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The properties of discriminants and differents were studied first by Dedekind and 
Hilbert in finite algebraic extensions of fields of algebraic numbers. From a local 
point of view, that is equivalent to a study of the p-adic case, where the results of 
Dedekind and Hilbert can be formulated as follows. Dedekind’s theorem: The g.c.d. 
d(K//c) of differents of integral bases of a finite algebraic extension K/k (which I call 
an algebraic different if K/k) and the g.c.d &K/k) of differents of integral elements 
of K/k (which I call an arithmetic different of K/k) coincide; Hilbert’s theorem 
(which is the basis of Herbrand’s ramification theory of intermediate extensions): I f  
KILI k, &K/k)=&K/L) &L/k). These results are easily generalizable to the 
“classical case” of henselian valued basic fields, i.e., the case when the valuation is 
discrete and the residual extension E/k of K/k is separable. But, in the general case 
of extensions K/k of valued fields (where k may be assumed to be henselian), 
Dedekind’s and Hilbert’s theorems are not always true: the algebraic different 
d(K/k) divides the arithmetic digerent 6( K/k), but generally &K/k) # d(K/k), and 
Hilbert’s theorem holds only for the algebraic different. When the valuation is dis- 
crete, I call an extension K/k dedekindian when 6(K/k) = d(K/k) and hilbertian if, 
for every intermediate field L of K/k (i.e., KzLz k), Hilbert’s theorem 6(K/k)= 
&K/L) &L/k) for arithmetic differents holds. When the valuation is dense, the 
situation is more complicated, because of the existence of two kinds of ideals (prin- 
cipal and other), and it is convenient to define dedekindian and hilbertian exten- 
sions in a slightly different manner and to introduce somewhat wider classes of 
extensions called quasi-dedekindian and quasi-hilbertian. I study the relations 
between d(K/k) and S(K/k), and, in particular, I give a complete characterization of 
dedekindian extensions for both discrete and dense valuations; I also give examples 
of non-dedekindian and non-hilbertian extensions. In Section 4, some connections 
with the ramification theory (both for normal and non-normal extensions) are 
studied and a weak analog of Hilbert’s theorem [S(K/k) &L/k) divides 6(K/k)] is 
proved. IP 1988 Academic Press, Inc. 

INTRODUCTION 

Let k be a valued field’ in the ordinary sense (i.e., its valuation takes real 
values; some of the definitions and results of this paper hold also when 

’ Which is supposed to be commutative. 
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k is valued in the Krull sense [I say, is “hypervalued”], but I shall limit 
myself here to the case of ordinary valuations). In order to avoid minor 
complications, we shall suppose that k is henselian.’ We shall denote 
1 . 1 its valuation3 v(..) = -1nl ..I its valuative order (or exponent), 
i= {XE k; IxI< l} its valuation (or integrity) ring, m = (xEk; 1x1 < 1) the 
maximal ideal of i, L = i/m the residual field of k, p the characteristic 
of f (which is called the residual characteristic of k), a = a + m ok the 
rest of an a~ i, f(X) = x 5,X i the residual polynomial of a polynomial 
f(X) = C u,X’E i[X], T(k) = { 1x1; ?s E k, x # 0) the valuation (multi- 
plicative) group of k, u(k) = (u(x), x E k, x # 0 > the “additive” valuation (or 
exponent) group of k (which is additive). 

Let K/k be a separable extension of finite degree n = [K : k]. 
The valuation of k can be prolonged, and only in one manner, to a 

valuation of K (even if K/k is only algebraic). By 1. .I and u(. .) we shall 
denote this unique valuation of K prolonging that of k, and u(..) the 
corresponding exponent. 

Sometimes we shall consider also a normal algebraic overextension K/k 
of K/k, which may be its algebraic closure, and we shall still denote I..1 and 
u(..) the unique prolongation of the valuation and of the exponent of k to 
K’. 

We shall denote 1, M, $ f(K), u(K), respectively, the valuation ring, the 
maximal ideal of Z, the residual field, the valuation, and the exponent 
groups of K, and by r, M’, K’, T(K’), o(K’) the corresponding objects for 
K’. Clearly u(k) is a subgroup of u(K), and the index e = (u(K) : u(k)) is 
called the ramification order of K/k. 

The field I; can be canonically identified (in identifying for every a E i, 
a + m E L with a + ME R) with a subfield of 1% and the degree f = [R : h] 
of the “residual extension” RJE of K/k is called the residual degree of K/k. 

As it is well known, if the valuation of k is discrete, n =fe. If the 
valuation of k is dense, by the “defect theorem” of Ostrovski (see [ 16]), fe 
divides n, and d = n/ef, which is called the defect of K/k, is a power of p. 

We shall denote 3 the separable kernel (i.e., the maximal separable sub- 
extensions of an algebraic extension S/T, and, then, [s : T] will be called 
the separable degree of K/k. 

2 As is well known, k is surely henselian when it is complete. 
3 I continue to call ualuation what some people call now “absolute value.” I do not see any 

valid reason for this change, and, besides, it can create some ambiguity, because, in some 
arguments, the ordinary absolute value of real numbers may coincide with this absolute value. 
So, the valuation of k is a mapping I..(: k + R, of k into the set R + of non-negative real num- 
bers, such, that 

1” ]x~=Oox=O; 2” Ix + A d Max(lxl, I A): 3” I-VI = 1x1 I A. 
What some people call “valuation,” will be called “valuative order” (or simply “order” if no 
ambiguity is possible) or “additive valuation” or, according to Shafarevitch and Borevitch, 
“exponent” [ 11). 
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So the separable degree f of K,,Zz will be called the separable residual 
degree of KJk. 

If e = ZpJ’, where e” is prime to p, e’ will be called the separable ramitica- 
tion order of K/k.4 Let G = G(K/k) be the set of all isomorphisms of K/k 
into some normal overextension K/k of K/k. We denote 1, the identical 
isomorphism of K, and by G* the set {a~ G; (T # lK}. 

Generally, G will be written ((T,, 02, . . . . 0~1, where the cr E G are num- 
bered in some way. If (T E G and a E K, ~(a; a) = U((T . a - a) will be called 
the characteristic number (or u&e) of Q in u.~ Clearly, o(o; a) = +co iff 
CJ E G(K/k(a)). 

If not, it belongs to u(F), but not always to u(K) [that happens with 
certainty only when K/k is normal]. This notion belongs, in fact, to the 
ramification theory [in normal and in non-normal extensions] but we shall 
speak here not much about this theory, because, otherwise, we shall be led 
too far from our main purpose. If a E K, let f,(X) =fa,&X) be the charac- 
teristic polynomial of a in K/k (which is the minimal polynomial of a over 
k if a is primitive in K/k). 

Then, if f:(X)= &(X)/H is the derivative of f,(X), we have 
f:(a) = I-L E G’ (a - f7. a) so u(fb(u)) = c OEGI ~(a; a) (for this addition, the 
sum is + cc if some of u(cr; a), d E G*, is + cc). 

The ideal 6,,(u) [which will be denoted by 6(u) if a is primitive in K/k; 
besides, if a is not primitive, 6,,(u) = (0)] generated by f:(u) is called the 
arithmetic different of a K/k, and the g.c.d. of J,,(u), a E Z which is equal to 
the g.c.d. of 6(u), where a E Z and is primitive in K/k is called the arithmetic 
different of K/k and denoted @K/k). 

Let A= (a,,~, ,..., a,> be a linear basis of K/k (which will be called 
integral if all ui are E I). 

Then if d(A) is the determinant det(a, .a,) of the matrix (ai .uj) 
(i= 1, 2, . . . . n; j= 1, 2, . . . . n) the ideal D(A) generated by d(A)’ (which, 
obviously, does not depend on the numbering of the elements of A and that 
of the elements of G) is called the algebraic discriminunt of A, and the g.c.d. 
D(K/k) of the algebraic discriminants D(A) of all the integral bases A of 
K/k is called the algebraic discriminunt of K/k. 

The ideals d(A) = D(A)“” and A(K/k) = D(K/k)‘!” = p.q.d. {d(A); A 
integral} are called algebraic differents of, respectively, A and K/k. If 
B, = { 1, a, . . . . un- ’ } and a is primitive in K/k, we have s(u) = A(B,), and, 
therefore, A(K/k) divides 6(K/k). When the valuation of k is discrete, the 
extension KJk is called dedekindiun when 6(K/k)= A(K/k) (because 

4 This terminology has some deep reasons, which cannot be given in this paper; see [13]. 
’ When f: A + B is a mapping and a E A, f, a will denote the image of a byf, and the point 

“:’ will have only this mathematical use. In particular, the product or multiplicatively written 
compositum of two objects 5, q, will always be written 5~ and never 5 .n even if 5, 1 are 
mappings (but, in this last case, we may use the Bourbaki notation [on). 
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Dedekind proved this equality in the case of finite degree, for fields of 
algebraic numbers, or what is practically the same, in the p-adic case). In 
case of dense valuations, more subtle distinctions must be introduced: Only 
some extensions (satisfying some additional conditions) such that ~(K//c) = 
d(K/k) are considered as dedekindian; the other ones and as well as the 
extensions that satisfy conditions weaker than the one given in considered 
as quasi-dedekindian text. 

Some even more subtle distinctions may be made among these exten- 
sions, but they will not even be defined in this paper. 

It is easy to show (by slightly modifying Dedekind’s and Hilbert’s 
original proofs), that K/k is dedekindian if the valuation of k is discrete and 
the residual extension I?/lR of K/k is separable (I call this situation the 
classical case). But even if the valuation is discrete, there exist non- 
dedekindian extensions. 

I found the first example of such extensions (that of Example 1 of Sect. 3 
of this paper) in June 1940, during the war, and I indicated it in a footnote 
of my note [2] of Comptes Rendus (1945). When E. Artin came to Paris in 
1949, I learned from him that he also found (I do not know when) such 
examples independently. 

So, the problem arises: When is a valued separable extension of finite 
degree dedekindian (or, in case of dense extensions only, quasi-dedekin- 
dian)? In this paper I give a complete answer to the first question 
(“dedekindian problem”). The study of the “quasi-dedekindian” problem, 
which is much more difftcult and requires the introduction of some very 
new notions, will be reserved for another publication. 

It is not difficult to show that the algebraic different satisfies Hilbert’s 
Theorem 39: if L is an intermediate field of K/k (i.e., Kz Lz k), 
A K/k - -AK,L~L,~. An extension K/k will be called hilbertian if, for every 
intermediate field L of K/k, 6,, = SK,, 6,,, holds also. In the case of 
dense valuations, a wider class of extensions, satisfying a slightly weaker 
condition, can be defined, that of quasi-hilbertian extensions. It can be 
shown easily that dedekindian extensions and a certain subclass of quasi- 
dedekindians are hilbertian, and that all quasi-dedekindian extensions are 
quasi-hilbertian. 

It is unknown if other hilbertian or quasi-hilbertian extensions exist. But 
the extension of the quoted Example 1 of Section 3 is not only non- 
dedekindian, but also non-hilbertian. 

In another example (2) of the same section, I define some extensions, 
which are non-dedekindian, but, in case of dense valuations, are quasi- 
dedekindian (though that is not proved in this paper). 

So, they are in this case, quasi-hilbertian, but it is shown that they are 
non-hilbertian. E. Artin, also knew that non-hilbertian extensions exist. For 
hilbertian extensions and, with only slight differences, for quasi-hilbertian, 
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Herbrand’s theory of ramification properties of intermediate extensions 
holds (i.e., for a given K/k, the extensions L/M such that K 2 L 2 A4 2 k), 
and it holds only for such extensions. 

In order not to complicate too much formulations of notions, results and 
proofs a certain technical device seems absolutely necessary: semi-real 
numbers. 

I hope that the reader will share the opinion that I introduced in [6] in 
1944. This notion, which will be defined in Section 1 and used extensively 
throughout the paper is obtained by a certain completion of the ordered 
complete set R” = R u ( - co, + CC } of real numbers (where R is the real 
field ordered in usual way); a particular case of a completion defined in 
1935 by G. Kurepa in his Ph.D. thesis [lS] for every totally ordered set. It 
is, besides, useful to define such completions for the set of values 
Z(k) u (0) of hypervaluations of the hypervalued field k. In that more 
general context, but in an implicit and artificial manner, the notion was, in 
fact, used already in the early 1930s by Krull and Deuring under the name 
of “symbolic function,” though only from the point of view of order. But, in 
the theory of valuations also, some partial rational operation on semi-real 
numbers is needed (and also the prolongation of some real functions to 
semi-real domains). Some of them are defined and used in this paper. An 
a E I is called discriminantiaf if 6(a) = &K/k). 

Such elements exist certainly when the valuation of k is discrete. If, in 
that case, u(a) = Min,, , ~(a; a) [such a minimum exists certainly when the 
valuation is discrete, but it is shown in Section 4 that it exists, in the case of 
dense valuations for every (T E G, iff there exist discriminantial elements], it 
is shown that for a discriminantial a EZ, we have ~(a; a) = u(a). In the 
general case, with the help of the semi-real numbers, v(G(K/k)) and V(C) are 
also defined, and it is shown that for every E > 0 an a E I exists such that, 
for every c E G, ~(a; a) 6 u(a) + E. This result is necessary for proving that, 
for any intermediate field L of K/k, &K/L) &L/k) divides &K/k). The 
paper finishes with a certain study of o(o; a) and some related objects as 
functions not only of cs for fixed a, as is done in the “extrinsic” ramification 
theory (see Krull [14], Krasner [8, 10, 13]), but also as a function of a for 
a fixed CJ, which permits few applications to the ramification theory, in par- 
ticular for normal extensions. In Section 1, some preliminary (and mostly 
known) notions and results are expounded. In Section 2, the algebraic dif- 
ferents (and discriminants) of an extension and of its linear bases are 
defined and their properties are studied. In Section 3, the arithmetic dif- 
ferents are defined and their relation to algebraic differents are studied. In 
particular, the dedekindian, quasi-dedekindian, hilbertian, and quasi- 
hilbertian extensions are defined, the “dedekindian problem” is solved, and 
some examples of non-dedekindian and non-hilbertian extensions are 
given. 
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In Section 4, the characteristic numbers u(o) of 0 E G are defined and the 
existence of a E 1, F is proved such that the u(o; a) approximate, as nearly 
as wanted, simultaneously all corresponding v(a) (and ~(a; a) = u(o) in the 
case of discrete valuations). That permits us to complete the study of 
properties of arithmetic differents and to give a few applications to the 
ramification theory. 

1. SOME PRELIMINARY NOTIONS 

Let k be a henselian valued field. Let be I..) its valuation, u(..) = - In I..] 
its valuative order, d(x, y) = 1.x - yl its ultrametric distance, 

C(u,r-)= {xEk;d(u,x)<r) 

and 

C(a,r)= {.uEk;d(a,x)fr} 

non-circumferenced and circumferenced discs of k of center a and of radius 
r. The disc i = C(0, 1) = {x E k; 1x1 < 1 is a ring called a valuation (or 
integrity) ring of k, and discs C(0, p), p = r-, when r > 0, and p = r, when 
r 2 0, are the only i-modules of k, and they are the ideals of i iff p < 1 
(i.e., p = r- with r 6 1 or r with r < 1); traditionally, these discs are called 
“fractional ideals of k” and we shall also adopt this terminology. We shall 
multiply these discs as subsets of k. 

In order to understand the sense of the symbol p in C(u, p), and also for 
other purposes, we shall introduce the notion of semi-real numbers. Let R” 
be the closed (i.e., comprising - n3 and + co) ordered set of all real num- 
bers, ordered by its natural order, and let be E = { -, 0, + }, this set being 
ordered by the order < such that - < 0 < + Let us consider the set 
R” x E ordered lexicographically (i.e., we have (r, 5) < (r’, 5’) iff r < r’ or 
r = r’ and 5 < [‘). We shall take out the extreme elements (-a, - ) and 
(+co, +) of ROXE, and the remaining elements will be called semi-real 
numbers (and their ordered set will be denoted S and called the semi-real 
straight line). A real number r will be identified with the semi-real number 
(r, 0), and we shall write r - and r + instead of (r, - ) and (r, + ). If 
p = (r, 0, r will be called the real u&e and 4 the species of p. 

Let A c R” be a set of real numbers (in the broad sense, i.e., the - cc and 
+ 00 may be E A). This set always has an infimum and a supremum on R”. 
If u= Sup,0 A, then the semi-real numbers permit us to distinguish 
explicitly the cases when this supremum is reached or not reached. Indeed, 
the supremum Sup, A of A on the semi-real straight line S is a if it is 
reached and is a- if it is not reached. In an analogous way, if a = inf,” A, 
we have Inf, A = a or u+ if, respectively, the lnfRo A is reached or not. 
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If A4 is a metric space with the distance d(x, y), and if m E A4 and N c A4, 
we define the semi-real radius of N with respect to m the semi-real number 
r,(N) = Sup,(d(m, x); x E N}, and we define the diameter of N with the 
semi-real number 

d(N) = Sup {4x, Y); (x, y) E N x N). 
s 

Clearly, d(N) = Sup,{r,(N); me N}. If A4 is an ultrametric space (i.e., 
d(x, z) is always Max[d(x, y), d(y, z)]), then there exists, for any NG M, 
the least disc (we consider also as disc A4 = C(z, + 00 - ) for every a E M) of 
A4 containing N (that is, the intersection of all discs of M containing N; in 
the ultrametric case, this intersection is, indeed, a disc which will be 
denoted by C(N) and called the circular envelope of N), and if m E N, it 
holds r,,,(N) = d(c(N)), so d(N) is also = d(c(N)) and r,(N) = d(N). So, if 
A4 is the field k with its distance d(x, y) = Ix - y[, we have first that 

C(a,p)= {xEk;d(a,x)<p} and r,(C(a, PI) = d(C(a, PI) 

is p. This d(C(a, p)) will be called the proper radius (or diameter of the disc 
C = C(a, p). In particular, if q = C(0, p) is a fractional ideal of k, (41 = d(q) 
will be called the valuation of q. The function -In X can be extended easily 
to semi-real positive values by putting -ln(r, tJ) = (-In r, -[), where 
(r, 5) is supposed to be >O= (0,O) and - - = +, -0=0 and - + = -. 
Then v(q) = lnlql = Inf,{ ( ) v x ; XE q} is called the valuative order of q (in 
fact, this order was implicitly used already by Krull, who considered, for an 
ideal q, the real value Inf,+{ v(x); x E q} of v(q), and also its species, which 
he called “symbolic function”; he did it also for the case of hypervaluations, 
where the semi-real numbers have to be replaced by a convenient 
completion of the valuation group, the so-called “Kurepa completion.” 

Some partial rational operations can (and must) be defined for semi-real 
numbers. That is done, in a general form, in accordance with some very 
natural reasons, having no connection with problems of valued fields. But 
the operations so-defined are such that for any two fractional ideals q,, q2, 
the sum v(q,) + v(qz) (and, also, the product )q,/ Iqzj) exists and is equal to 
v(q,q,) (resp. )q, q2)). Besides, when performable, these operations have the 
ordinary properties of commutative rings: addition and multiplication are 
commutative and associative, and the multiplication is distributive in 
respect to addition. We shall not proceed in this manner, but give the 
explicit definition of some operations in the cases where they are needed in 
this paper: 

Two species c,, l2 E E are called opposite if one of them is + and the 
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other -. If tl, t2 are not opposed, their dominant dom(r,, c2) is defined by 
the rule 

dom(+, +)=dom(+,O)=dom(O, +)= +, 

dom(0, 0) = 0, dom(-, -)=dom(-,O)=dom(O, -)= -. 

(1) The sum p, +p2, where pI =(rlr 5,) and p2=(rz, t2) is defined 
iff t1 and t2 are not opposite, and then it is 

(rl + r2, dom(tl, t,)). 

(2) -p, where p = (r, [) is always defined and is ( -r, -l). We write 
P1-P2=PI+(-P2). 

(3) If p,=(r,,;,)30 and pr=(r2,t,)),0, plpz is defined in the 
following cases: 

(a) p, or pz is 0; then Op,=p,O=OO=O, 

(b) p, > 0 and y, > 0; then p, p2 is defined iff t,, <? are not 
opposite, and pIpz= (rlrz, dom(<,, 5?)). 

In particuiar, if s is a real number >O, sp = s(r, <) is defined and (ST, 5). 
A fractional ideal of k is an ideal of i iff 141 < 1 (or v(q) 2 0). The 

maximal ideal of i is m = C(0, 1 - ) = {.x E k; 1.~1 < 1 }. The quotient ring 
k = i/m is a field called the residual field of k, and its characteristic p is 
called the residual characteristic of k. The characteristic of k will be denoted 
by p’ (k is said to be homotypic if p’ = p and heterotypic if p’ # p, which 
requires, as it is well known, p’ = 0). If k* is the multiplicative group of k, 
Ik*l = {lal;aEk*)- is a subgroup of the multiplicative group of R*, of 
positive real numbers (the set R*, u {0} of non-negative real numbers will 
be denoted R+). This group T(k) will be called the valuation group of k. 
We exclude the case of trivial valuations, where r(k) = { 1 }. There remain 
two cases: 

(1) Discrete valuations. When T(k) has the greatest element y > 1, it 
is the infinite cyclic group (y) generated by y. 

(2) Dense valuations. When such y does not exist, then T(k) is dense 
in R*, The image u(k) = -In T(k) = {u(a); a E k* ‘, is a subgroup of the 
additive group of real numbers, having the least strictly positive element 
w  = -In y in the case of discrete valuations (and this w  generates it) and 
dense over real straight line R in the case of dense valuations. It is clear 
that JmJ = l- (and v(m) =O+) when the valuation is dense, and Irnl =y 
(and u(m) = o) when the valuation is discrete. So m2 = m or m2 f m when 
the valuation is dense (resp. discrete). The additive group u(k) will be 
called the order group or additive valuation group of k. 
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Let K be an algebraic extension of k. As k is henselian, its valuation can 
be prolonged to K in one and only one manner, and this prolonged 
valuation (and corresponding order) will be denoted by the same symbols 
as that of k. Let Z be the valuation ring of K, M the maximal ideal of Z, R 
the residual field, and T(k), v(K) valuation and order groups of K with 
respect to the prolonged valuation. f(k) is obviously a subgroup of r(K), 
and e = (T(K) : T(k)) is called the ramification order of K/k. If Ck is a disc 
of k, there exists one and only one disc Ck = Ck of K having the same 
diameter: d(C,) = d(C,), and C, --P C, is an injection of the set of all discs 
of k into that of K. We shall identify Ck with corresponding C,. That iden- 
tifies, in particular, every fractional ideal (i.e., i-module) of k with some 
such ideal (i.e., Z-module) of K. So, if the valuation of k is dense, m is iden- 
tified with M, and if the valuation of k and of K are both discrete, m is 
identified with M’. Also the field & = i/m can be identified (by a slightly dif- 
ferent identification) with a subfield of R= Z/M and f = [R: k] will be 
called the residual degree of K/k. If n = [K : k J is finite, fe is a divisor of n, 
and is =n if the valuation is discrete. If the valuation is dense d=n:fP is 
called the (ramilicative) defect of K/k. According to the “defect theorem” of 
A. Ostrovski, this integer is a power of p. The extension K/k of finite degree 
will be called non-defective if d = 1 and completely defective if d = n. It will 
be called not jlar if f = 1 and completely ji+at if f = n; and it will be called 
not slim if e = 1 and completely slim if e = n. 

Let Kf) be the separable Kernel of K/k, i.e., the greatest intermediate 
field of Z?/k which is separable over R. y= [RF) : L] is called the separable 
residual degree of K/k. Supposing always n = [K : k] finite, K/k is said to be 
non-ramljied if f = n and completely ram$ed if T= 1. If e = Zp”‘, where 
e f 0 (mod p), e” is called the separable ram@ation order of K/k, and K/k 
is said to be separably ramified or non-overramified if $ = n (for deeper 
reasons of this terminology, see my preprint [13]; I prefer these terms to 
the zoomorphic term “tamely ramified”) and it is said overramified if$= 1. 
All these terms may be extended, besides, to algebraic extensions of infinite 
degree (see [ 131). 

Let K/k be an algebraic extension and K/k its normal overextensions 
(e.g., we can take as K’ the algebraic closure of K), valued by the valuation 
prolonging that of k. By what precedes, the fractional ideals of k and of K’ 
are canonically identified with some fractional ideals of K’, precisely with 
the Z-module, that they generate, where I’ is the valuation ring of R. 

Let G be an isomorphism of K/k into K’ and let CJ’ be some 
automorphism of K/k inducing it. If Q is a fractional ideal of K, consider 
its transform c. Q by CJ, which is a fractional ideal of the field 0 _ Kc K’. If 
(a)’ and (a. $2)’ are the Z-modules generated by Q and 0. Q, it is clear 
that (a . Q)’ = (a’ . Q)’ = c’(Q)‘. But, as k is henselian, all automorphisms of 
K/k are, by the Ostrovski lemma, isometries. Therefore as (Q)’ is a disc of 
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K’ of center 0, we have 0’ . (Q) = (Q)‘. So Q and C. Q are identified with 
the same fractional ideal of K’, and, after this identification, we have 
c Q = Q. But, then when it = [K : k] is finite, we have, for any fractional 
ideal Q of K, N&Q) = Q”. 

Let B=(O,, b,, . . . . b,) be a linear basis of a separable extension K/k of 
finite degree n, and let G = ( ei, oz, . . . . a,) be the set of all isomorphisms of 
K/k into some normal overextension K’/k. For convenience sake we 
shall always suppose that rrl is the identical isomorphism 1 K of K. We 
call discriminant D(B) of B the fractional ideal of K generated by the 
square det(a, . b,)’ of the determinant det(a, . hi) of the matrix (c, . b,) 
(i= 1, 2, . . . . n,j= 1, 2, . ..) n). We call the dilferent (or sometimes, for certain 
reasons, local different) of B the ideal d(B) = D(B)lirr. If B’ = (b’, , bi, . . . . b:,) 
is another linear basis of K/k and if A( B’, B) is the transition matrix from B 
to B’, i.e., the square matrix of degree n over k such that B’ = A(B’, B)B 
(where B and B’ are considered as n x 1 matrices), it is obvious 
that det(o,. b,‘) = [det A(B’, B)][det(o,. b,)]. and, if E,.,, is the fractional 
ideal generated by det A( B’, B), we have D(B’) = EiC,BD( B) and 
d(B’)=E&d(B). 

Let UE K be a primitive element of K/k and f,,J.u) its minimal 
polynomial over k. We call the different of a the fractional ideal 6(a) 
generated by .f,,da) = FL <I G ,2 (a - err. a) and we call the discriminant of a 
the fractional ideal D(a) = N,,, 6(a) = 6(a)” of k. As a is primitive, B, = 

Vande~~~ndi)an. So 
(1 a, is a linear basis of K/k, and the matrix ((TV. a”) is a 

det(o,.a’ 1)2= &n n (~~.a--;a)= fN,,f;,,(a) 
I I.!#/ 

and 

WB(a)) = N,, &a) = D(a), 

so 

6(a) = D(a)““= D(B$‘“= d(B,). 

If B = (b, , b,, . . . . b,) is a linear basis of K/k, 

o(b,b,...b,)=u(b,)+u(b2)+ ... +u(b,) 

will be called the height of B and will be denoted h(B). The basis B is called 
integral if all bi are EZ, i.e., o(bj) 3 0. Let i(B) = ib, + ib, + . . + ib, be the 
i-module generated by B. An integral basis B will be called an s-basis 
(where E > 0) if every a of K such that u(a) 2 E, belongs to i(B), i.e., i(B) 
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contains the disc C(0, exp( -6)) of K In particular, B is a O-basis iff 
i(B) = I. If B is an s-basis and the valuation of k is dense, then for every 
i = 1, 2, . . . . n, 0 < u(b) d E hold. Indeed, if u(b) > E then there exists an a E k 
such that E - u(bi) < u(a) < 0, so that u .$ i and u(ab,) > E, hence abi$ i(B) 
and B is not an s-basis. So under these conditions, the height h(B) of an 
s-basis is < ne (and > 0), and, in particular, if B is a O-basis, h(B) = 0. 
When the valuation is discrete, it is also easy to find an upper bound for 
the height of a O-basis of K/k. Let D be the least positive element of o(K) 
(so w  = eQ), n a generator of the maximal ideal A4 of I (so, u(n) = Q), and 
e= (Cl, c,, . ..) Cf) some linear basis of K/k. Then, if cy is a representation of 
cy in I (i.e., Cq = cq + M), it is well known that the elements c,fl 
(q= 1, 1, . ..) f;s=o, 1, . ..) e - 1 ), form a O-basis of6 K/k and the height of 
this basis is 

f(O+D+252+ s.. +(e- l)Q)=fe(e- 1)52/2= [f(e- 1)/2]w. 

It will be shown later that the height of a O-basis cannot exceed this value. 
If B and B’ are two O-bases of K/k, and n(B’, B) and n(B, B’) are both 

integral matrices in k (i.e., matrices in i) then 

ldet n(B’, B)j 6 1 and ldet /i(B, B’)I d 1. 

But, as /i(B, B’) = n(B’, B)-‘, we must have 

ldet A(#, B)( = Jdet/i(B, B’)I = 1 and EB,Bs = ( 1). 

If B is an s-basis and the valuation of k is dense, consider an a E K. It has 
the unique expression a = C li. bj as a linear combination of bi, and we say 
that u(&) > u(u) -E. Indeed, if for some i, we have u(JJ < u(u) - E, there 
exists a p E k such that -u(u) + E < u(p) < -u(&). So, pu = C (&) 6, and 
we have u(pu) = u(p) + u(u) > E and u($,) = u(p) + u(&) < 0. It follows that 
pAi& i and pa $ i(B), which contradicts that B is an s-basis. But then, 
if B’ = (b’, , b;, . . . . 6:) is another s-basis all the elements of the matrix 
A(B’, B) must have their valuative order 3 --E +0 = --E. So 
u(E,:,) = u(det A(B’, B) > -m. As the same inequality holds for 
E B,Bs = Es..; we have 

Let L be an intermediate field of K/k: Kz L 2 k. Let [K : L J = v, 
CL : kl = n*, P = (P,, A, . . . . /?,) be a linear basis of K/L, B* = 

6 proof: Indeed, if a E K and u = 1 &,,c,IT, it is obvious that /a[ = ,%faxqSS [I,,( ys, i.e., 
U(Q) = Min,,Cu(lq,,) + ~01. So, if a E I, i.e., u(a) 3 0, we must have u(,l,J > -42 > -w, which 
implies (as u(&,) is a multiple of w), u(&,) 2 0, and A,, E i. 
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(h:, b:, . . . . b$), a linear basis of L/k. It is well known that all h,fli are dis- 
tinct and that their set 

B*fi= {b?j: i= 1 2 , , t > , . . . . n,j=l,2 )..., v) 

is a linear basis of K/k. A calculation, which can be found in Hilbert’s 
“Zahlbericht” [3, Theorem 301 which applies without any change to the 
present situation (it is based only on formal calculations of determinants), 
shows that 

D(B*j) = NLIkD(P) = D(B*)‘. 

As k is henselian, we have 

N/MD(P) = W)“’ and so D( B*fl) = D(fl)“* = D( B* )” 

and as n = [K : k] = n*v, we have 

A(B*fl) = D(B*fl)“” = D(fi)‘/“D(B*)““* = A(b) A(B*). 

PROPOSITION 1. Jf B* is an E-basis of LJk and j is an q-basis qf KJL, 
B*fi is an (E + q )-basis of K/k. 

Proof. First, B* and fl being integral bases, B*fl also is one. Let a E K 
be such that u(a) >E + v]. a is a linear combination C a,*/l, of fi over L, 
and, as /I is an q-basis of K/L, we have for each j= 1,2, . . . . V, 
u(a: ) > u(a) - n > E. For every j, a,? E L can be expressed as a linear com- 
bination a: = C i,,b,? of B* over k, and as B* is an s-basis of L/k and 
$a,*) 36, we have a,* E i(B*) and all l.V are Ei. So, a =xX I, b*b, is 
&(B*/?) and B*fi is an (E+v)-basis of K/k. 

2. ALGEBRAIC DIFFERENT, UNFOLDING 
AND DISCREPANCY OF BASES 

Let K/k be an extension of finite degree n = [K : k], and let J be the set 
of its integral bases. Then the g.c.d. A(K/k) of d(B), where B ranges over all 
integral bases of K/k is called the algebraic different of K/k. We also call, 
the g.c.d. D&K/k) of D(B) = A(B)” for the same B the algebraic dis- 
criminant, and it is immediate that D&K/k) = A(K/k)“. We call the 
arithmetic different of KJk the g.c.d. &K/k) of 6(a) = A(B,), where a ranges 
over I, and we call the arithmetic discriminant of KJk the g.c.d. D,,(K/k) of 
the same D(a) (which is plainly also =6(K/k)“). 

We shall deal in this paragraph mainly with the algebraic different. We 
shall prove that, for any E > 0, there exist a-bases of K/k, and that, in the 
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case of discrete valuations, there exist O-bases of K/k (in the case of dense 
valuation they exist iff K/k is a completely flat extension). And we shall 
show that, if B is a O-basis, A(K/k) = d(B) and, if such bases do not exist, 
u(A(K/k)) = Inf, [(d(B)), where B ranges over J, is a semi-real number of 
species +, and if B is an s-basis 

o(A(B))-u(A(K/k))<2e. 

LEMMA 1. If B is an E-basis and B’ is any integral basis, we have 
v(d( B)) - v(A(B’)) < 2~. 

Proof We have B’ = A(B’, B) B and, if E&., is the fractional ideal 
generated by det A(B’, B), we have A(B’) = Eg$ A(B), i.e., 

v(A(B’))=fu(det A(B’, B))+u(A(B)). 

But, if b,! =C il,b,, v(b() 20 implies for any j, as B is an s-basis, that 
v(1,)3 --E. But then u(det A(B’, B)> -n.s and 

v(A(B))-o(A(B’))= -zu(detA(~‘, B))< -2(-n&)=2&. n n 

In particular, if B is a O-basis, we have, for every integral basis B’, 
u(A( B)) = v(A(B’)). So if such basis B exists, we have A(K/k) = A(B). And if 
an s-basis B exists. we have 

v(A(B))-2&<v(A(K/k))<v(A(B)). 

Let B a basis. We consider the transforms AB of B by the matrices /i in k 
such that ldet Al = 1 (neither the basis B nor the matrix /i are supposed to 
be integral; we shall call such matrices univalued). We call discrepancy of B 
the supremum 

O(B)=Sup [h(AB)-h(B)] 
s 

of the difference of heights h(AB) - h(B) of AB and B when A ranges over 
all such matrices. We have 

LEMMA 2. The discrepancy of a basis B of K/k cannot be + 00 -. 

Proof: Suppose, that O(B) = +oo -. Then, for any real constant C, 
there exists a univalued matrix n such that h(AB) >nC. There exists a 
diagonal univalued matrix T over k such that for every element bi of 
B’=T(AB)=(TA)B=(b’,,b;,..., b;), v(bj) > C holds and A’ = T/i is also 



30 MARC KRASNER 

univalued. Let be /i’ = (j.1, ). Then, there exist some pair (i, j) such that 
[I(&,) < 0. Let C, , Cz, . . . . C,, , . . . . be a sequence of real numbers converging 
to + cci .. on the semi-real axis S. Then, for each n, there exists a univalued 
matrix 

/j’Y) = (jbl”‘) 
1, (i= 1, 2, . . . . tz;j= I, 2, . . . . n) 

such that if 

B(q)= /l'Y)B= (by', by', . . . . by) 

for every i = 1,2, ..,, n, then ~(bjq’) > C(Y) holds. As AC41 is univalued there 
exists some i-I/“) such that ~(1:~) 6 0. As the number of pairs (i, j) is finite, 
there is one of these pairs, such that u(A$“) < 0 for infinitely many q. If we 
replace the sequence C,, Cz, . . . . C,, . . . . by its partial sequence comprising 
only such C,, that satisfy ~(2:)) d 0 for the considered pair (i, j), the new 
sequence converges to + 00 ~ on S with u(lyl) < 0 for all its terms, and we 
can suppose that the initial sequence is the same way. Then let V be the 
k-vectorial space generated by the set h,, bz, . . . . b, ,, hi ,, b,, , , . . . . b,, of 
all elements of B except b,. We have 

bl4) = j(Y)b - [,(Yl I -11 I 

where c’, (and also Us:’ ‘oy) is ~1’. That implies 

p(b I -j"];)- ‘p(‘f’) = c(jL:;/’ ‘b!Y’) 

= p(b!‘/‘) - ZI(~‘Y’) 2 c’ 1, 4 + 0 = C Y 

So, there exists a sequence of elements 

\$JYl = ]“);I Iv(Y) (q = 1, 2, . . . . + rxI ) 

of I/ such, that u(b, - I@)) 4 tee, , i.e., lb, - M (Y’l -+O+. Let R be 
the completion of the valued field K, and i;, r closures of k, V in K. We 
have b,c r. But z is a completion of the valued field k and 
R= i;b, + Rb, + . + i;b,,. The /?-vectorial space i? when we take as norm 
its valuation, is a normed vectorial space of finite dimension over the 
complete valued field i;. So, its topology is equivalent to the product 
topology and 8=i;b,+ . . . +i;b,m,+i;bi+,+ ... +j;b,, and we have 
k= v+i;b,= p. 

So, [R: x-1, which is equal to the dimension (z: E) = (8: K) of the 
g-vectorial space K, is <n = [K : k]. But that is impossible. Indeed, by 
Hasse’s theory of prolongations of valuations, the number of primary com- 
ponents of the commutative algebra L = LQk E is equal to the number of 
possible prolongations of the valuation (..I of k in its-extension K. As k is 
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supposed henselian, this number is 1, i.e., L is primary. If R is the radical of 
L, we have K N L/R. But as K/k is separable, this radical must be { 0}, so 
E= L= KQk E and [g: R] is the dimension [L : k”] of the E-vectorial 
space L, which is [K : k] = n. 

PROPOSITION 2. If an integral basis B is such that E 2 h(B) + O(B), B is 
an E-basis; if the ualuation of k is discrete, O(B) = 0 and, ,for any bi, H,here 
B= (b,, b,, . . . . b,,), u(b,) < w, B is a O-basis. 

ProojY Let ael be such that u(a) >c, and let a= C Lib, be its 
expression as linear combination of B. Suppose Ai= 0 and consider the 
basis 

B’= (b,, b2, . . . . b,-~, , A,-‘a, bi+, , . . . . b,). 

A B’.B is a matrix which has non-diagonal elements only on the ith line, and 
all its diagonal elements are = 1. So, 

det A(B’, B)= 1 and ldet A(B’, B)I = 1. 

The height h(H) of B’ is h(B)- u(b;)- ~~(1~~) + u(a) and it must be 
<h(B)+@(B). SO, as u(a)>&, we have E-u(b,)-u(,li)<O(B). But 

E 2 h(B) + O(B), u(b;) d h(B). So, 

(h(B)+@(B))-h(B)-u(&)=@(B)-u(;l,) is <O(B), 

which implies v(ni) > 0 and E,; E i. So a E i(B) and B is an s-basis. Suppose 

that the valuation of k is discrete and that B satisfies the above conditions. 
Let a be EZ, i.e., u(a) 2 0. If a = C ,l,ai and if 1, # 0, B’ is the same basis as 
before, we have still h(B) - v(b,) - ~(1~) + u(a) < h(B) + O(B). But here 
O(B)=0 and u(a)>O. So, we have h(B)-u(b,)-u(&)<h(Bi), so 
- u(b,) < r(Ai). But, by hypothesis, u(b,) < w, so u(;l,) > -0, and as there is 
no element of u(k) between --w and 0, we have u(&)>O. So, again, we 
have a E i(B). 

On the other hand, it is almost obvious that in the case of dense 
valuations, if B is an s-basis, O(B) < nE. Indeed, let be B’ = /iB such that 
ldet A I = 1 and h( B’) b h(B) 2 0. Suppose the valuation is dense. Then, it is 
always possible to find a diagonal matrix T in k of determinant det T equal 

to 1, such that, if 9 > 0 is arbitrary, all elements of B” = TB’ = TAB 
wouldbe > (h( B’) - r])/ n and we have ldet T/ii = 1. But, if O(B) >m, we 
can find a B’ such, that 

h( B’) > h(B) + nc 3 nc and if q<h(B’)-ne, 

we have (H(B’) - q)/n > E. So, if B” = (b;‘, b;, . . . . b:), we have v(b() > s for 
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every i. If AE k is such, that 0~ v(A) < Min, u(hj’)-E all ~(1 -‘h:‘) are 3s 
and all i ~ ‘,:I are ~i( B). So, if 

r’B”=(i”r’b;‘, i- ‘b; )...) i- lb::), 

the matrix A(K’B”, B) is integral, and ldet A(L- ‘B”, B)I d 1. But clearly 
A(B”, B) = (Al,) /I(A-‘B”B) (where 1, is the unity matrix of degree n). So 

ldet A(B”, B)I = Iii” ldet A(A-‘B”, B)I 6 13.1”~ 1, 

in contradiction to the hypothesis. 

THEOREM 1. For every 0 > 0, there exist transforms AB of B by 
univalued matrices A such that Q(AB) < 0. If the valuation is discrete, then 
there exist such transforms without discrepancy, i.e., such that @(AB) = 0. 

Proof If A, and A are two univalued matrices in k, we have 

AB-= (AA,-‘)(A,,B) and A+AA,’ 

is a permutation of the set of univalued matrices in k. So, Sup, h(AB) and 
Sup, h(A(A, B)), when A ranges over all univalued matrices, are equal. So 

O(A,B)=Suph(A(A,B))-h(A,,B) 
s 

=[Suph(/!B)-h(B)]-[h(A,B)-h(B)] 
s 

=O(B)- [h(A,B)-h(B)]. . 

O(B) is a semi-real number of species 0 or -, and if the valuation is dis- 
crete, it is always of species 0 and is a multiple of Q = w/e. It is always 20. 
In any case, if 0 > 0, there exists a transform A, B of B by a univalued 
matrix A, such that 

h(A,B) > h(B) + O(B) - 0, 

so 

@(A,B)=O(B)-[h(A,B)-h(B)]<@. 

If the valuation is discrete and 0 < 0 < 52, then we have 
0~ O(A,B) < 0 ~52, and as O(&B) is a multiple of Q, we have 
O(A,B)=O. 

PROPOSITION 3. When the valuation is discrete, a O-basis B is Mlithout dis- 
crepancy cff h( B) = [ f(e - 1)/2] o. 
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Proof: Let B be any O-basis of K/k, and let B’ = AB be its transform by 
univalued matrix /i such that Q( B’) = 0. We can find a diagonal 
matrix T in k such that for all elements b,!’ of B” = TB’ = (b;, b;, . . . . b:), 
we have O<u(bi) < w. As obviously Q(B”)= O(B’)=O, B” is (by 
Proposition 2) a O-basis of K/k. But then A(B”, B) = TA(B’, B) = TA is 
a integral univalued matrix of k, and so T is univalued. So, there exists a 
O-basis of K/k without discrepancy. 

Let B = (b,, b,, . . . . b,) be such a basis. Let n, be the number of bi such 
that o(bi) 3 (e - t)Q. We shall compare B with the particular O-basis 

B,=(c,n”;q=l,2 ,..., f;s=O, l,..., e-l), 

where the Cy = c,+ A4 form a basis of K/k, considered at the end of 
Section 1. Let be bi = C 1:flc,p. Then, if u(bi) > (e - t)Q, clearly u(nzL) are 
> 0, so they are > w, if s < e - t, and for these q, s we have ~(lz!c,Z7~) 2 w. 

Let 8i=c,.,..-, I~~c,Z7’. If n,>ft and U(t) is the set of all i such that 
u(bi) > (e- t)Q, the 6,, iE U(t), are not linearly independent, and no one of 
them is zero. So there exists a non-trivial linear combination Cis U(rJ ~~6~ 
which is 0, and, by multiplying it by a convenient element of k, we may 
suppose that Mini, uC,) &) = 0. But, then u(Cis uC,) pibi) > W. SO, if rc E k is 
such that u(rc) =co, we have for a =CisUCr) np’pibi, u(a)>O, so awl and 
Mini u(pi) = -0, so some ,U~ are $i. So B is not a O-basis, and it is n, < ft. It 
is easy to see that in this situation, it is possible to define a bijection 
cp: B-r B, such that u(b,) d u(cp . bi). Indeed, suppose that for U, it is 
already defined as such an injection q, of B, = {bi; i E U,} into 

B,,,={c,F;q=l,2 ,..., ks=e-f,e-t+l,..., e-l}. 

Then Bo,,+ , . . .(cp.B,) has f(t+ l)- n, elements, and their orders are 
>(e-t-l).Qand B,+I~~~b,hasn,+,-n,<f(t+l)-n,elements,allof 
order (e - t - 1) . Q. If we prolong q, by injecting in any manner B, + 1 . . . B, 
into &,r + 1 . . . ( cpI . B,), we obtain an injection cp, + , : B + I + , B,,, + i having 
the same property. And cp = qe is such an injection of B = B, into B, = B,,,. 
But both have the same number of elements n =fe. So cp is a bijection. But 
then we have 

4B)Gh(&)= [f(e- 1)/2]0~. 

As, B. is a transform of B by a univalued (and an even integral) matrix, we 
see that O(B,) = 0 and that 8(B) = 0 iff 

h(B)= [f(e- 1)/2]0. 
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PROPOSITION 4. Let B = (6,) b,, . . . . b,) be a linear basis of K/k, a E K 
and a= C A,(a) bi its representation as a linear combination of B. Then 
u(A,(a) bj) > u(a) - O(b). 

Proof: Suppose that a K is such that for some i= 1,2, . . . . n, we 
have u(A,(a) bi) < u(a)- O(b). Let us consider the linear basis B’ = 

b,,). Clearly, det A(B’, B) = 1, so A(B’, B) 

h(E) = h(B) - u(b,) + u(a) - u(i,(a) 

=h(B) + u(a) - u(Ai(a) bi) > h(B) + Q(B), 

a contradiction. 

COROLLARY. If@(B) = 0, we haue o(Ai(a) bi) > u(a), i.e., 

In,(a) bil 6 lal and lal = Max (I&(a) b,l). 
i 

Conversely, if this condition is satisfied for each a E K, O(B) = 0. Indeed, 
if B’= AB, where A = (A,) is univalued, then there must exist a per- 
mutation i -+ j(i) (i = 1, 2, . . . . n) such that 

u(j.l.,,11&,,,2,~~~ 3 W,,,,,)) G 0, 

But then 

h( B’) = u(b; , b;, . . . . b:,) 

6 ~(l~~.,~~~b,~~~lC~~.,,~~b~~~~l ‘.. Cj-n.,~t~,bnl) 
ZZ?(i. ” 

l.,~I)~“2.,Ol ..~Ljc,J+ t’(bi(,,bicr)...b,,,,) 

<O+h(B)=h(B), 

because b,, 1, b,cz ) . ..b.,,,=b,b,...b,. So O(B)=O. 
I introduced such bases in 1953 in [12] under the name of skeletically 

free bases. Later, J. P. Serre used them under the name of orthonormal 
bases (see [ 171). 

LEMMA 3. If B is a basis and T is a diagonal matrix in k such that 
det T # 0, B and TB have the same discrepancy. 

Proof. First, h(TB) = u(det T) + h(B). On the other hand, for any 
matrix A, as T commutes with every matrix, we have 

A( TB) = T(AB) and h(A(TB)) = u(det T) + h(AB). 
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so 

h(A( 7-B)) - h( TB) = h(AB) -h(B), 

which proves the lemma. 

PROPOSITION 5. The discrepancy of every linear basis B of K/k is of 
species 0 (zero) if K/k is not defective, and of species - (minus) if K/k is 
defective. 

Proof Suppose that K/k is not defective (i.e., n =fe). Let (Ci, C,, . . . . FY) 
be a linear basis of K/k, and let c, be some representative of Cy in I. Let 
v(K)/u(k) = {U,, V,, . . . . 6,) and let v, be some representative of 6, in u(K) 
(i.e., 6, = v, + v(k)). Let i7, be some representative of v, in K, i.e., an 
element of K such that u(Z7,) = v,. Consider the set 

jcyZ7,;q=1,2 ,..., f,s=1,2 ,..., e}. 

If a = C &,c,Z7, is a linear combination (over k) of this set we have 
u(a) = Min,,v(i,,c,Z7,). Indeed, let P be the set of all pairs (q, s) such that 
E.y.scy17, is a term of a of minimal order, i.e., of maximal value. Then, if 
(q, s) E,U and (q’, s’) E,U, we have v(A,,,c,17,,) = u(;l,,,,c,,n,,). But as 

u(c,,) = v(c,,) = 0, v(z7,) = v3,, v(17,,)= u,,, and u(~,.s) 

and v(A,.,,,) are w(k), that implies that v, E v,, (mod u(k)) and s = s’, But 
then this equality becomes v(&)= v(A,.,,.). So, for all (q, s)~p, s has 
the same value and all v(A,,) have the same value WE u(k). Let 1* be 
an element of k such that v(A.*)= W, and let &,s=A*-‘&,,. Then, if p= 
{q; (q, s)E~} the sum of maximal terms of a is (CyEP &c,) ,?*Z7s. 
But u(A~,~) = v(A,.,) - v(A*) = w  - w  = 0. So &E i and v(J$~~ A;,c,) > 0 
iff the residue (mod M) 

c $..A of 1 J&c, is 0. 
YEP YEP 

But a -+ 5 = a + A4 is a ring-homomorphism of I into K, so 

But all A:,$ are EL, no one of them is 0 (because v(&) =O) and the c, 
are linearly independent over k. So, this residue is #O and u(‘&~~ ,J;,sCs) = 
0, i, i.e., v(C YE P &,,c,Z7,) = w  + u,. But then, by ultrametricity, 
v(a) = w  + u, = Min,,v(A,,c,n,). 
q = 1, 2, . . . . f, s = 1, 2, . . . . 

But that implies that B,,= (c,Z7,; 
e) is a basis of K/k (because the dimension of the 
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vectorial k-space k(B,) is n) without discrepancy. Let B be an arbitrary 
basis of K/k, and let 6 = u(det A(B,, B)). Let T be a diagonal matrix of k 
such that u(det T) = -i? (e.g., a diagonal matrix in k having all its diagonal 
elements but one equal to 1, and this last element of order -6). Then TB, 
is also a basis of K/k without discrepancy, and /i( TB,, B) = TA(B,, B), so 

u(det /1( TB,, B)) = o(det TA(B,, B)) 

=u(det T)+u(detn(B,, B)= -E+v’=O. 

So A( TB,, B) is a univalued matrix, and 

O(B) = O( TB,) + h( TB,) - h(B) = h( TB,) - h(B), 

because O( TB,) = 0. So, O(B) is of species 0. Suppose now that K/k is 
defective, i.e., fe < n, and again let 

u(K)/u(k)= it?,, 02, . . . . F “ } and B= (b,, bz, . . . . b,,) 

an arbitrary basis of K/k. Let B,, = {b;; u(bi) E VJ}. As the number of s is e 
and n > ef, there exists some s such that B, contains more than f elements. 
Let 

B.$= Ibicl,,bicz,,...,b,,,,), where 1 >f: 

All u(bici,) are congruent (mod u(k)); so, there exist elements wl, wq, . . . . W, 
of u(k) such that all wj+ u(bic,,) have the same value U. Let t,, cz, . . . . 5, 
elements of k such that u(cj) = wj and let b be an element of K such that 
u(b)=u. Then, for any j, we have u(~,bi~j~b~‘)=w,+u(bicj,)-u=O. So, 
c, = 5jbi,jb-’ is EZ and its residue E; (mod M) is ~0; but, as the number of 
j is >f, the Ej are linearly dependent over R. So, there exist PI, ,ii,, . . . . ,ii,~ k - - 
such that not all are 0 and that ~j~,ci=O. Let p, be some representative of 
jii in i. Then, 

FpjC,=x/T;F,=O and v (xp,~~)>O. 
i / 

But then, if 2.,(,)=pj[,, we have 

= Min u(Aicj,b,,,). 
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So the discrepancy of B is >O. Then the discrepancy of no basis B can be 
of species 0. Suppose, indeed, the O(B) is a real number. Then there exists 
a univalued matrix /i in k such that h(AB)-h(B)= O(B). That implies 
O( /1 B) = 0, which is impossible. 

PROPOSITION 6. The species of v(A(K/k)) is 0 if the valuation of k is 
discrete or K/k is completely flat, and + in all other cases. 

ProoJ: It is obvious that this species is 0 when the valuation of k is dis- 
crete. If K/k is completely flat, C= (c,, c2, . . . . c,-J, where ci, c2, . . . . c,. are 
elements of I such that (C,, C,, . . . . C,) is a basis of K/k, is an integral basis of 
K/k such that O(C) = h(C) = 0. So, it is a O-basis and A(K/k) = A(C). If the 
valuation of k is dense and B is an integral basis of K/k, either Q(B) > 0 or 
O(B) = 0 (which implies d= 1 ), and we assume that K/k is not completely 
flat (i.e., f < n). 

If O(B) > 0, then there exists a univalued matrix n such that h(/iB) > 
h(B) > 0. Then a diagonal matrix Tin k can be found such that - h(AB) < 
v(det T) < 0 and TAB is an integral basis. And we have 

4A(TM) =i r(det T) + v(A(B)) = f o(det T) + u(A(B)) < v(~(~)). 

If O(B) = 0 (so d= 1, n = ef), and if e > 1, some of the elements bi of B will 
be of order v(bi) >O, so h(B) >O. But then there again exists a diagonal 
matrix T such, that -h(B) < v(det T) < 0 such that TB is integral, and 

v(A(TB))=iv(det T)+u(A(B))<v(A(B)). 

So, except when f = n, we always have v(A( B)) > v(A(K/k)), and the species 
of v(A(K/k)) is +. 

Let L be an intermediate field of K/k: Kx L 1 k. Then we shall prove 

THEOREM 2 (Hilbert’s Theorem 39). A( K/k) = A( K/L) A( L/k). 

Proof: Let J; f *, f' be the residual degrees, e, e*, e’ the ramification 
orders, and d, d*, d the defects of, respectively, Kfk, L/k, K/L. Suppose 
that the valuation of K is dense and for some arbitrary E > 0, let B* be an 
s-basis of L/k and /? an a-basis of K/L. Then, by Proposition 1 of Section 1, 
B = B*p is a 2s-basis of K/k. So, for any integral basis B’ of K/k, 
we have o(A(B)) - v(A(B’)) < 2~ and 0 < v(A(B)) - v(A(K/k)) < 2~. In 
the same manner we have O<v(A(B*))-v(A(L/k))<& and 
0 d u(A(/?)) - v(A(K/L)) <E, so O,< v(A(B*) A(a) - u(A(L/k) A(K/L)) < 2~. 
But, as has been proved, we have A(B)= A(B*) A(p). So 
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I~(~(wk))-~(4u~-) dW/L))I . is d 2~ for any F 3 0. But that signifies that 
the real values of o(A(K/k)) and of u(d(L/k) d(K/L)) are the same. 

Now the species of u(d(K/k)), u(d(K/L)), ~(d(L/k)) are 0 if the 
corresponding extension is completely flat, i.e., respectively, .f = n, .f’ = v, 
f* = n*. But f = n iff ,f’ = v and f* = n*. On the other hand, if p,, p2 are 
semi-real numbers of species 0 or +, then p, + p2 is always defined and its 
species is 0 iff p, , pz are both of species 0. So, 

4d(K/k)) and u(d(K/L)) + u(d(L/k)) = u(d(K/L) d(L/k)) 

have also, the same species in case the valuation is dense. 
Suppose now that the valuation of k is discrete. Let C;, = e’Q = o/e*. Let 

B* be a O-basis of L/k such that 

h(B*) = [,f*(e* - I )/2]to, 

and let fl be a O-basis of K/L such that 

h(P)= [,f’(e’- I)/2107 

Then, these bases are also without discrepancy and d(L/k) = A( B* ). 
d(K/L) = A(/?). But B= B*/? is a O-basis of K/k. If [L/k] = n*, [K: L] = v, 

B* = (6:, b;, . . . . b,*)), and /I= (/I,, /I?, . . . . /I,), we have 

= [yf*(e* - 1)/2]w+ [n*f’(e’- 1)/2](0Je*) 

= [df‘If*(e* - 1 ) +,f’yf”(e’ - 1 )](Q/2). 

But flf*=f; so elflf’*(e*-1) + ,f‘*f‘(e’- 1) = ey(r*- 1) + 
f(e’ - l)f(e’e* - e’+e’-1) = ,f(e- 1). because e=e’e*. So h(B)= 
[f(e - 1)/2] o and O(B) = 0. So, B is a O-basis without discrepancy, and 
d(K/k) = d(B) = d(B*p) = d(K/k) d(K/L). 

I shall now expound a certain method of canonical determination of dis- 
crepancy of a given basis B = (b, , b,, . . . . b,) of K/k, which will be useful, in 
particular, in the study of the arithmetic different, which I call “unfolding 
of bases.” I have known this method since 1939 or 1940. L. Gruson found it 
independently and applied this method in 1969 in the more general frame 
of ultrametric Banach spaces. Let V be an (ultrametrically) normed 
vectorial space over an arbitrary valued field k, (I..11 the norm of V, 
I..\ valuation of k. w(..)= -In j\..[( will be called the normative order of V. 

Let B= (b,, b2, . . . . b,) be a basis of the k-vectorial space V with fixed 
numbering of its elements (we shall speak about the ordered basis B) 
and h(B) = xi w(bi). Let, for each i= 1,2, . . . . n, Vi be the subspace 
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kb; + kbi, 1 + ... + kb,,. Let p,(B) = SUP,{W(U); u E bi + Vi+,} - “‘(hi). 
Clearly p,(B) is always 0. We call p,(B) the ith fofd of B, and we call folding 
of B (so enumerated) the sum p(B) = Cj p,(B) of its folds. If p(B) is 
real, and a, E hi + Vi+, is such that ~(a,)- o(bi) = p,(B), the base 
A = (a,, u2, . ..) a,), will be called an unfolding of B. 

We return now to our extension K/k, considered as a k-vectorial normed 
space with the norm //..// coincident with the valuation I..1 of K, and we 
prove the 

THEOREM 3. For a linear basis B of KJk, its folding p(B) and its dis- 
crepancy O(B) are equal. 

Proof First, if aiE hi+ Vi+l and A = (a,, a?, . . . . a,,), A(A, B) is a 
triangular matrix having all elements of its main diagonal = 1. So, A(A, B) 
is univalued and 

c [u(ai)-u(b;)] =h(A)-h(B) < O(B). 

But then p(B) = xi p,(B) = xi Sup,{u(u,) - u(b;): aiE bj + Vi+,} = 
Su~sjC, Cu(a,) - Al; ( a,, u2, . . ..a.) E (b, + I’,) x (b,+ I’,) x . . . x 
{h,,} } < O(B). For proving the inequality O(B) < p(B), suppose first that 
O(B) is real, i.e., K/k is non-defective. Let B* = (b:, b:, . . . . 6:) be a basis of 
K/k without discrepancy and let be B* = A*B. We shall construct a basis 
B** without discrepancy such that A(B**, B)= (A$*) is a triangular 
matrix such that all its elements, which are below its main diagonal (i.e., 
such that j< i) are =O. We shall do that by induction, constructing 
successively some bases B,* = A$B, where Ad = (A,*.i.j) is a matrix such that 
.j< Min[i, q + 11 implies A,*,j= 0. We can put B* = B,* and, if the 
construction is performed, B** = B,*. 

Suppose BY* is constructed. Then, if i> q, we have, if Bt = 
(b$,,, b:,, . . . . b&,), that b& = C. , a y + i A:,,bj (because, for j d 4, 1zi.j = 0). Let 
i* be the index such that 

w.,*) - &y,,., + , ) = Max CU(bzi) - u(;C,*,~,, + ,)I. I>(! 

Perform first a permutation 

7: {q+ 1, . . ..n) + (q+ 1, . . . . n} of the set {q+ I, . . . . n) 

of indices such that T . i* = q + 1, and let bz: = b,*,, .i. It is clear that if 

By** = (b:,, b,$, . . . . b&, by*,;+ ,, . . . . b;,*.), Q(B,**)=O(B,*)=O. 
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We shall write hz* = !I,*., when id q. Suppose that h;T = xi n;,:jbj and let 

and 

“** 
b:+ I.!= b:., - G+ 1.y + 1 ‘w,c, + , by*.;+ , if i>q+l 

Then first by*+ ,,y + 2, . . . . by*+ I,,, generate the k-vectorial space I/, + z to which 
they all belong, and as for any i > q + 1, bz: = bz,rm,. ,, where i > q + 1 and 
i # i*, 

i.e., 

u( i * * I “** q.q+ I.y+ 14/,Ly+ I y,y+ I b** 1 

= LQ-:Z, + I I- G,*.,*+ lx, + 1 I+ u(b;,*+ I )a db;,* 1 

- 4jv:y*+ ,’ j.z,*bz,T+ l f = UC&;,*) - u(;I;.y*+ , ) + u(b$y*+ , I3 o(b;,* ). 

So 4bq*+ ,.i ) 3 Min(v(b,T,*), u(~~,*+ ,‘%~~b~,,+ l)] > (b,T,*). Then for any 
i = 1, 2, . ..) n, we have v(bs+ I,i, 3 v(bzT) and 

w;+l)3w,**) and O(B,*+,)6O(B,**)=o. 

As O(ES+,)>O, we have @(By*+,)=0 and the matrix /1(B:+,, B) 
satisfies the required condition. Then, if f3** = B,T, A(B**, B) = (,I;*) is a 
regular matrix such that A,,, ** = 0 if j< i. But if T is the diagonal matrix 
having the same diagonal elements as n(B**, B), the matrix 
Tp’,4(B**, B) = A( T- B ’ ** B) has all its diagonal elements = 1 and is , 
such, that all its elements, which are below the main diagonal, are 0. It is, 
in particular, univalued. So, on one hand, we have 

O(B)=h(T~‘B**)-h(B)+O(T-‘B**)=h(T~’B**)-h(B)+O(B**) 

=h(T-‘B**)-h(B), because O(B**) = 0. 

And, on the other hand, we have 

,$(T-‘B**)-h(B)=h(/i(T-‘B**, B)B)-h(B)bP(B). 

So O(B) d p(B) and p(b) = O(B). 
Suppose now that the species of O(S) is -, which implies that the 

valuation of k is dense. Let be E > 0. For every i = 1, 2, . . . . n, we can find an 
a,Ebi+ VI+, such that ~(a,) - u(bi) > p,(B) --E and an ii~ k such that 
0 < u(n,ai) < E. Let b: = ,I,a, and B’ = (b;, b;, . . . . b;). If a = C pib( is a linear 
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combination of B’, I say that u(a) 6 Mini u(pi) +ns. Indeed, if V, is, as 
before, kb, + ... + kb, = ka, + ... + kanr I shall show by induction that, if 

UE vq, 

u(a) < Min tj(p,) + (n -q + 1) E. 
‘>4 

That is true for q = n, because u(p,bA) = I&) + u(bA) < u(pL,) + E. Suppose 
this inequality is proved for q > 1, and let 

Hence a = pLy- 1 b& 1 + a*, where a* E V,, and thus 

~(a*) 6 Min u(p,) + (n -q + 1)s. 
i2q 

AlsO u(~~-,~;~,)<z’(~~-~)+E. If u(~*)#O~_~b~~,), we have u(a)= 
Min[v(u*), u(pLyP, b:- ,)I, which is certainly 

db”) - db,- ,) < py- ,(B) and z,(bk-,)-u(b,~,)>p,-;(B)-&, 

so u(b”) - v(bL_ 1) <E and 

u(u)-v(u*)=u(~,.-,~,_,b”)-u(~c,_,~,_,b;~,)=u(b”)-u(b;~,) 

is -8, so v(a)<u(u*)+~=u(pq~,b~-l)+~. But 

~(a*) + E < Min u(pi) + (n - q)E 
i2y 

and 
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so, 

u(a)<l~qi~~, “(Pi)+ (n-(4- l)+ l)&. 

As V, = K, we have for any UK, o(a) < Min, ~(11,) + FE. 
But, if u(a)>ne, we must have, for any i, c’(pi) >O. Hence B’ is an 

m-basis, but then O(B’) dn(ns) = n’.s, and if A = (a,, a?, . . . . a,), we have 
@(A)=@(B’). So O(B)<h(A)-h(B)+&. But h(A)-h(B)<p(B), so 
O(B) < p(B) + n% for any E > 0. So, the real values of O(B) and of p(B) are 
the same. But as p(B) d O(B), and the species of O(B) are -, that of p( B) 
cannot be 0, and we have p(B) = O(B). 

Remark 1. Some of the folds p,(B) of a basis B are of species 0, and 
some of species - They are called, respectively, zero-folds and minus-folds. 
It will be shown in another publication that the number of zero-folds of a 
basis B does not depend on its choice and isfe. 

3. ARITHMETIC DIFFERENT: DEVIATION, DEDEKINDIAN 

AND HILBERTIAN EXTENSIONS; EXAMPLES OF NON-DEDEKINDIAN 

AND NON-HILBERTIAN EXTENSIONS 

As we have already said, the arithmetic different 6(K/k) of K/k is the 
g.c.d. of 6(u) = (fbJa)) when a ranges over I*, i.e., the ideal of I generated 
by all J:,k(u), a E I*. So 

u(G(K/k))=Inf {v(6(a);a~Z*)=Inf {u(d(B,));a~I*), 
s s 

where I* is the set of all primitive integral elements of K/k and, for such 
element a, B, is the basis (1, 1, . . . . a’ ‘) of K/k. 

If B is any integral basis of K/k, we have 

u(d(B,))-u(d(B)= -iu(detn(B. B,)), 

and so 

u(d(B,)) - o(d(K/k) = -f Syp v(det n(B, B,)), 

where B ranges over the integral bases of K/k. 
Let T be a diagonal matrix such that 

- u(det T) = u(det A( B, B,)). 
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Then, TA(B, B,) = A( TB, B,) is univalued and O( TB) = O(B). So, 

O(B,)=h(TB)-h(B,)+O(B)=v(det T)+h(B)-h(B,)+O(B) 

= --o(det A(B, B,))+ [h(B)-h(B,)] + O(B). 

And we have u(d(B,)) - v(d(B)) = (2/n) o(det A(B, B,)). So 

u(A(B,)) - u(d(B)) +; O(B) = -; {[II(B) - h(B,)l + @CBA}. 

Suppose first that the valuation of k is discrete, and let B be a O-basis of 
K/k without discrepancy, so O(B) = 0 and h(B) = [(e - 1 )f/23cu. We have 
always 

h(B,)= u(l)+ u(a)+u(a2)+ ... + ~(a+‘)= (1 +2 + ... +n- 1) r(a) 

= (n(n - 1)/2) u(a). 

so, 

W(B,))-44B))=;O(B,)-;[(e-l)fw-n(n-1)0(u)] 

Suppose now that the valuation of k is dense, and let B be an s-basis 
of K/k (E > 0). Then, we have h(B) <BE and O(B) d ne, so 
(2/n)(h( B) - O(B)) < 2s and 

If there is a O-basis of K/k, i.e., K/k is completely flat, and if B is such a 
base, we have 

o(d(B,))-o@(B))=; [O(B,)+(n(n- 1)/2)71(a)]. 

We call O’(a) = @(B,) - fl(e - 1)fw - n(n - 1) u(a)l, where we put w  = 0 if 
the valuation of k is dense, the reduced discrepancy of a. Clearly, if ;1 E k, we 
have @‘(kz) = @‘(a) + Q+ - 1) u(A). 

The reduced discrepancy O’(a) is a semi-real number of the same species 
as O(B,), i.e., of the species 0 when K/k is not defective (and, in particular, 
when the valuation of k is discrete), and of species - when K/k is defective. 

We define the deviation of K/k by e(K/k) = Inf,{O’(a); aEZ}. 
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When this infimum is reached, e(K/k) has the species 0 or -; when it is 
not reached, the species of e(K/k) is +. So e(K/k) may be a semi-real 
number of any species. 

In the case of dense valuations, we have also 

e(K/k) 2 lnf { O( B,); 0 E Z* ), s 

and these two semi-real numbers have the same real value and, if the 
species of e(K/k) is not + , then they are equal. 

Indeed, first, if a E I*, O(B,) d O’(a), so 

I;f { O(B,); a E Z*} < e(K/k). 

If the species of e(K/k) is 0 or -, the Inf,{ O’(a); a E I*} is reached, so 
there exists an QE I* such that O’(a) = e(K/k). But then u(a) = 0 and 
O’(a) = O(B,). Indeed, if r(a) >O, then there exists 1 E k such that 
-o(a)<o(A)<O and so i.u~Z and @‘(Au)=@‘(u)i-$r(n-l)u(A) is 
<O’(u), which is contradictory. So Inf,{ O(B,); a E Z} = e(K/k) in this case. 
If the species of e(K/k) is +, we have also 

e(K/k)=lnf {@‘(u);O<u(u)<~J 
s l 

But, if u(u) GE, we have O(B,) > O’(u) - $n(n - 1 )E, hence 

IFf {O(B,): UEZ*} >e(K/k)=&~(n- 1)s for any E > 0. 

Thus, it has the same real value as e(K/k). 
We have, if B is a O-basis of K/k without discrepancy, the relation 

d(B) = d(K/k) 

and 

u(G(K/k)) = Itf {~(&a)); UEZ*} 

= l;f { u(d(B,)); u(u) 2 O} 

$Y(a);u(u)>O 

=u(A(K/k))+ie(K/k). 
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So, if there exists such a basis B (i.e., 8 the valuation is discrete or K/X is 
completely flat), the species of v(b(K/k)) is the same as that of e(K/k). 

Besides, as such extension K/k is non-defective, all O’(B,) are of species 
0, and e(K/k) cannot be of species -. 

Consider now the case, when the species of u(d(K/k)) is +, i.e., there 
exists no O-basis. (So, in particular, the valuation of k is dense.) Inf, O’(a) 
is reached when a ranges over I*. It must be reached, as we have seen, for 
some a E I* such that u(a) = 0, and &K/k) = 6(a) = d(B,). The real value of 
v(G(K/k)) (i.e., o(G(K/k)) itself) is the sum of that of u(d(K/k)) and 
(2/n) e(K/k), but we can write 

u(b(K/k)) = u(d(K/k)) + f e(K/k) 

only if u(d(K/k)) is of species 0, because if that is not the case, the species 
of u(d(K/k)) and of (2/n) e(K/k) are, respectively, + and - (i.e., opposite) 
and the addition cannot be performed; but in both cases, we can write 

u(d(K/k))=a(d;(K/k))-fe(K/k) 

and 

e(K/k)=z [u(d(K/k))-u(d(K/k))]. 

Suppose now that the species of u(d(K/k)) is + and that Inf, O’(a) is not 
reached. Then, clearly e(K/k) and u(G(K/k)) both have the species +. As 
v(d(K/k)) has the species 0 or +, u(d(K/k)) and (2/n)e(K/k) can be 
always added, and u(G(K/k)) = u(d(K/k)) + (1/2n) e(K/k). But we cannot 
write 

4Klk) =: [4&K/k)) - u(d(K/k))] 

and 

u(d(K/k))=u(S(K/k))-;e(K,k). 

But in all cases, the type of valuation of k with the residual degree of K/k 
and two of the expressions u(A(K/k)), u(G(K/k)), (e(K/k) determine the 
third. We have, indeed, 
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THEOREM 4. The real value of v(G(K/k)) is the sum of that of 

44W) and f e(K/k). 

Proof Given already. 

The species of v(d(K/k)) is 0 if the valuation of k is discrete or K/k is 
completely flat and + if the valuation of k is dense and f < n. The species 
of u(G(K/k)) cannot be -. If the valuation of k is discrete or ,f = n the 
species of e(K/k) and of v(G(K/k)) are the same. If the valuation of k is 
dense and f -=E n, then the species of e(K/k) is -, if that of v(G(K/k)) is 0, 
but it is + if that of u(G(K/k)) is +. 

An element a of I primitive in K/k such that 6(a) = 6(K/k) is said to be 
discriminantial, and we denote by I, the set of all such elements. 

Clearly, it is not empty iff v(G(K/k)) is real. In the general case, we 
define, for any E > 0, E-elements of K/k all aE I* such that 
u(d(a))- v(G(K/k)) GE, and their set will be denoted I,,. As 6(a) and 
6( K/k) are both ideals of K, we have I,, = I, if E < co, when the valuation of 
k is discrete. 

An extension K/k is called quasi-dedekindian if the real values of 
t(S(K/k)) and of v(d(K/k)) are the same, i.e., the real value of e(K/k) is 0. 
As e(K/k) >/ 0 its species can be, in this case, only 0 or +. If e( K/k) = 0 the 
extension K/k is called dedekindian. 

We see from the preceding theorem that K/k cannot be dedekindian 
when the valuation of k is dense and K/k is not completely flat. 

An extension K/k is called hilhertian if for every intermediate field L of 
K/k, we have 

v(G(K/k))=v(G(K/L))+v(&L/k)) 

[i.e., &K/k) = &K/L) 6(L/K)]. 
If only the real value of v(G(K/k)) is the sum of that of v(G(K/L)) and 

u(G(L/k)), K/k is said quasi-hilbertian. Clearly, if the valuation of k is dis- 
crete, a quasi-dedekindian (resp. quasi-hilbertian ) extension is dedekindian 
(resp. hilbertian). 

We call dedekindian problem that of characterization of dedekindian and 
quasi-dedekindian extensions and hilbertian problem that of charac- 
terization of hilbertian and quasi-hilbertian extensions. 

At the end of this section I shall give the characterization of dedekindian 
extensions, hence, in particular, the solution of the dedekindian problem in 
the case of discrete valuations, and the much more difficult solution of this 
problem for dense valuations (i.e., characterization of quasi-dedekindian 
extensions) will be given in some other publication. 
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--. 
An extension KJk will be called classical if K/k 1s separable and the 

valuation of k is discrete. It will be called quasi-classical if K/k is separable, 
o(K)/o(k) is cyclic, and K/k is not defective. 

LEMMA 4. An e.utension K/k is dedekindian iff there exists some a E I* 
such, that some unfolding A of B, Klould be a O-basis of K/k bvithout dis- 
crepancy. And K/k is quasi-dedekindian iff for an-v E > 0 there exists an a E I* 
such, that B, is an E-basis. 

Proof If b, E a’ + Vi+ , and B = (b,, b, , . . . . b,, ~ , ), A( B, 8,) is certainly 
univalued and A(B)= A(B,). If B is a O-basis of K/k we have 
A(B) = A(K/k), and if B is an e-basis of K/k we have A(B) - A(K/k) < 2~. 

We have in the first case. 

o(G(K/k)) 6 o(A(B,)) = zl(A(B)) = v(A(K/k)) 

and as z)(&(K/k))>u(A(K/k)) we have u(G(K/k))= o(A(K/k)) and, as 
v(A(K/k)) = o(A(B)) is of species 0, we have e(K/k)=O. 

Besides, we must have O(B) = O(B,) - p(B,) = 0, SO B is without dis- 
crepancy. If the valuation of k is dense and if B, is an E-basis, we have 

t(6(a)) = o(A(B,)) 6 v(A(K/k)) + 2~ 

and 

o(h(K/k)) < o(A(K/k)) + 2~. 

So, if for every e > 0 there exists an a E I+ such, that B, is an s-basis, we 
have, for every E, o(d(K/k)) < o(A(K/k)) + 2s and u(d(K/k)) and u(A(K/k)) 
have some real value, so e( K/k) < 0 +. 

Suppose that K/k is dedekindian, i.e., e( K/k) = 0. That requires first that 
the species of u(G(K/k)) is 0, because otherwise that of e(K/k) is +. 

Let a E I* be such that &K/k) =6(a) = A(B,). Then if K/k is dedekin- 
dian, we must have A(K/k)=A(B,). But that implies that A(K/k) is of 
species 0, i.e., that K/k has a O-basis B, and that A(B,) = A(B) and 
ll(det /1( B,, B)) = 0. But as B is a O-basis and B, and integral one, A( B,, B) 
is integral, so B, and B generate a same i-module, and B, is a O-basis 
of K/k. 

In the case of discrete valuation, O(B,) = p(B,) is certainly real, so there 
exists an outfolding A of B,, and A is also a O-basis of K/k. Its discrepancy 
is O(B,) T p( B,) = 0. 

In the case of dense valuations, K/k must be completely flat and h(B,) 
must be 0; i.e., u(a) = 0. 

If O(B) = p(B) > 0, there exists a univalued matrix n such that AB, is 
integral and h(AB,) >O. But as B, is a O-basis, for every 

641/28/l-4 
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h=Cl<i<n JjuiP ’ E Z, all Izj must be Ei. So, /i is an integral matrix, and 
/1B, must also be a O-basis which implies h(nB,) = 0. This contradiction 
shows that p(B,) = O(B,) = 0, so B, is already unfolded. 

If K/k is quasi-dedekindian, then there exists, for every E > 0, an UE Z* 
such that u(d(B,))--u(d(K/k)) < E, i.e., for any integral basis of K/k, 
o(d( B,)) - u(d( B)) < E. That implies o(a) < E and Q( B,) < n&/2. Indeed, if 
u(a)>&, then there exists a 1~ k such that 

-u(a)<u(E,) G --E, so u(EWa)30 and det A(B,,, BU)=j.““’ “i2, 

so u(det A(B;.,, B,))= [n(n- 1)/2] u(i)< [-n(n- 1)/2]~, and 

2 
u(d(B,))-t,(d(B,,))= -- u(det A(B,,, B,))> (tz- ~)E>c. n 

And if O(B,) > 42, then there exists a univalued matrix such, that 
h(dB,) 3 h(B) + (m/2). 

But then there exists a diagonal matrix T, such that u(det T) < --m/2 
and that B = TAB, is an integral basis. Thus 

u(d(B,))-u(d(B))= -zt:(det T/1)= -z(det T)gz(nt;i2)=~, 
n n n 

which is impossible. But then B, is E + (n&/2) = (n + 2)&/2-basis and the 
assertion is proved. 

THEOREM 5. Zf K/k is a classical extension, it is dedekindiun. Zf it is 
quasi-classical, it is quasi-dedekindian. 

Proof (The idea can already be found in the Zahlbericht [3], 
Theorem 29.) Let a’ be an element of Z such that its rest 5’ = a’ + M 
(mod M) is a primitive element of E/I? (which exists because K/E is 
separable). 

Let be firin the minimal polynomial of Cs’ over R. Let 
f(x) = c,, + c, X + c2 X2 + . . + Xf be a unitary polynomial i[X] of degree 
fsuch that its residual polynomial 

c,+r,x+ ... +xf is f6dX). 

Then f(u) becomes ffizlk(a’) = 0, so o(f(u’)) > 0 and, iff’(X), f bs,k(X) are the 
derivations of f(X), fcsk(X), f’(a) has the residual polynomial f &(a’) # 0, 
because a’ is a simple root of fa.,k(X). 

So, u(f ‘(a’)) = 0. If K/k is completely flat, (1, a’, . . . . a’/- ‘) is its O-basis 
[and that does not require even the separability of K/k, but only the 
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existence of a primitive element a, i.e., its simplicity]. If f < n and P is an 
element of K such that V(P) > 0, then we have 

f(a’+P)=f(a’)+f’(a’)P+P2g(u,P), where g(X, Y) 

is some polynomial E i[X, Y], hence 

o(f(u’ + P) -f(a’) -f’(u)P) 2 20(P). 

Suppose first the valuation of k is discrete. If o(f(a’)) = Sz, we put n=f(u) 
and a = a’, and when u(f(u’)) is >Q we choose some PE K such that 
o(P) = 8, and we put a = u’ + P and n=f(u + P). 

In all cases, we have ti = ti’, and u(Z7) = a. So, if 

b rLf+s =z7+-%zf-s-1(q=o, 1, . ..) e- l;s= 1,2, . ..) f), 

B= (b,, bz, . . . . b,) is a O-basis of K/k without discrepancy, which is an out- 
folding of (a”-‘, a+‘, . . . . l), which is the permutation of B. So K/k is 
dedekindian. When the valuation of k is dense, then there exists for every 
E > 0, a P E K such that m(P) < E and u(P) generates the cyclic group 
u(K)/u(k). Then, if E < ~(/(a’)), we put u = a’ + P and n=f(u) =f(u’ + P). 
We have u(l7-f’(u’)P) = u(P2g(u’, P) +f(a’)) > Min[c, f(u’)] > u(P) and 
as u(f’(u’)) = 0, we have u(n) = u(P). 

So, if B is again the same as before, we have, if d = 1, that B is a basis of 
K/k without discrepancy and 

h(B)= [(e- l)f/2] u(P)<nu(P)<~, 

so, if B is an c-basis of K/k and as A(B, B,) is univalent and integral, B, is 
also. So K/k is quasi-dedekindian. 

We have proved at the same time the following: 

PROPOSITION I. If Kfk is simple and K/k is completely flat, then it is 
dedekindiun, 

and 

PROPOSITION 8. If the valuation of k is discrete, R/k is simple, but not 
separable, Kfk is not completely flat, and v(flu’)) = Sz, then the extension is 
dedekindiun. 

Also it is clear that for a fixed 3, this property does not depend on the 
choice off and of a’, because first if fi(X) has also f,p,k(X) as residual 
polynomial, the order of all coefficients of f,(X) - f(X) is > o = eS2 > C2 
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and u(f(a’) -fI(a’)) > 8. Thus u(f(a’)) and u(fi(a’)) are =D at the same 
time. On the other hand, if z = ;;i, we have a” = a’ + P where u(P) >, $2. 

Then f( a”) - f(a’) = f’( a’) P + P’g(a’, P). 
Butf’(a) =f$,#). As a is not separable over k, we havefi9,r(z) = 0, so 

u(f’(a’))>O and (f(a”)-f(a’))> Q. So u(f(u”)) and u(f(a’)) are =Q at 
the same time. We shall see that this condition does not depend even on 
the choice of a’. We shall put this condition in the following form. 

PROPOSITION 9. If the valuation of k is discrete and K/k is simple, Kjk is 
dedekindian then there exists an a E I such that ii is a primitive element of 

K/L andf,,k(W has the form f(W“+Cz=~,~ . . r-l,l=~,~ ,..., ~-la~,~f(V'x' 
such that, for all i, j, U(Q) > 0 and Min,u(a,.,) = o, and f[X) E i[X]. 

Proof: First, as n = ef, f(X) has the degree f, On the other hand, for 
every i, 0 < i < e, and for any j = 0, 1, . . . . f - 1, we have u(c(~,,) 2 w, so 
eu(f(a)) = Q(a)‘) 2 o and o(f(a)) b 52 > 0. But then, if 0 < i< n. we have 

V ( c a.f(u)V) >o. 

OSiSl 

Let rr be an element of k such that u(n) = o. Then, for any j, 
4x ~ ‘ao,j) > 0, i.e., 7c - ‘cl0 i . E i, and for some j we have u(7c -‘~r~,~) = 0, SO the 
residue di = s E R is #O. So, the residue 

is Co G j<, Jj& and not all 5 E k are 0. But as E/k is of degree f and Lf is its 
primitive element, (1, rf, . . . . a/- ‘) is a linear basis of this extension, and the 
residue is #O, so 

u 71-l 
( 

c aO.ju' 
) 

=o 

O<j<f 

and 

u C ao,,ui =u(7c)=m=eSZ. 
O-cjcf > 

But, as u(ai,jaif(a)i) > o for i > 0 and any j, fa,,(a) = 0 implies u(f(u)) = Q. 
Let 
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Let Min 0 4jGy(/?j) > 0, so 2 w. Then, f(a) > o > 52 and therefore, we must 
have Mini 0(/3,) = 0. Let Bj be the residue of pi. Then, not all bj are =O and 

,<~~,~j~‘=f(a)=O. 
. . 

But every combination over L of 1, 2, . . . . Cf which is =O, is proportional 
tofa,da), so fi,#O and 

So, fiylf(X) is unitary, the residual polynomial of /?,-‘~(X)E i[X] is 
fall;(X), and u(j?~‘f(a)) = 0. So, the hypotheses of Proposition 8 are ful- 
filled, and K/k is dedekindian. 

LEMMA 4. If, with the notations of Proposition 8, u(f(a’)) > 52, B,, is not 
a O-basis of K/k. 

Proof: Let I7 be an element of I such that u(Z7) = Q. If B,, is a O-basis, 
i.e., I= i(B,.), then there exists a polynomial g(X) E i[X] such that 
Z7= g(a’). If we divide g(X) by f(X), which is also EI’[X] and is unitary, we 
have g(X) = q(X) f(X) + r(-V, where q(X) and r(X) are &[X] and the 
degree of r(X) is <J Then, u(q(a’)f(a’)) 2 u(f(a’))>Q, and, as 
u(g(a’))= u(Z7) =Q, we must have u(r(a’)) =52. But that is impossible. 
Indeed, r(a’)=&,j<r J Aa”, where all 3Lj are pi. If Mini u(S) > 0, it is 
>w > Q, and u(r(a’)) > R. And if Mini u(S) = 0, we have r(a’) = cj AjTi, 
and not all 5 E R are 0. But i, 2, d2, . . . . T-“- ’ are linearly independent over 
R. So, r(d) # 0 and u(r(a’) = 0 # Q. So, B,, is not a O-basis of K/k. 

LEMMA 5. If, for some primitive element ii of K/k, u(f(a)) = Q where 
a E I is such, that IT is its residue, and where f(X) E i[X] is a unitary 
polynomial having f&X) as its residual polynomial, the same condition holds 
for any other primitive element 3 of Kfk. 

Proof As ci’ is primitive in E/k, ti is a linear combination Co, ji/;cia’i 
0f i, a', . . . . rs+ 1. Let a’ E I be such that its residue 2 is = 2, and let Aj be 
an element of i such that its residue is 5. Then a* =x0< jC/dj Aja’j is 
-0 (mod M), so its residue is CT. Therefore, B,. is a O-basis of K/k, so 
i(B,.) = Z. We have a* E i[a’], so every a*j is oi(a’], and B,. E i[a’]. So, 
Zz i[a’] 1 i(B,,) = Z, i.e., i(a’] = I and B,, is a O-basis of K/k. 

PROPOSITION 10. Given a discrete valuation of k, let an element of I be 
such that its residue ti is primitive in K/k and f(X) E i[X] a unitary 
polynomial of degree f having fti,k(X) as residual polynomial. Then, if 
u(f(a)) > Q, K/k is not dedekindian. 
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Proof: Suppose that K/k is dedekindian. Then, for some a’ E I, B,, is a 
O-basis of K/k. In particular, the ring k[T] must be =$ so 2 is primitive 
in E/k. But then, by Lemma 5, B,, is also a O-basis of K/k, which con- 
tradicts Lemma 4. 

EXAMPLE 1. Let f(X) E QX] be an irreducible unitary non-separable 
polynomial, f(X) E i[X] a unitary polynomial having f(X) as residual 
polynomial, z a root of f(X), g(X) E i[X] an Eisensteinian polynomial, I7 a 
root of g(X). Then, if K = k(z, Z7) and 2 is the rest of z, we have R= R(F) 
and f(X)=f&X). But f(z)=O, so Q(z))= +co >Q, and K/k is not 
dedekindian. 

PROPOSITION 11. If the residual extension K/k of K/k is not simple, K/k 
is not dedekindian. 

Proof Let be a 6 I. Suppose that B, is a O-basis of K/k. Then, for every 
by Z, there is a polynomial g(X) E i[X] such, that b = g(a). But then, if 
g(X) is the residual polynomial of g(X), we have 6 = g(a) = g(G) @ci). As b 
can be arbitrary elements of R for convenient b E Z, it follows that R= R(a), 
i.e., K/k is simple in contradiction with the hypothesis of the proposition. 
Thus, no B,, a E I, is a O-basis, and K/k is not dedekindian. 

EXAMPLE 2. Let R* = L(ti, 6) be a non-separable extension of R, which 
is not simple, f(X) =f&(X) and g(X) =j&,,(X), and let d, d’ be the 
degrees [k(a) : k] and [R: R(a)] of j(X) and g(X). There exists a 
polynomial h(X, Y) E L[X, Y] of degree d’ in X such, that g(X) = h(X, a). 
Let f(X) E i[X] be a unitary polynomial of degree d having f(X) as its 
residual polynomial. Then, there exists a root a of f[X] having 5 as its 
residue. Let h(X, Y) be a polynomial Ei[X, Y] of degree d’ in X having 
h(X, Y) as its residual polynomial. Then g(X) is the residual polynomial of 
g(X) = h(X, a), and there is a root b of g(X) having 6 as residue. Let 
K= k(a, b). We have n = [K : k] = [k(a, b) : k(a)][k(a) : k] < dd’ and 
Rzk(ti, 6), so f = [R: R] > [L(Cr, 6) : k] =dd’. Hence f an, i.e., f =n, and 
R = R* = R(5, 6). So, K/k is completely flat and jr@ is not simple. In par- 
ticular, K/k is not dedekindian. 

THEOREM 6. A valued extension K/k is dedekindian only in the following 
three cases : 

(1) the valuation of k is discrete and K/k is separable (“classical 
case”): 

(2) KJk is completely jlat and KJk is simple; 

(3) the valuation of k is discrete, K/k is simple, and, for some a E I 
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such that its residue a is primitive in K/k, and for some unitary polynomial 
f(X) c i[X] of degree f = [K : k] having fi,k(X) as its residual polynomial, 
v(f(a)) is =Q. 

Remarks. (a) The case (3) can be restricted to not completely flat 
extensions K/k and to non-separable QlR, because the other cases enter in 
(1) and (2); (b) if the hypothesis of case (3) is fulfilled for some a andf(X), 
it is fulfilled for every a and f(X) satisfying the same conditions when Z/iZ 
is not separable.) 

Proof It is already proved that K/k is dedekindian in the cases (1) (2), 
and (3) (Theorem 5 and Propositions 7 and 8) and that K/k is not dedekin- 
dian in all other cases if the valuation of k is discrete (Proposition 10) or -_ 
K/k is not simple (Proposition 11) (Remark (b) is also proved by 
Lemma 5, and Remark (a) is obvious.) So, the only doubtful case is if the 
valuation of k is dense, K/k is not completely Rat and X/k is not simple. If 
so, v(d(K/k)) is of species +. If v(G(K/k)) is of species 0, e(K/k) is of 
species -, so is >O+, and K/k is even not quasi-dedekindian. And if the 
species of v(G(K/k)) are +, those of e(K/k) are the same, and K/k is or is 
not quasi-dedekindian, but never dedekindian. 

4. CONNECTIONS WITH THE RAMIFICATION THEORY 

Let be K/k a separable valued extension of finite degree of an henselian 
field k and G the set of all isomorphisms of K/k into some overfield K 
of K normal and of finite degree over k with the valuation prolonging 
that of K/k and G*={a~G;a#l.}. If aEK and crag, we call 
D(CJ; a) = u(a a -a) E u(K) u { + CYJ } the characteristic number (or value, 
which is the better term for Krull valuations, where the elements of v(p) 
are generally not numbers; but here we consider only valuations with real 
values) of c7 in a; 

u(0) = Irjf {v(a; a); a E I} 

is called the characteristic number (or value) of c. 

THEOREM 7. For every E > 0, there exists an a E I such that 
c vtGg Cv(a; a) - o(a)1 d E. 

Proof Let us suppose first that the residual field k of k is infinite. For 
any r~ E G*, we can find an a, E I such that u(o; a,) - u(a) < ~/(a - I), where 
N = [K: k]. Consider a=CgtGI /2, a<, where all 2, are Ei and u(n,) =O. 
Then, if asG*, we have g.a-a=xtEti* A<( u . at - at). Suppose that 
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v, = Min 5EGI~(~.ae;--a5)=MinS...v(a;a:), and let Z~,EK’ be an 
element such that v(flO) = v,. If R’ is the residual field of K’, and I’ its 
valuation ring, we have (a. a4 - at)/R& E I’ and the residue P,.< of this 
element of I’ is 8’. So, if ;i; E R is the residue of AC, we have 
Z~~-‘(~.U-U)=&., &pm,; and if CSEG* ,Qp,;#O, we have 
v(a. a- a) = v(F&) = v, Q u(a .a, - a,) d u(a) + [s/(n - l)]. But as R is 
infinite, it is always possible to find elements X, of R such that 
z eec.1e~o,5, for all CJEG*, are ~0. So, if u=C;..A;ug with A, having 
such residue A;(< E G*), we have (IS .a- a) d U(CJ) + [&/(n - l)]. So 
Iz oco* [v(a;u)-u(a)] <(n-- l)[s/(n- l)] =s. 

Suppose now that the valution is dense, and let u’,,: = v(a; a,) = 
u(a.uS-uE). Let u]>O and < [~/(n- l)] - Max,... [MI,.,-U(CJ)] = 
[c/(n- l)] -Max,,,,* [~(a; a,)- r(o)] (which is >O). 

Suppose that all i,, E i are such that v(&,) < ye. Then, if in addition, 
for rs~G* all v(&[o .a( -a(]) = v(&) + w,.; are distinct, we have 
v(a.u)-a = 4CrEG* ~t[~~~~-~J) = MincGGe Cv(~t~+w,.rl < 
Min, E G. w,,; + v] < w,,, + g. So, 

y* [v(a . u - a) - v(fJ)l6 1 Cv(Ua ‘a, -a,)) - v!fl)l 
CTstc* 

= .;;* [u(L) + \l.o,al G c )i’,,, + (a- 1 Iv 
CEG’ 

+r:-(n- l)Max w,, 
oto* ’ 

d c M’,., + E - 1 M’,,, = E. 

fTtG* rrtr;* 

And, as the valuation is dense, such I, E k can be found. So, the 
proposition is proved also in this case. 

When the valuation is discrete and k is finite, k and K are locally com- 
pact, i.e., p-adic or fields of power series of one variable over a finite field. 
In this case, if Z7o K is such that v(n) =D and if CZE I belongs to the 
maximal nonramilied subextension of K,/k of K/k (for their existence see, 
in the p-adic case, my paper [S] and in the general henselian case my 
preprint [13]. Also, see Ostrowski [ 161) and 5 is primitive in K/k, we 
have, for every 0 E G, v(o) = u(o; a + Z7) (when K/k is completely slim, even 
V(D) = v(a; Z7); see the proof in the p-adic case in [S]; the proof in the 
other locally compact case is similar). 

PROPOSITION 12. The real values of 0(6(K/k)) and of CotG.v(~) are 
equal. 
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Proof We have first o(6(a)) = umoeG* (a-c7.a)) = 

c OEG* U((T.U-a)=~,.. . u(o; a). There exists, for every E > 0, an a E I 
such that u(d(u)) - u(G(K/k)) <E, i.e., u(G(K/k)) > u(S(u)) -E = 
1C OE G* da; a)) - & 2 (c LEG. u(a)) - E. But, by the preceding theorem, there 
exists an CIE I such that xaEG’ [v(o; a) - v(a)] = v(d(u)) - CoeG’ u(a) is 

(ci&’ ,~,~‘,“ib,,, 
v(6(u)) < (xCEGI u(a)) + E and, therefore, Iu(G(K/k)) - 
< E. The difference of the real values of u(G(K/k)) and of 

Ii2 aeG* u(a) is, for any E > 0, less than E in absolute value. So, these real 
values are equal. 

THEOREM 8. We have 0(&K/k)) = CoeG* u(a). 

Proof: Suppose first that o(G(K/k)) has the species 0 (that is always the 
case if the valuation of k is discrete). Then there exist discriminantial 
elements a, i.e., a E Z, such that u(G(K/k)) = u(&u)) = xaEGa ~(a; a). The 
value u(~(u)), which is real, is equal to the sum of real values of 
u(o), g E G*. But, ~(a; a) > u(a), so is equal or greater than the real value of 
u(a). And the equality of sums of these real values and of (real) u(o; a) 
implies that ~)(a; a) is equal to the real value of u(a) and, as the species of 
e)(a) is 0 or +, ~(a; a))<u(a). But that implies u(c‘; a)= u(a) and 
N&K/k)) = C oec* u(a). Suppose now that the species of u(G(K/k)) is +, 
so the valuation is dense. The sum CaGG. u(o) has the same species 
iff some u(a) is of species +. Suppose that all U(G) are of species 0. 
Then, for every QE G* there exists an U,E I such that ~‘(cJ; a,) = u(a). 
We must have ~(a,) = 0, because if ~(a,) > 0, we can find a i E k 
such that - ~(a,) < u(L) < 0, and, then la, is EE and we have 
U(C, Aa,) = u(J) + u(a) < u(a), which is absurd. If R is initinite, we prove as 
previously the existence of an a E I such that for any DE G*, 
u([T; a) = u(o; a) = u(o) and u(G(K/k)) d ~(&a)) = CotG. u(a). But as 
u(G(K/k)) has the same real values as CacC* u(a), which is real, and is of 
species +, we must have u(G(K/k))>C,,,. (u(o)), which is contradictory. 
If k is finite, R//I; is separable, and the greatest non-ramified extension K,/k 
of Kfk has I?/& as residual extension. Then, if r~ E G&CIKr = GKIKr n G* and 
UE I is such that u(u) =O, there exists an ii~ I,, where Z,=Zn K,, such 
that ~(a-iZ)>O and a(u-ii)-(a-;)=(a.~-a)-(o.ri--(?)=a.~-a. 
So ~(0; a) = u(o; a - 5), and, as o(u - 2) > 0 cannot be = u(a). So 
G KIKr n G* must be @, and G,,, = ( 1 K}, K = K, and K/k is not ramified. 
But then (see [S]) if a~1 is such that ii is primitive in K/k, we have, for 
every OEG*, 0= ~(a; u)>u(a) and u(6(~))=03u(G(K/k)). As v(o) and 
u(G(K/k)) are 30, we have for every crag*, u(a)=0 and u(G(K/k)) ~0, 
which proves the theorem. 

COROLLARY 1. If a E I is &-discriminuntiul, we have C,, Ga [c(o; a) - U(C)] 
6 &(obuious). 
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THEOREM 9. Always, u(d(K/k))~u(G(K/L)6(L/k)). 

Proof: (Which, practically, is given already in the Zahlbericht [3] of 
Hilbert, Theorem 39.) 

Let I0 be the valuation ring of L, and K’/k being some normal 
overextension of K/k, let G, Go, g be the sets of all isomorphisms of, respec- 
tively, K/k, K/L, L/k into K’. If 6 E g, let G(5) = {Q E G; (CT 1 L) = 5) [where 
(e ( L) is the restriction of L-J to L]. So, in particular, Go = G( lL). If an 
automorphism 6’ of K/k induces Cs on L, we have obviously (in 
Bourbaki notation) 0’0 Go = (0 0 a; u E Go} = G(5). Let a E I be a 
primitive element of K/k and let fulL(X) = P + c,_ ix”- ’ + .. . + 
co(co, Cl 2 ...I c, ~ 1 E L) be the minimal polynomial of a over L and f,,,(X) its 
minimal polynomial over k. We have fuik(X) = naEG (X- c . a) = 
nirsg KIcTEGm (X- cs .a)). But nCEG,a, (X- CJ .a) = [O]f,,L(X), where 
[a] .f0,L(X)=x”+(6.c,P,) Y-l+ . ..(O..co). Indeed, let r~’ be an 
automorphism of K/k prolonging 6. As 0’0 GO= G(C), we have 
JJ,,,,,,(X-0.u) = ~,E~“(x-(o’~o)~u, = n,,@(X-a’(o.u)) = 
P + (e’.c,,+,) IT’+’ + ... + (a’.~,), and as co, c,, . . . . c,-i are EL, 
we have B’.L.~= c?.ci and nOEG,o, (X-~.a)= CC?], &L(X). But then 
f::k(a) =f:,L(a) rIaty. CT+ Ir( [Id .frr,d(a). so a”:,k(a)) = Uk,L(Q)) + 
CntmT+lL d([d .,f,,,L)(a)). But as f&a) =O, we have Cd .frrld(a) = 
Cd .L,,i.M) -L,,(a) = (163 .L,;L -fu!L)(a). But (lial.fa,L -.fu:JW = 
(x” + (a.c,,+,)X”-’ +...(cT.c,)) - (x” + cnm,x-‘+ . ..+c.) = 
c O<r<n- ,(~‘c,-ci)X’. SO, ([~].fu,L)(u)=COCr~n~, (e.c,-cc,).ui. As 
u(u) > 0, we have v( ([6] .fU,L)(u)) 2 Min, U(CJ . ci - ci); so, as all C, are EP, 
it is >uu(6) and u(~~.,.,. 1L (Cd .fuIL)(a)) is 2Cota,cz IL 45) = 
u(G(L/k)). Now ~(&~(a)) is the order of the different s’(u) of a in K/L, so 
it is bv(G(L/L)). So, ~((&a)) 2 u(G(K/L)) + u(G(L/k))= u(G(K/L) &L/k)). 
But 0(&K/k))= Inf,{u(G(u)); UEZ). So 4&K/k)) is also >u(G(K/L) 
4Llk)). 

PROPOSITION 13. Every quasi-dedekindiun extension is quasi-hilbertiun. If 
K/k is dedekindian or quasi-dedekindiun and not completely jlut, it is hilber- 
tian. 

ProoJ For every intermediate field L of K/k, 

u(d(K/k)) = u(dWL))+ u(4Llk)) 

and 

u(G(K/k)) 3 u(G(K/k)) + u(G(L/k)), u(G(K/L)) Z u(d(K/L)) 
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and 

We have the same equalities or inequalities for the real values of these 
semi-real numbers, and they imply that, if u(G(K/k)) and u(d(K/k)) have a 
same real value, such is also the case for K/L and L/k. If K/k is dedekin- 
dian, K/k is non-defective and u(A(K/k)), u(G(K/k)) are both real and 
equal. If u(G(K/L)) or u(G(L/k)) are not real, their real value is, respec- 
tively, A(K/L), A(L/k) and at least one has the species +. So u(G(K/L) 
&L/k)) is u(A(K/L) A(L/k))+ = u(A(K/k))+ > u(A(K/k)) = u(&K/k)) con- 
trary to Theorem 9. 

If K/k is not completely flat and non-dedekindian (so the valuation of k 
is dense), u(A(K/k)), and one at least of u(A(K/L)), u(A(L/k)), have the 
species +, and if K/k is quasi-dedekindian, which implies that K/L and LJk 
are too , u(G(K/k)), u(G(K/L)), and u(G(L/k)) have the same property. So, 
u(G(K/k)) = u(A(K/k)) = u(A(K/L) A(L/k)) = 0(&K/L) &L/k)). 

The extension k(a, IQ/k of Example 1 is not only non-dedekindian 
but also non-hilbertian (and, even, non-quasi-hilbertian, because the 
valuation of k is discrete). Indeed, if L = k(u), L/k = k(a)/k is completely 
flat and has a simple residual extension R(ti)/k and K/L = L(ZZ)/L is 
slim, so we have the classical case. So they are both dedekindian, and 
6(K/k) #A(K/k) = A(K/L) A(L/k) =&K/L) @L/k). 

The extension k(a, b)/k of Example 2 is non-hilbertian, because, if 
L = k(a), L/k = k(a)/k, and K/L = L(b)/L are both completely flat and have 
simple residual extensions, then they are dedekindian, but K/k is not. 

If K/k is hilbertian or quasi-hilbertian, the Herbrand theory of 
ramification properties of intermediate extensions holds completely in the 
case of discrete valuations and for the species of ramification numbers in 
the case of dense valuations. This theory and its deduction from the 
preceding theorem are too classical in the case of normal extensions for 
spending the time and space of this periodical in order to expound it. .The 

results and the deduction in the ramification theory of non-normal 
extensions are quite similar (see my paper [4)). 

LEMMA 6. If o E G*, ~(a; a) = v(a) implies u(a) = 0 if the valuation of k is 
dense and u(a) < 52 if the valuation of k is discrete. 

Proof: The assertion for dense valuations have been proved already. 
Suppose the valuation is discrete. Let B = (6,) 6,, . . . . 6,) be a basis of K/,5 
and Z7 an element of Z such, that v(ZZ) = Sz. Let bi E I be some element hav- 
ing 6, as residue. Let a be an element of Z with u(a) > S2, so 22Q. Then if 
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u(a) = isZ, a = a’fl, where i > 2 and ~(a’) = 0, so a’ = (C Ajb,) + c, where 
A,,E~ and u(c)>O, so a=(C ljbj) I7’+d, where u(d)2 (i-t 1)Q. If &?>~(a), 
we have ~(a; a) = u(g .a - a) > u(a) > u(a). Suppose that i >, 2 and 
that it is already proved that if u(b) 3 (i + l)Q, then ~(a; b) > u(a). Now 
o.a-a = [~.(CA~b,)-~:~b,]17’+(~(A~b,)[(a.17)’-n’]+(o,d-d). 
We have o(c .d- d) > u(a), U((T . (C Ajbj) - x l,,b,) = u(C ,$(a. bi - bj)) 2 
Min,[V(o . bj- b,)] 3 u(b), so u( [o . (c, Ajbj) - xjAjb,] P) > U(G) (that 
holdsevenfori=l).And (~.n)i-n’=(~.~-n)[(a.n)i-‘+(a.n)’-2 
ZZ+ . ..+Zi-‘1. so u([~$.,b,][(dZ)i-Z7i]) > u((a.Z7)‘-Z7’) 2 
u(a.ZZ-17) + (i- 1)Q > D(C). So ~(a; a) > u(a), and o(o; b) > u(a) if 
u(b) > &I. By induction, we prove that ~(a; a) > u(a) if u(a) > 252. 

Let K be a valued field, and r E Z(K). The discs C(0, Y) and C(0, r ~ ) are 
additive groups and, so is C, = C(0, r)/C(O, r - ). For any a E C,, we shall 
denote by d its class a + C(0. r- ) modulo C(0, r - ). We can define on C, a 
canonical structure for the K-module by defining, for every a E I and x E C,, 
Cri = z. This definition is coherent, because C(0, r) is an Z-module, and if 
ti’=a and .G’=.G, we have la/-al < 1, Ix’- .Y( <r, so [a’~‘-aax1 = 
\(a’-a)x’+a(x’-x)1 d Max(la’-a\ lx’), JnJ \x’--XI) < Max(r1, lr)=r, 
and ax - ax G C(0, r. ). 

A mapping /I: I-+ C, will be called a bar-derivation if b. (a + b) = 
j.a+fl.b and /i’.ab=ti(j.b)+b(P.a). 

Let K/k again be the same valued extension as before (i.e., k is henselian, 
n = [K: k] is finite), K’/k its normal algebraic over extension, d E G*. We 
assume that u= u(a) is real. Let be r = e-” (so r >O), and let C:= 
C’(0, r)/C’(O, rp), where C’(0, p) is the disc of center 0 and radius p in K’. 
On C: we defined a canonical structure of the r-module, and also of the 
E-module (that is, of vectorial K-space). Then, if a E Z, u(o . a-a) = ~(a; a) 2 u 
and (~.a-a\<r, so o.a-aEC’(O,r). Then, pc:a-+P,(a;a)=a~a-a IS 
a mapping of Z into CL. This mapping is, if u > 0, a bar-derivation. Indeed, 
we have (T. (a + b) - (a + b) = (0 .a - a) + (a .b - b), so /?,(a; a + b) = 
fl,(o;~)+/l~(a;b). And a.ab-ab=(o.a)(o.b)-ab=(a.a-a)(o.b)+ 

a(o.b-b), so fl,(o;ab)=(a.a-a)(a.b)+(cr.b-b)=(o.a=a)(a.b)+ 

a(a.b-b) = (~.a-a)(a.b)+ci(a.b-b) = Ei=Zh+G(o+b-b) = 
@,(a; b) + &?,(a; a), because u(u.b-b)>v>O and o-b=& The 
elements a E K such that /?“(a; a) = 6, i.e., u(o; a) > u will be called o-con- 
stants, and their set will be denoted Cons(o). Obviously, Cons(o) is a sub- 
ring of Z, which contains its maximal ideal M = C(0, l- ) if the valuation of 
k is dense, and M* = C(0, ePzn) if the valuation of k is discrete. In this last 
case, there are two possibilities: 

(1) Cons(a)zM, i.e., v(ts .ZZ)> u(d). Then fi,(a; a) depends only on 
5, and Cons(a) = {a; a E Cons(a)} is a subring of E. In fact, it is a subfield 
of i?, because, if u(a) = 0 and a E Cons(a), then 
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=a -~‘(a)a)-‘P,(a;a)=cr~‘(a)a)-‘O=0, 

and a-i E Cons(a). 

(2) Cons(a) $ M. Then, there exists an ZZE I such, that o(Z7) =Q 
and /3&q; ZZ) # 0, i.e., u(o; ZZ) = v(a) = u. If UE Z, we have 

&,(a; azz) = q?,(a; z7) + np”(u; a) = $“(a; zz). 

So, if we consider M/M2 as a iY-module, ti -+ /?,(a; aZZ) is a homomorphism 
of vectorial E-spaces, and, in particular, for every Z7 such that u(n) = Q, 
we have ~(a; ZZ) = U(C). So Cons(a) n M = M2 and Cons(a)/M’ is a sub- 
field of Z/M* isomorphic to (Cons(a) + M)/ME R When the valuation is 
dense, the situation is analogous to that of the case (1). 

Suppose now, in addition, that K/k is normal. Then, we can take K’ = K. 
If we are in the case (2), when a ranges over Z, i.e., 5 ranges over R, 
p,( a; an) = tiB,(a; z7) ranges over &?,(o; ZZ) = C, = C:. So, if a E K and 
u(u) =O, there =exists some b~l such that BJa; a) =P,(a; bZ7) and 
/?,(a; a - 617) = 0, i.e., a - bZ7E Cons(a). So, Cons(a) + A4 = Z and Z/M2 is 
the direct sum (Cons(a)/M2)@ (M/M*) of additive groups Cons(a)/M’ 
and M/M2 = C,, where Cons(a)/M’ is a subfield of Z/N* canonically (by 
u E Cons(a)/M’ + u + M) isomorphic to I% 

K/k being any separable normal valued extension of finite degree, and 
G = G(K/k) being its Galois group, I recall the definitions (due to 
Deuring [2] and Krull [19]; for analoguous theory for non-normal exten- 
sions, see my papers [S-lo, 131) of characteristic groups and ramification 
numbers of K/k (though I express them in the language of this paper) and 
some known results of their theory: the decomposition group 
V-,(Kk) =Z(K/k) is the set of ail acG K,k preserving the valuation I../, 
i.e., they are isometries; the inertia group is 

Y1(K/k)= T(K/k)= {aEZ(K/k); (a( = 1 +/a.~-al <l}; 

the ramification group is 

V,(K/k)= V(K/k)= {a~Z(K/k);u#0=~+~u-al < IuI}. 

As before the characteristic number U(U) of 0 E V(K/k) is Inf,{ u(g . a -a); 
u~Z},andletu,<o,< . ..v.<u,+i= +cc beallthevaluesofu(a),aEG, 
written in increasing order. Then v, is called the qth ramification number 
(or value) of K/k and V,(K/k) = { r~ E V(K/k); u(o) > u,} is called the qth 
ramification group of K/k. It is easily shown that all V,(K/k) are groups 
and vq+l is invariant in V,. Z(K/k)/T,,k is canonically isomorphic to the 
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CLtlois group G,Q~ of &I?, TKII;/ZKik is isomorphic to the greatest subgroup 
of‘ ~(K)/u(k) of order prime to the residual characteristic p of k, and the 
exponent of this group must divide that of the group E(R) of the roots of 
unity & (in particular, if the valuation is discrete, T(K/k)/V(K/k) is cyclic 
of order prime to p). If u = u, is real, and if there exists an a E I such that 
~(a; a) = u(a) for all (TE Vq(K/k), which $V,+ ,(K/k) (if 6(K/k) is of species 
0, i.e., there exist discriminantial elements; every such element a has 
this property for every q), (T + V,+ ,(K/k) -+ p,(o; a), where V= V,, 

isomorphism of 
:,(K;; a) = {pc( 

V,(K/kW,+ ,W/k) onto the set 
o; a); cry V,(K/k)) which is an additive subgroup of C,, 

where y = e -1’. Indeed, if (T, (T’ are E V&K/k) we have 

~L,(oo’;u)=(ao’~u-a) = a~(o’~u-u)+((T.a-u) = a.(d.u-a) + 
(~.a-a). But, as C(E VKIk, we have, if b=o’.a--a, la.b--hi < Ihl and 
(a. h) = 6. so pL,(cro’; a) = (a) + (d .a - a) = /(,(a; a) + pL,(a’; a). so 
(T + fi,(o; a) is a homomorphism of V&K/k) onto A&K/k; a) with addition 
as composition. So A&K/k; a) must be an additive group. Obviously, the 
kernel of this homomorphism is V, + i (K/k). 

Suppose now, in addition, that k is henselian and its valuation is 
discrete. Clearly, u( 6( K/k)) is real, and there exist such elements UE I. 
But we can, in this case, if q > 0 (so u, > 0), interpolate, in general, 
between V, and V,, , some other group F’b = Vq(K/k). This group 
is (CJ E Vy( K/k); Cons(a) 2 M}. Indeed, Vl is a group, because if 
Cons(o) 2 M, and Cons(o’) 2 M, i.e., ,!3,(0; Z7)== pc(o’; Z7) = 6 for some 
Z~E I such, that u(n) = 52, we have Pc(aa’; n) = 0. Clearly j, : CJ + b,,(a; n) 
is an homomorphism of V, onto A&K/k; Z7), but the kernel is now VI. 
So Vq/Vl 2- (A&K/k); Z7), +) and if A’(K/k; a) = {P&a; a); GE l$/K/k)} 
we have V:,/V,, + I z (A’(K/k; a), + ). Let us denote as n,, nb the orders of 
V&K/k), QK/k), t, = nq/nq + 1, ti = n,/n;, tg = n;/n,+ 1. 

If, for r~ E V,, d, is the bar-derivation x + Po(a; x) (where x ranges over I 
and u = uq) we have clearly d,,, = d, + d,,. So, V, V,, 1 can be also 
represented as an additive group of bar-derivations (which can be also con- 
sidered as derivations from I/M’ to C,, Y = e--‘). 

As, in Lemma 2, let R be the completion of the valued field K, and z the 
closure of k in i?. When K/k is normal, z/E is too. A/OE GK,k can be 
prolonged by continuity to R iff it is an isometry, i.e., belongs to Z(K/k), 
and this prolongation 5 is an automorphism of i?/E. The mapping 0 + d is 
an isomorphy of Z(K/k) onto G(@l) and if we identify rs with d, Z(K/k) is 
identified with G(&/i;), each V,(K/k) is identified with V&&z), the o&K/k) 
and u,(&?) are the same, etc. 

As i: is henselian, all results that we considered hold for R/E, so also, if 
K/k is normal, for K/k. If K/k is not normal, the results for K/E hold for 
K/k only partially (see my papers [4, 71). If k is not henselian, d(E/E) and 



LOCAL DIFFERENTS 61 

8(&K) are called local algebraic and arithmetic differents of K/k, which 
explains the title of this paper. 
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