in the
case of two dimensions (spatial) first.
Consider a nonlinear algebraic system:

F(u) = 0, F : RN → RN (24)

which is an abstraction of the nonlinear system resulted from our implicit IB method, i.e. Eq. (23). A well tested and widely
used existing software package SUNDIAL, specifically the subroutine KINSOL [50] is used to solve the nonlinear system (24).
KINSOL was written in C, but provides the FORTRAN 77 interface FKINSOL which was used in our applications.
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One feature of the nonlinear system solver KINSOL is that it employs the Inexact Newton’s method developed by Brown
and Saad in 1990 [51] which results in the following iteration:
Inexact Newton iteration

1. Given an initial guess u0
2. For n = 0, 1, 2, . . . until convergence do:
(a) Solve J(un)δn = −F(un)
(b) Set un+1 = un + δn
(c) Test for convergence.

Here J is the Jacobian of the nonlinear system. The second feature is that the linear iterative method during each Newton’s
step is the Krylov method GMRES [52]. The linear solver is by default applied in a matrix-free manner, with (Jacobian)
matrix–vector products obtained by a finite difference quotient of the form:

J(u)v ≈
F(u+ σv)− F(u)

σ
, (25)

where u is the current solution, and σ is a scalar, appropriately chosen to minimize numerical error, v is any vector to be
multiplied to J(u).
In our numerical simulations, the stopping tolerance for Newton’s method is either ‖F‖L2 ≤ 10

−20 or ‖δn‖L2 ≤ 10
−5.

Here F is the nonlinear function in Eq. (24), δn is the correction toNewton’s step. ThemaximumKrylov subspace dimension is
10. The number of Newton’s iterations is around 3–4 and the number of linear iterations is around 3–9. The solver appears
to be quite efficient without a preconditioner in our test/trial problem. Perhaps this is because it is used for each lattice
Boltzmann time step whose physical time step is relatively small compared to the dimensionless time step size 1.0 in the
LB units. The largest dimensionless physical time step (in contrast with the lattice Boltzmann time step 1) of the implicit
IB method is 0.0178, for the problem with Reynolds number Re = 122 on lattice size 64 × 128. If even greater physical
time step is desired (when the accuracy is not a concern), more iterations (both Newton’s and the GMRES’) are needed. An
approximate diagonal matrix as right preconditioner did not expedite the convergence much. A proper preconditioner may
be needed to speed up the convergence in this case. Given the fact that the dimensionless time step size was on the order of
10−4 in several versions of the IBmethod used by the author while the implicit IBmethod by the lattice Boltzmann approach
is able to take1t = 1.78× 10−2. This is a big step forward.
After Xn+1 is known, the velocity un+1 can be computed by

un+1(x, t) = ULSF Xn+1.

Thus the solution is advanced forward by one step from n to n+ 1.

4. Numerical results

4.1. Test problem

We consider a flexible (massless) filamentwith its upper tip fixed interactingwith a flowing viscous fluid in a rectangular
domain. The fluid flows from top to bottom. The filament is initially placed in a fixed angle (see Fig. 2), and is carried away
by the flowing-by fluid. Because the upper end is fixed, the filament oscillates sideways for a period of time before it settles
down to an equilibrium state (just as an elevated free pendulum reaches a static state after oscillation for some time, but the
filament is flexible in our case). The parameters used here are given below. The fluid domain is [0, 0.09]×[0, 0.18] (m2); the
length of the filament is 0.0165 (m); the inflow velocity is−2 (m/s). The kinematic viscosity ν (dimensionless) is 2.7×10−4.
The constant K̂b for bending is 0.01; K̂s for stretching is 5.0; K̂st for the virtual fixed end is 117.335. The Reynolds number Re
is 122.

4.2. Validation of the implicit IB method

(a) Qualitative. Fig. 2 plots the positions of the filament immersed in the fluid for several instants, where the dashed curve
indicates the filament approaching the equilibrium at t = 22. The filament approximately pointed to the flow direction, as
pointed out in the paper [10]. Fig. 3 shows the vorticity contours for different Reynolds numbers: Re = 122 on the left panel
and Re = 611 on the right panel at time t = 22. The lattice is 128× 256. Notice that more intensive vortex shedding is seen
for the Re = 611 case than the Re = 122 case, and the boundary layer on the two side walls are substantially thinner in
the higher Reynolds number case (because the thickness of the boundary layer is proportional to 1

√
Re
). All these results are

physically correct and in agreement with those in the literature [10,27].
(b) Quantitative. We use three different lattices 128 × 256, 256 × 512, and 512 × 1024 for the convergence test. The

physical time step size is halvedwhen the spatial gridwidth is halved. All the dimensionless parameters are kept the same on
the three lattices. The corresponding relaxation time τ (dimensionless) is 0.530, 0.560, and 0.620, respectively. The filament
mesh width 1α (dimensionless) is approximately 0.5. So there are 48, 95, and 189 total Lagrangian discrete points for
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Fig. 2. Filament position versus time on a 128× 256 lattice. Positions of the filament immersed in the fluid at several instants; the dashed curve indicates
the filament approaching the equilibrium at t = 22.
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Fig. 3. Vorticity contours for a filament immersed in the fluid for Re = 122 (left) and Re = 611 (right) at t = 22. The lattice size is 128 × 256 and the
dimensionless physical time step1t = 0.0022.

the filament on the three lattices, respectively. The time step 1t for the lattice 128 × 256 is 0.0022 (dimensionless). We
should point out that the (nearly) maximum time step 1t for the above lattice to maintain the stability can be as large
as 0.0089 (dimensionless). The free end of the filament is a special and important point for the simulation. Fig. 4 shows
the x-component Vx and y-component Vy of the velocity (dimensionless) of the free end of the filament versus time for
the three lattices. The figure shows that the velocity of the free end is convergent in both space and time. Both velocity
components Vx and Vy change quickly during the early stage of the interaction; the change of the velocity is damped after
t = 1.1; both velocity components become almost zero after t = 4.4. There are some minor oscillations when t is between
11 and 14.3. Fig. 5 shows two velocity profiles at t = 22 for different lattices at y = 1.0 and y = 1.75, when the filament
is at equilibrium. The velocity profile Vy(x, 1.0) includes a fluid–filament-interaction region, while the profile Vy(x, 1.75)
represents the velocity field essentially without such an interaction (far away from the filament vertically). In both locations
the Vy is convergent in space.
We computed the ratio ‖u4h−u2h‖2

‖u2h−uh‖2
to estimate the order of convergence for the implicit IB method, where h refers to the

maximummesh size. For the lattice 512× 1024, the mesh size h = 1/512. The calculated estimates of the order of conver-
gence based on different mesh steps are given in Table 1. The estimated order of convergence for h = 1/512 is 0.96, while
the estimated order for h = 1/256 is 1.52. It indicates that our implicit numerical method converges and it is first order due
to the fluid–filament interaction, although the lattice Boltzmann method itself is second order accurate in both space and
time for solving the Navier–Stokes equations. The first order of convergence is expected for our test problem because of the
singularity inherited in the IB formulation for a 1D immersed boundary in a 2D flow.
We have done numerous simulations with larger time steps for the test problem to check the stability. Our proposed

implicit IB method is much more stable than the corresponding explicit version. For the test problem with Re = 122 and
lattice size 256× 512, the (nearly) maximum time step1t for the explicit method is around 1.39× 10−4 (dimensionless),
while the (nearly)maximum time step1t for the proposed implicitmethod is around 4.44×10−3 (dimensionless). The time
step of the implicit method for this case is 30 times larger than the one of the explicit version. To compare computational
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Fig. 4. Convergence test (a). The x-component Vx (left) and y-component Vy (right) of the velocity for the free end of the filament changed over time for
different lattices.
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was approximately at equilibrium.

Table 1
Estimation of the order of convergence.

Mesh step Ratio value Estimated order

h = 1/512 1.95 0.96
h = 1/256 2.86 1.52

cost, we run the above two simulations up to t = 22. The computational cost for the implicit method is only 16.5% of the
cost for the explicit method. Numerical simulations indicate that our implicit method is much more stable and significantly
outperforms the corresponding explicit version.

5. Conclusions

We have proposed a 2D implicit immersed boundary method via the lattice Boltzmann approach. Validation of the
method has been performed on a fluid–filament-interaction problem. The numerical results for the test problem are
physically correct and in agreement with those in the literature. The results show that the proposed implicit IB method
is much more stable with larger time steps and significantly outperforms the explicit version. It appears that the implicit
IB method can be used in practical computations. We plan to apply the proposed implicit IB method to more complicated
application problems in the near future.
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