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Abstract

Consider a continuous analogue of the simulated annealing algorithm in Rd , namely the solution of the
SDE dX t =

√
σ(t)dBt − ∇V (X t )dt , where V is a function called the potential. We prove a convergence

result, similar to the one in [L. Miclo, Thèse de doctorat, Ph.D. Thesis, Université Paris VI, 1991], under
weaker hypotheses on the potential function. In particular, we cover cases where the gradient of the
potential goes to zero at infinity. The main idea is to replace the Poincaré and log-Sobolev inequalities
used in [L. Miclo, Thèse de doctorat, Ph.D. Thesis, Université Paris VI, 1991; C.-R. Hwang, T.-S. Chiang,
S.-J. Sheu, Diffusion for global optimization in Rn, SIAM J. Control Optim. 25 (1987) 737–753.] by the
weak Poincaré inequalities (introduced in [M. Röckner, F.-Y. Wang, Weak Poincaré inequalities and L2

convergence rates of Markov semigroups, J. Funct. Anal. 185 (2001) 564–603]), and to estimate constants
with measure–capacity criteria. We show that the convergence still holds for the ‘classical’ schedule
σ(t) = c/ ln(t), where c is bigger than a constant related to V (namely the height of the largest potential
barrier).
c© 2007 Elsevier B.V. All rights reserved.
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0. Introduction

The goal of this article is to study a continuous analogue of a discrete optimization algorithm
called simulated annealing. This algorithm was introduced in 1983 by Kirkpatrick, Gelatt and
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Vecchi, and aims at finding “good” (if not perfect) solutions to complex problems. The crucial
idea is to perturb the standard gradient descent by a random noise; hopefully this noise will
get the process out of traps (local minimas), and help it reach the global minimum. The noise
is taken to be relatively large at the beginning, so that the process explores the space, and is
gradually reduced thereafter.

The standard case is the discrete case (in time and space); here we consider a process on
Rd in continuous time. Note that more complicated state spaces have been studied, see for
example [17,19,18]; here we will stick to Rd . This “annealing diffusion” process has already
been studied by several authors. Hwang, Chiang and Shen [15] proved its convergence under
quite strong assumptions, using comparisons with the associated (ordinary) differential equation
and results on the trajectories (estimates of exit times from domains, etc.). The result was
enhanced by Royer [26]. The approach we follow was developed by Miclo in [22] (and in his
doctoral dissertation [21]), and reduces the problem to the convergence of a single quantity, the
free energy. Since then, other questions have been asked: speed of convergence, choice of a
better algorithm etc. (see e.g. the survey [20]). Let us also note that the “functional inequalities”
approach, which may be dated back to the works of Holley, Kusuoka and Stroock [13,12] has also
been used extensively for other (possibly discrete) models, and other closely related algorithms
(see e.g. [9] for the study of a generalized simulated annealing process).

A common feature of these works on global optimization on Rd is that they require quite
strong assumptions on the growth of the potential. In particular, the norm of the gradient is
supposed to go to infinity at infinity. These hypotheses are technically useful: they guarantee
that, at any fixed temperature, the generator has a spectral gap, which in turn gives estimates on
the rate of convergence. Let us note that the “cooling schedule” (i.e. the choice of the temperature
as a function of time) for which the process converges is linked with the speed of explosion of
the spectral gap, but that it can be read directly on the potential (see below the remarks on the
constant d?).

A natural question arises: what happens when the gradient of the potential does not go to
infinity, and when there is no spectral gap? Do we need to change the cooling schedule to reflect
the slow-down of the diffusions at fixed temperature, or does the local structure of the potential
dictate the optimal schedule?

Before we answer this question, let us be more precise and state our hypotheses.
We study the following optimization problem: how to find the minimum of a function V on

the space Rd . To solve this problem, we introduce the following stochastic differential equation:{
dX t =

√
σ(t)dBt −

1
2
∇V (X t )dt,

X0 ∼ m0.

The function σ will be called temperature, and will be a (deterministic) function of time,
decreasing to zero.

Intuitively, this process is similar to simulated annealing: we perturb a gradient descent by a
stochastic term whose intensity decreases over time.

We would like to know if the process finds a point where the global minimum is reached; we
will show that it does, in a weak sense.

Definition 1. The annealing process starting from a law m0 is said to converge if its law mt at
time t converges weakly to a measure supported by argminV . In particular, if the global minimum
of V is reached in a single point x0, the process converges if mt goes to a Dirac mass at x0.
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We need a few more definitions before we state our result. For any subset A and any
(x, y) ∈ A2, define the paths in A from x to y by:

Γ A
x,y = {γ : [0, 1] → Rd

|γ is continuous, γ (0) = x, γ (1) = y, γ ([0, 1]) ⊂ A}.

The height of a path γ will be denoted by V (γ ) = sup[0,1] V (γ (t)), and the energy of
communication between x and y in A will be:

dA(x, y) = inf
γ∈Γ A

x,y

V (γ )− V (x)− V (y)+ inf
A

V . (1)

We will drop the reference to A when A = Rd .
If there exists a γ that achieves the infimum bound, it will be called a good path from x to y

in A. Finally, we define the constant d? in A = Rd by:

d? = sup
x,y∈Rd

d(x, y). (2)

In particular, any point x can reach a global minimum by a path γ such that V (γ ) ≤ V (x)+d?+ε.
Let us now recall the result we would like to generalize: this is the main result of [15,26,22],

as it appears in [22].

Theorem 2 (L. Miclo). If V satisfies some regularity assumptions, and the following conditions:

• V −→
x→∞

∞,

• |∇V | −→
x→∞

∞,

• |∇V |
2
−1V is bounded from below,

then for any c > d?, and for σ(t) = c/ ln(t), the annealing process converges.

The value d? is known to be optimal, at least in the discrete space and the compact continuous
case (if the global minimum is unique): if the process is cooled faster, then its limiting law
charges local minima (cf. [23] and references therein).

To understand the direction in which we generalize this result, let us note that this theorem
applies for any potential V which is equal to |x |

α outside a compact set, whenever α is strictly
bigger than 1. It is then a quite natural question to ask whether this still holds when α is strictly
less than 1. Our hypotheses, which we now state, allow us to treat this case.

Hypothesis 1 (Global Minimum). The potential has a unique global minimum, located at the
origin and V (0) = 0. Moreover, this minimum is non-degenerate: HessV (0) is positive definite.

Hypothesis 2 (Growth at Infinity). The potential V goes to infinity at infinity faster than a
logarithm:

∃mV > 1, ∃C, V (x) ≥ ln(|x |)mV − C.

Hypothesis 3 (Bounded Gradient). The potential V is continuously differentiable, and its
gradient is bounded:

‖∇V ‖∞ < ∞.
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Hypothesis 4 (Concavity). The Laplacian of V is negative at infinity: there exists a compact set
K such that

∀x 6∈ K , 1V (x) ≤ 0.

Hypothesis 5 (Well-behaved Wells). The potential barriers have a bounded height:

d? < ∞.

Moreover, each point can reach 0 by a “relatively short” good path. More precisely, there exists
a function R (a maximal radius), from Rd to R, which satisfies the following conditions:

• For all x , the ball centered in zero and of radius R(|x |) contains a good path for x :

∀x, ∃γ ∈ Γ0,x :

{
γ ([0, 1]) ⊂ BR(|x |)

γ is good.

• The function R grows as a power of the distance to the origin:

R(|x |) ≤ cR |x |
dR .

These hypotheses call for a few remarks.
The first one simplifies the problem at hand: there is only one goal to go after. If the weak

limit of the equilibrium measures µσ (cf. infra) is known (some results in this direction may be
found in [22,14]), the arguments given here should work in the same way. The non-degeneracy
hypothesis may be weakened too (see e.g. Section 2 for a slight generalization in d = 1).
However, this restriction allows for two simplifications: it gives an estimate of the partition
function Zσ , and avoids more intricate reasonings in the computation of the weak inequalities
Section 3.

The growth hypothesis is not very restrictive. In particular, V may grow like |x |
α with α < 1

(or even slower). These cases were not covered in the literature. Let us note that we do not know
what happens in the limit case (when mV = 1, i.e. the tails of the equilibrium measures are
polynomial).

In the light of previously known results, the bounded gradient assumption seems less stringent:
in some sense, we already know what happens when the gradient is big. The hypothesis could
probably be lifted if we allowed a polynomial growth, or a control by V , but we keep it for the
sake of clarity.

Finally, the condition on 1V seems more restrictive. It will only be used in the proof of the
moment bound (Appendix B). It could probably be replaced by a condition like 1V ≤ C |∇V |

2.
However, in the “natural example” where V (x) = |x |

α at infinity, the Laplacian is indeed
negative if α < 1, and this example was one motivation for investigating the problem. Moreover,
even this weakened hypothesis would not allow the existence of traps at infinity, however shallow
they might be. It would be interesting to learn what could happen if there were such traps: either
they have no effect (in the sense that the same cooling schedule may be chosen), or they slow
down the process too much and destroy the convergence.

Our principal result is the following.

Theorem 3. Assume that V satisfies the hypotheses above, and that σ(t) is given by:

σ(t) =
c

ln(t)
.

Then the annealing process converges if c > d?, and diverges if c < d?.
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This result generalizes Theorem 2 by allowing more general choices for the potential function.
In particular, as we will see in the sequel, the equilibrium measures need not satisfy a Poincaré
inequality. Nonetheless, the critical cooling schedule is the same, which contradicts the intuition
that the speed is given by the Poincaré constants. In fact, what seems to prevail is the behavior
of V in a compact set, and from a certain point of of view, that is precisely what the weak
inequalities capture.

Let us remark here that proving divergence (for small c) is far easier than showing convergence
(for large c), because the former follows almost directly from the compact case; this will be
explained in Section 1.4.

The remainder of the paper is organized in the following way. First, we explain the analytic
approach of L. Miclo and give the main line of the proof.

This proof, under our weakened hypotheses, uses the weak Poincaré inequalities. We will
need controls over their dependence on temperature: these are established in Sections 2 and 3,
respectively in the one- and multi-dimensional cases. These three sections are the core of the
proof of the convergence result.

The quite technical fourth section gathers definitions and results about Orlicz norms and weak
inequalities. Finally, we postpone to the annexes a comparison between functions centered by
their mean or by their median, a moment bound for the annealing process, and a brief proof of
the estimation of the partition function.

1. The convergence of the process (the main line of the proof)

1.1. A differential inequality for the free energy

Before we describe the main idea, we introduce some notation. Consider the SDE defining the
annealing diffusion, but with a constant temperature σ . The process is then a classical diffusion
with a gradient drift. The corresponding generator is given by:

Lσ : f 7→
σ

2
1 f −

1
2
∇V ∇ f.

The measure µσ defined by

dµσ =
1

Zσ
exp

(
−

V

σ

)
dλ,

is reversible for this process (Zσ is a normalization constant). We will call µσ the instantaneous
equilibrium measure.

It’s easy to see that, as σ goes to zero, the measures µσ concentrate around the global
minimum of the potential (which is found at the origin by hypothesis). In fact, we even have
the following convergence:

Proposition 4. The measures µσ converge weakly:

µσ −→
σ→0

δ0.

Moreover, the normalization constant Zσ behaves like σ d/2.

The asymptotic behavior of Zσ is proved in Appendix C.1.
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In order to prove that the process converges, we follow the approach of Miclo [22] and show
that the relative entropy of the law of the process with respect to its instantaneous equilibrium
measure goes to zero.

More precisely, let ft be the density of mt = L(X t ) with respect to the equilibrium measure
µt (we slightly abuse our notations and define µt = µσ(t)). The relative entropy (also called the

free energy) is It =
∫

ft log ft dµt , which can be rewritten as It = Entµt (
√

ft
2
). The finiteness

of It is established in Appendix C.2. We would like to study the evolution of It ; the natural idea
is to differentiate it. One can justify the following formal computation:

Proposition 5 (Differentiation of the Free Energy). The derivative of It is given by:

dIt

dt
=

1

σ(t)2
σ ′(t)

∫
V × (1 − ft )dµt − 2σ(t)

∫
|∇
√

ft |
2

=
1

σ(t)2
σ ′(t)

∫
V × (1 − ft )dµt − 2σ(t)Eµt (

√
ft ).

Remark 6. By Eµt ( f ) we denote
∫

|∇ f |
2dµt . This is somewhat improper — strictly speaking,

this is the energy associated with 1− (1/σt )∇V ∇ (so we should multiply our energy by (σt/2)
to get the “real” one). However, the classical criteria for functional inequalities are written for
this form of the energy.

The first term is set aside for the time being; we shall bound it later directly with a function of t .
Following the classical path leading from functional inequalities to semigroup estimates, we

now try to control the energy term on the right-hand side.
If the measures µt satisfied logarithmic Sobolev inequalities, everything would be fine: the

energy of
√

ft could be controlled by its entropy with respect to µt , and we would get It back
on the right-hand side of the inequality. We would still have to know how the constants in the
logarithmic Sobolev inequality depend on the small parameter σ , and get an upper bound for the
first term, but we could get the convergence of It to zero.

Unfortunately, the scaling behavior of the constants in the logarithmic Sobolev inequality
(i.e. the way they behave when σ goes to zero) is not clear. Moreover, this inequality need not
hold, and in fact it won’t under our hypotheses.

In Miclo’s paper, the first difficulty is overcome thanks to a Poincaré inequality, one which
is weaker than the logarithmic Sobolev inequality, but for which the constants are well known.
However, even this inequality won’t be satisfied in our case, and we have to find another way.

Our idea is to consider a still weaker functional inequality, namely a weak Poincaré inequality,
written with an Orlicz norm. Weak Poincaré inequalities were introduced by Röckner and Wang
in [28], originally with an L∞ norm and the mean of f instead of a median on the right-hand
side. We will give a brief account of weak inequalities and Orlicz norms in Section 4, and explain
the link between the original inequality and the one we use.

For now, let us just state this inequality. It reads, for a measure µ,

∀ f,∀r, Varµ( f ) ≤ α(r)Eµ( f )+ r‖ f − m f ‖
2
φ, (3)

where m f is a median of f under µ, ‖ · ‖φ is the Orlicz norm associated with a function φ (to be
made precise later), and α, a decreasing function of r , is the compensating function. The Orlicz
norm is not easily tractable, but we will see (cf. Lemma 38) that it can be bounded by the entropy:
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there exists a C such that, for all positive f ,

‖ f − m f ‖
2
φ ≤ C(µ( f 2)+ Ent( f 2)).

At this point, the energy is bounded above by three terms: µ( f 2), the entropy of f and its
variance. To get rid of the variance term, we would like to bound it by entropy-like quantities. To
this end, we introduce the following definition.

Definition 7. For any probability measure µ and any positive f , we will call pseudo-entropy the
quantity:

Ps-Entµ( f ) =

∫
f log2

(
e +

f

‖ f ‖1,µ

)
dµ.

Remark 8. As was pointed out by a referee, it would be more natural to try to use directly a
weakened form of the logarithmic Sobolev inequality (WLSI, in the spirit of [6]), rather than
introduce a variance term and compare it to an entropy. This could therefore simplify the main
line of the proof. However, the study of WLSI with Orlicz norms (rather than L∞ norms) seems
to be a bit more involved than the weak Poincaré case. We hope to address this question in future
work.

With this definition in hand, we can state ([22], Lemma 4):

Lemma 9. There exists a δ0 such that, for all probability measures µ and all positive f with
µ( f 2) = 1,

∀δ < δ0,
1
δ

Varµ( f )+ 4δPs-Entµ( f 2) ≥ Entµ( f 2).

Let us glue all these inequalities together: we get that for all probability measures µ, if µ satisfies
the weak Poincaré inequality (3), then for all positive f with

∫
f 2dµ = 1,

δEntµ( f 2)− 4δ2Ps-Entµ( f 2) ≤ Varµ( f ) ≤ α(r)Eµ( f )+ CrEntµ( f 2)+ Cr.

This entails a lower bound on the energy:

Eµ( f ) ≥ −
4
α(r)

δ2Ps-Entµ( f 2)− C
r

α(r)
+

1
α(r)

(δ − Cr)Entµ( f 2).

Let us get back into our special case, and take µ = µt , f =
√

ft , and α = αt . The entropy
Ent( f 2) just becomes It , and we can plug the inequality back in the differential equation for It :

dIt

dt
≤

1

σ(t)2
σ ′(t)

∫
V × (1 − ft )dµt + 8δ2 σ(t)

αt (r)
Ps-Entµt ( ft )

+ 2Cσ(t)
r

αt (r)
− 2(δ − Cr)

σ (t)

αt (r)
It .

Since σ is non-increasing in time, we may omit the 1 in (1 − ft ) in the first term, and since
ft dµt = dmt ,

dIt

dt
≤

d
dt

(
1
σ(t)

)∫
V dmt + 8δ2 σ(t)

αt (r)
Ps-Entµt ( ft )

+ 2Cσ(t)
r

αt (r)
− 2(δ − Cr)

σ (t)

αt (r)
It . (4)
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Our goal is to obtain a differential inequality involving only It and explicit functions of t , so that
we may deduce information on the evolution of It . Since σ is known, this leaves us with three
questions. First, we have to obtain controls on

∫
V dmt and on the pseudo-entropy — we will

get explicit bounds in t . Once this is done, we have to estimate the compensating function αt .
Finally we must choose r and δ depending on t in a suitable way, so that the inequality on It is
good enough to prove the convergence to zero.

We now deal with the first problem.

1.2. Moment bounds and pseudo-entropy

The first inequality is a moment bound on the value of the potential at time t . The proof is
postponed to the appendices.

Lemma 10. Suppose that Hypotheses 3 and 4 hold, and that the initial law m0 satisfies:∫
V pm0(dx) < ∞,

for some p ≥ 1. Then there exists an M such that:∫
V p(x)mt (dx) ≤ Mσ(t)p ln(t)p(ln ln t)3p.

The last result will be used directly, but it also helps us prove the following bound.

Lemma 11. Suppose that
∫

V 2dm0 is finite, and that the cooling schedule has the form: σ(t) =

c/ ln(t), for a positive constant c. Then there exists an A such that, for all big enough t,

Ps-Entµt ( ft ) ≤ A ln(t)2(ln ln(t))6.

Proof. Let us differentiate the quantity under scrutiny, Jt = Ps-Entµt ( ft ). The following formal
computation can be justified (cf. [22]):

dJt

dt
= −

σ(t)

2

∫
F ′( ft )|∇ ft |

2dµt

+ 2
d
dt

(
1
σ(t)

)∫
log(e + ft )

ft

e + ft

(
V −

∫
V (x)dµt

)
dmt ,

where F(x) =
2x

x+e log(x + e)+ log2(x + e). Since F is non-decreasing (in x), and σ is positive,
the first term is bounded above by 0. Moreover, since V is positive and 1/σ increases, we may
also forget the

∫
V (x)dµt in the second term. We get:

dJt

dt
≤ 2

d
dt

(
1
σ(t)

)∫
ft

e + ft
log(e + ft )V dmt

≤ 2
d
dt

(
1
σ(t)

)∫
log(e + ft )V dmt

≤ 2
d
dt

(
1
σ(t)

)(∫
log2(e + ft )dmt

) 1
2
(∫

V 2dmt

) 1
2

= 2
d
dt

(
1
σ(t)

)
J

1
2

t

(∫
V 2dmt

) 1
2

.
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After dividing by 2J
1
2

t , the left-hand side becomes the derivative of
√

Jt . The right-hand side
may then be bounded (cf. previous lemma):

d
√

Jt

dt
≤

d
dt

(
1
σ(t)

)(∫
V 2dmt

) 1
2

≤
d
dt

(
1
σ(t)

)
√

Mσ(t) ln(t)(ln ln(t))3.

The explicit value of σ allows us to simplify (the multiplicative constant c cancels out):

d
√

Jt

dt
≤

√
M

1
t
(ln ln(t))3 .

An easy computation shows that the right-hand side may be bounded by:

√
M

d
dt

(
ln(t)(ln ln(t))3

)
.

To conclude the proof, we integrate this inequality between a (fixed and big enough) t0 and the
current time t . The constant A naturally depends on the initial law m0 (through the value of M
and through the pseudo-entropy at time t0). �

1.3. From the differential inequality to the convergence of the entropy

It is now time to get back to our differential inequality and apply the bounds we just derived.
We fix a logarithmic cooling schedule:

σ(t) =
c

ln(t)
.

Recall that we have shown (inequality (4)):

dIt

dt
≤

d
dt

(
1
σ(t)

)∫
V dmt + 8δ2 σ(t)

αt (r)
Ps-Entµt ( ft )

+ 2Cσ(t)
r

αt (r)
− 2(δ − Cr)

σ (t)

αt (r)
It .

We use the moment bound (Lemma 10) to deal with the first term, and Lemma 11 to bound the
second one.

dIt

dt
≤

d
dt

(
1
σ(t)

)
M ln ln(t)3 + 8Mδ2 σ(t)

αt (r)
(ln(t))2(ln ln(t))6

+ 2Cσ(t)
r

αt (r)
− 2(δ − Cr)

σ (t)

αt (r)
It .

We number our four terms and define:

¬ =
d
dt

(
1
σ(t)

)
M ln ln(t)3 ® = 2Cσ(t)

r

αt (r)

 = 8Mδ2 σ(t)

αt (r)
(ln(t))2(ln ln(t))6 ¯ = 2(δ − Cr)

σ (t)

αt (r)
.
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The inequality becomes:

dIt

dt
≤ ¬ +  + ® − ¯It . (5)

This last inequality will allow us to prove that the free energy goes to zero. To this end, we use
the same lemma as L. Miclo:

Lemma 12. Let I be a positive function, and suppose:

dIt

dt
≤ a(t)− b(t)I (t),

where a, b are positive functions and satisfy:

(1)
∫

∞ b(t) = ∞,

(2) a(t)
b(t)

t→∞
−→ 0.

Then I goes to zero when t goes to infinity.

Our goal is now to use the inequality (5) to check the hypotheses of this lemma. We choose δ
and r as follows.

δt =
1

ln(t)2(ln ln(t))7

rt =
1

C ln(t)2(ln ln(t))8
,

(6)

where the factor C in rt appears only for cosmetic reasons. This choice ensures:

®

¯
=

Crt

δt − Crt
∼

C

ln ln(t)
→ 0,



¯
=

4Mδ2
t

δt − Crt
ln2(t)(ln ln(t))6 ∼ 4Mδt ln2(t)(ln ln(t))6 → 0.

Two things remain to check:

¬

¯
→ 0 and

∫
∞

¯ = ∞.

This is where we need bounds on the weak Poincaré inequalities: we have to know how αt
behaves for our particular choice of r . This is the aim of the following sections, in one or many
dimensions.

In both cases, we will get:

Lemma 13. There exists a constant d? such that, for all D? > d?,

∃Cα αt (rt ) ≤ Cα exp
(

D?

σ(t)

)
.

For the cooling schedule σ(t) = c/ ln(t), we get:

αt (rt ) ≤ Cαt D?/c.
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In the one-dimensional case, this follows from Theorem 18 below, and the choice of rt . The
multi-dimensional case is proved in Theorem 23 and the discussion that follows it.

Remark 14. The approach in the one- and multi-dimensional case will differ slightly. In the
former, we prove a (full) weak Poincaré inequality, i.e. we estimate the whole function αt , and
then use this estimate at the point rt . In the latter, we will only prove a bound on αt at rt and
disregard the other points.

We may now get back to our proof. Recall that we have assumed:

σ(t) =
c

ln(t)
, c > d?,

so that we may always pick a D? strictly less than c.
Let us check the two remaining points. First we must prove that ¬/¯ converges to zero. Since

σ(t) is explicit and we know a bound on α(r), we see that:

¬

¯
=

d
dt

(
1
σ(t)

)
M(ln ln(t))3 ×

αt (rt )

2(δt − Crt )σ (t)

≤ M ′
1
t

ln(t)3 ln ln(t)10αt (rt ).

where M,M ′ are constants.
Using the bound on α we just recalled (Lemma 13), we get:

¬

¯
≤ M ′′

t D?/c

t

(
(ln t)3(ln ln t)10

)
.

Since c > D?, ¬/¯ goes to zero, as was claimed.
Just in the same way, we have, for t big enough:

¯ = 2(δt − Crt )
σ (t)

αt (rt )

∼ M ′′(ln t)−3(ln ln t)−7 1

t
D?
c

.

Once more, the condition c > D? guarantees that the integral of this quantity diverges, which
was expected.

This allows us to apply Lemma 12, and prove that It converges to 0. Thanks to Pinsker’s
inequality, the total variation between mt (law of the process) and µt (the instantaneous
equilibrium) converges too. Since we already know that µt converges weakly to the Dirac mass
δ0, this concludes the proof.

1.4. Absence of convergence for fast cooling schedules

In this short section, we prove the second part of Theorem 3, i.e. the fact that the process does
not necessarily converge if c < d?. This will be seen as a consequence of similar results that are
known to hold in the compact case (see [12,23]).

The main idea is to find a set V such that 0 6∈ V and that, with positive probability, the process
starting in V stays inside it forever.



P.-A. Zitt / Stochastic Processes and their Applications 118 (2008) 76–119 87

Define, for a connected open set A, the following quantities:

h(A) = inf
∂A

V − inf
A

V, (7)

c(A) = sup
x,y∈A2

dA(x, y). (8)

The first is the height of A (and measures how hard it is to escape from A), the second quantity
tells how easy it is to go from one point to another in A.

Recall that c < d?, and let a, b be such that c < a < b < d?. By definition of d?, there exists
an x1 such that d(x1, 0) ≥ b. Let V be the connected component of {x, V (x) < V (x1)+ a} that
contains x1. It is easy to see that 0 6∈ V . Moreover, the height h(V) satisfies:

h(V) ≥ a > c.

Our claim will be proved once we admit:

Proposition 15. Let A be a open connected set, such that h(A) > c. Then for any x ∈ A, the
annealing process with schedule σ(t) = c/ ln(t) starting from x has a positive probability of
staying in A forever.

This result may seem obvious to someone familiar with the behaviour of trajectories of annealing
processes. However, since we could not find an explicit statement in our case, we briefly describe
how it may be proved.

Let us first remark that this is essentially a “compact” result. Indeed, the bounded, open set V
may be embedded in a compact Riemannian manifold M , and V may be extended smoothly on
M \ V . Since the processes in M and in Rd obviously have the same law until they exit V , we
need only prove the proposition in the compact setting.

This compact case is almost treated by Holley, Kusuoka and Stroock in their paper.

Proposition 16 ([12], Lemma 3.5). Let M be a Riemannian manifold, V a potential on M,
d?(M) be defined as above. Let V be a connected open set of M that contains the global minima
of V , and suppose:

d?(M) < c < h(V).

Then the process starting in V remains inside it forever with strictly positive probability.

As we can see, the only problem is that c is supposed to be bigger than d?(M). We may choose
V on M \ V so that d?(M) = c(V), the “communication cost” defined in (8). Therefore, all is
well if c > c(V).

This does not necessarily hold for the whole set V . However, we can find an open connected
subset V ′ of V , such that h(V ′) > c, and c(V ′) ≤ c, which is enough to show that the process may
get stuck in V ′ (and therefore in V) — this follows from several remarks of [23]. In the discrete
case, the argument is developed in the remarks that follow Propositions 4 and 8 (of [23]). In the
compact continuous case, note that, similarly to what happens in Proposition 4 of [23], the proof
of Proposition 11 still holds without the assumption that the heights are bigger than c; therefore
the same reasoning applies.

Finally, the process has a chance of staying inside V , and since 0 6∈ V̄ , the weak convergence
to δ0 cannot hold.
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1.5. Some remarks

Our theorem immediately raises a few questions. Some of these have already been asked when
we discussed the hypotheses — equilibrium measures with polynomial tails are not covered, and
we do not know what happens when there are traps at infinity.

In the discrete or compact setting, if V has several global minima, another critical constant
d̃ ≤ d? appears, and if d̃ < c < d?, the process may approach some, but not all, global
minima, depending on its starting point (see [23]). The fact that local properties seem to dictate
the behaviour of the process leads us to expect similar results on Rd .

2. The one-dimensional case

In this section we treat the case of a one-dimensional potential, for which we derive a weak
Poincaré inequality (more precisely we prove Lemma 13).

The major advantage of this case is that, in one dimension, explicit (Hardy-like) criteria are
known for weak inequalities. Thus we are able to prove a quite general result (the de-coupling
of the parameters s and σ in the weak inequality). This has a small price: we restrict ourselves
to potentials that grow like a power of x , and do not cover the case V (x) = log(|x |)α at infinity
(for some α > 1). It should be noted that the multidimensional argument (cf. next section) may
still be used in this logarithmic case.

Let us write down a few notations. The potential V is a real C2 function, which satisfies the
Hypothesis 2. For any (small) σ , we denote by Vσ the function 1

σ
V , and by Zσ =

∫
e−Vσ (x)dx

the partition function. We normalize Vσ by defining Φσ : Φσ = Vσ + log Zσ . The equilibrium
measure µσ reads:

dµσ =
1

Zσ
exp(−Vσ )dλ = exp(−Φσ )dλ.

We now state our hypotheses on V . We suppose there exists a compact set [K1, K2] such that
the following holds.

Hypothesis U1 (Behavior Near the Minimum). In [K1, K2], the potential V is bounded below
by 0 and above V (K1) = V (K2). It reaches its minimum only once, at x1. Near this point, V
behaves like:

V (x) ∼ (x − x1)
b,

with b > 1. Finally, there exists δ such that V is bijective from [x1, x1 + δ] onto its image, and
from [x1 − δ, x1] onto its image.

This generalizes a little the overall assumptions on the minimum: if HessV is positive definite at
x1, it satisfies this hypothesis with b = 2.

Hypothesis U2 (Behavior Outside the Compact). Outside the compact, V ′ and |V ′′
|/(V ′2) are

bounded:

∃CV ∀x 6∈ [K1, K2],
|V ′′

|

V ′2 ≤ CV . (9)

Moreover, V ′(K1) 6= 0 and V ′(K2) 6= 0.
In particular, V ′ has no zero, V decreases before K1, and increases after K2.
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Fig. 1. The potential V and the associated functions i and s. Here, x1 = 0, K1 = −10, K2 = 10.

Hypothesis U3 (The Function β). There exists a function β such that, for all x outside the
compact,

β

(
exp(−V (x))

V ′(x)

)
≥

1

V ′(x)2
. (10)

To apply the result to the annealing diffusion, we need an additional growth condition on β. Since
V satisfies Hpotheses 2 (Section 0) and U2, it is easily seen that exp(−V )/V ′ must go to zero at
infinity (just integrate V ′′/(V ′)2 between K2 and x , use (9) to see that 1/V ′(x) is bounded above
by cst.+ CV x , and then use the growth hypothesis on V ), so we need bounds on β near 0.

Hypothesis U4 (Behavior of β Near the Origin). There exist constants A,C such that, near 0,
the following holds:

β(s) ≤ C

(
log

(
1
s

))A

.

Remark 17. We shall note here that the last two hypotheses hold if V (x) = |x |
α outside a

compact, with α ∈ (0, 1], if we choose β = C (log(1/s))
2
α
−2 for s ∈ (0, 1) (cf. [28,3] cor. 4). If

V grows like | log(x)|m , this is not true (β behaves like exp
(
c log(1/s)1/m

)
for m > 1, and like

a power of s if m = 1). This explains the small loss of generality we spoke about above.

We define, for all x ≥ x1, i(x) = inf{V (y), y > x} and s(x) = sup{V (y), y ∈ [x1, x]}. In the
same way, i(x) = inf{V (y), y < x} and s(x) = sup{V (y), y ∈ [x, x1]} for x less than x1 (see
Fig. 1 for an example).

Outside [K1, K2], we have i = V = s, so s − i is continuous with compact support. It is easy
to see that its maximum is in fact the constant d?.

The main result of this section may now be stated as follows (see Definition 30, Section 4 for
a rigorous definition of a weak Poincaré inequality and a compensating function).

Theorem 18. The measure µσ satisfies a weak Poincaré inequality with the L∞ norm, with a
compensating function βσ defined by:

βσ (s) = C exp
(

d?

σ

)
β(s),

where β is given by the hypothesis. Similarly, µσ satisfies a weak inequality with an Orlicz norm
and the modified function ασ given by:

ασ (r) = Cβσ

(
C ′ exp

(
−

4
r

))
= C exp

(
d?

σ

)
β

(
C ′ exp

(
−

4
r

))
.
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Finally, there exists a constant A such that the following bound holds:

ασ (r) ≤ C exp
(

d?

σ

)
1

r A .

To prove this, we will use a result from Barthe, Cattiaux and Roberto ([3], Theorem 3),
which gives estimates on the compensating functions for the L∞ norm. We will then use
capacity–measure criteria to derive the result with the Orlicz norm. To state the result we need,
we first give some additional notation.

Let mσ be a median of µσ , and for all x ,

Bσ (x) =

∫ x
mσ

eΦσ (y)dy ×
∫

∞

x e−Φσ dy

β
(∫

∞

x e−Φσ (y)dy
)

Bσ = sup
x≥mσ

Bσ (x).
(11)

By symmetry, we also define bσ (x) and bσ for x ≤ mσ .
The result from [3] reads:

Theorem 19. Let β : (0, 1) → R+ be non-increasing, and Bσ , bσ be defined by (11).
Then µσ satisfies the following weak Poincaré inequality:

Varµσ ( f ) ≤ Cσβ(s)
∫

|∇ f |
2dµσ + s osc( f )2,

where Cσ ≤ 12 max(bσ , Bσ ).

Note that their result is actually stronger, since it also gives a lower bound on the optimal constant
C in terms of some quantities very similar to Bσ .

To use this result, we have to bound Bσ (x), and this has to be done uniformly in x . We will
split R into two domains, and show that, in some sense, our choice of β already deals with Bσ
for large x , so that the crucial region is near the minimum x1.
2.0.0.1. What happens for large x . We study the case where x ≥ K2 by following the proof of
Corollary 4 in [3].

Lemma 20. For all σ , there exists a cσ such that:

∀x 6∈ [K1, K2] β

(
2e−Φσ (x)

Φ′
σ (x)

)
≥

cσ
Φ′
σ (x)2

. (12)

One may choose cσ =
1
σ 2 .

Proof. Recall that the same bound holds for V (cf. Hypothesis U3); we try to carry it over to Φσ .
The behavior of V near its minimum allows us to get an equivalent for Zσ using Laplace’s

method (cf. for example [10]); if V ∼ (x − x1)
b, we get

Zσ ∼ Cσ 1/b, (13)

where C depends only on V . Let us bound the argument in the function β:

2
exp(−Φσ )

Φ′
σ

=
2σ
Zσ

exp(−V/σ)

V ′
≤ C ′σ 1−

1
b

exp(−V/σ)

V ′

≤ C ′σ 1−
1
b

exp(−V )

V ′
≤

exp(−V )

V ′
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for σ small enough, because b is strictly greater than 1, so that σ 1−1/b goes to zero. Since β
decreases, we get, outside [K1, K2]:

β

(
2

exp(−Φσ )
Φ′
σ

)
≥ β

(
exp(−V )/V ′

)
≥

1

V ′2 =
1

σ 2Φ′2
σ

. �

Lemma 21. For all x ≥ K2, we have the following inequalities:∫ x

mσ

eΦσ ≤

∫ K2

mσ

eΦσ (y)dy + 2
eΦσ

Φ′
σ

µσ ([x,∞)) ≤ 2
e−Φσ (x)

Φ′
σ (x)

≤ 3µσ ([x,∞)).

Proof. For all x ≥ K2 and σ small enough (less than 1/(2CV )), the hypothesis on V gives us:

|Φ′′
σ (x)|

Φ′
σ (x)2

= σ
|V ′′

|

V ′2 ≤ CV σ ≤
1
2
.

Therefore:(
exp(Φσ )

Φ′
σ

)′

≥
1
2

eΦσ .

This gives the first result by integration. In a similar way, we may integrate the bounds(
exp(−Φσ )

Φ′
σ

)′

∈

[
1
2

e−Φσ ,
3
2

e−Φσ

]
between x ≥ K2 and ∞, and use the fact that exp(−Φσ )/Φ′

σ goes to zero (in the same way as for
exp(−V )/(V ′), see the discussion following Hypothesis U3), to prove the second claim. �

We are now in a position to bound Bσ (x). We suppose that σ is small enough to guarantee that
mσ lies in [K1, K2].

Bσ (x) = µσ ([x,∞))×
1

β(µσ ([x,∞)))
×

∫ x

mσ

eΦσ (x)

≤ 2
e−Φσ (x)

Φ′
σ (x)

×
1

β
(

2 e−Φσ

Φ′
σ

) ×

(∫ K2

mσ

eΦσ (y)dy + 2
eΦσ (x)

Φ′
σ (x)

)
(by Lemma 21)

≤ 2
e−Φσ (x)

Φ′
σ (x)

×
Φ′
σ (x)

2

cσ
×

(∫ K2

mσ

eΦσ (y)dy + 2
eΦσ (x)

Φ′
σ (x)

)
(by Lemma 20)

≤
2
cσ

Φ′
σ (x)

∫ K2

mσ

eVσ (y)−Vσ (K2)dy +
4
cσ
,

where we used V (x) ≥ V (K2) in the last line. The hypotheses imply that V (y) ≤ V (K2),
whenever K1 ≤ y ≤ K2. On the other hand, Φ′

σ is bounded above by C/σ (since V ′ is supposed
to be bounded). Finally, assuming that σ ≤ 1,

∀x ≥ K2, Bσ (x) ≤
C ′

cσσ
,

where C ′ is independent of σ .
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2.0.0.2. What happens in the well. The general strategy here is to bound Bσ (x) by studying
only the numerator. The denominator can be (very) roughly bounded by β(1/2) (which does not
depend on σ ). The partition function disappears, and we get:

Bσ (x) ≤ C
∫ x

mσ

eV (y)/σdy ×

∫
∞

x
e−V (y)/σdy.

We need a bound on V near the median: under our hypotheses, since µσ converges weakly to
δx1 , the continuity of V in x1 yields (for σ small enough):

∀x ∈ [(x1,mσ )], V (x) ≤ d?/4.

Now we can bound the first integral in the following way:∫ x

mσ

eV (y)/σ
≤ (K2 − K1) exp

(
1
σ

max(s(x), d?/4)
)
,

where d?/4 takes care of the case when mσ is less than x1.
We cut the second integral into two parts:∫

∞

x
e−Vσ (y)dy ≤

∫ K2

x
e−Vσ (y)dy +

∫
∞

K2

e−Vσ (y)dy .

Since V is strictly increasing after K2, we may apply Laplace’s method to the second term. In
the first one, we use a rough bound on V :∫

∞

x
e−Vσ (y)dy ≤ (K2 − K1) exp

(
−

i(x)
σ

)
+ C exp

(
−

V (K2)

σ

)
.

Since i(x) is less than V (K2), the second term is less than the first one (up to a constant), and
there exists a C ′ such that:∫

∞

x
e−V (y)dy ≤ C ′ exp

(
−

i(x)
σ

)
.

Coming back to Bσ , we get:

Bσ (x) ≤ C ′′ exp
(

1
σ

(
max(s(x), d?/4)− i(x)

))
≤ C ′′′ exp

(
d?

σ

)
.

2.0.0.3. Conclusion: An upper bound on β. Let us now gather the bounds on Bσ (x) that we
derived in the preceding paragraphs.

Lemma 22. There exists a C (independent of σ ) such that, for all σ ,

Bσ = sup
x≥mσ

Bσ (x) ≤ C exp
(

d?

σ

)
.

With this result in hand, we may apply Barthe, Cattiaux and Roberto’s result (Theorem 19): this
proves the first claim of Theorem 18.

The modified function ασ is deduced from βσ with the help of Theorem 37 (see below, in
Section 4).
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Finally, the growth hypothesis on β (U4) guarantees that, near 0, β is bounded by a power of
ln(1/s); this immediately implies the last result, and concludes the proof.

3. The weak inequality in any dimension

We now turn to the proof of the weak inequality (the bound in Lemma 13) in any dimension.
We proceed in several steps. First we recall our aim and explain the main lines of the proof.
During this proof, a certain “path” (in fact, an open set of Rd ) will appear. It will be used to
derive a “capacity–measure” inequality. Eventually, we will go from this inequality to the one
we seek, using a result from next section.

Though our point of view is slightly different and our hypotheses are weaker, the appearance
of an “almost critical” path and the discretization of the space into many small cubes is
reminiscent of the original proof of Holley, Kusuoka and Stroock, who studied in [12] the scaling
behaviour of the Poincaré constant in the compact case (see also [16] for the case of Rd ).

3.1. The one-point weak inequality

As was said before, we will not prove in this section a full weak Poincaré inequality,
i.e. we will not get (3) for all r . Instead, we just prove it for a specific value of r , namely for
r = rt = (ln t)−2(ln ln t)−8 (cf. Eq. (6)). Since σ(t) = c/(ln t), we note that, for any m > 2,

rt ≥ C
σ 2

ln(σ )8

≥ C ′σm,

for some C,C ′ and σ small enough. Therefore, and since αt decreases, it suffices to prove an
inequality with σm instead of rt .

More precisely, we will get:

Theorem 23. Let m be such that 2 < m < 1 + mV , and let D? be a constant, D? > d?. Then
there exists a Cm such that, for all σ , the measure µσ satisfies the following one-point weak
Poincaré inequality

∀ f, Varµσ ( f ) ≤ Cm exp
(

D?

σ

)∫
|∇g|

2dµσ + σm
‖ f − m f ‖

2
φ

where m f is a median of f under µσ .

As was noted before, this entails

αt (rt ) ≤ αt (σ
m) ≤ Cm exp

(
D?/σ

)
,

which is the result of Lemma 13.
The remainder of the section is devoted to the proof of the theorem. It can be sketched as

follows.
The idea is to use a capacity–measure criterion restricted to certain sets (large enough sets).

Intuitively, if a set A has a large µσ mass, it must contain points near the origin; these points
are the important ones, for measuring capacity as well as mass. For these sets, located near the
origin, everything should behave as in the compact case, and the inequality should depend on σ
in the same way as when a Poincaré inequality holds.
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Let us fix D? to be strictly bigger than d?. As was just said, we would like to compare the
capacity and measure of large enough sets: let κ > 0 be the minimum mass we will consider
(κ will depend on σ ). Let A be a Borel set such that:

µσ (A) ≥ 2κ(σ ).

Restricting ourselves to these large sets localizes the problem in some sense. To be more precise,
we introduce two radii. The first one, rσ , is such that:

µσ (Brσ ) ≥ 1 − κ.

The second one is deduced from it: it is a radius big enough to include good paths
(cf. Hypothesis 5) starting from any point in the small ball Brσ .

Rσ = R(rσ ).

These two quantities depend on σ and κ; we will see that, for our choice of κ , rσ and Rσ will not
grow too fast as σ goes to zero.

Let A = A′
∪ A′′, where A′

= A ∩Brσ and A′′ is the complement set. Since µσ (A) ≥ 2κ and
µσ (A′′) ≤ κ (by definition of rσ ), µσ (A′) ≥ κ , and:

µσ (A) = µσ (A
′)+ µσ (A

′′) ≤ 2µσ (A′).

Intuitively, we need only consider the subset A′, because it concentrates enough mass.
At this point, our set A′ may still be very complicated. In particular, it could be scattered all

over the ball Brσ . To avoid this, we will once again restrict ourselves to a subset, trying to keep
enough mass in the process.

This is done by cutting Brσ into small cubes. The bound on the gradient of V (Hypothesis 3)
helps us choose a good mesh, so that V does not vary too much inside a little cube.

Proposition 24. For all η, there exists ε (depending only on V and η), such that, on each cube
B with radius ε,

sup
B

V − inf
B

V ≤ η.

The parameter η will be chosen later.
So we cut Brσ into many little cubes of radius ε. This requires a certain number of cubes,

which we call nσ . We then have:

Brσ = B1 ∪ B2 . . . Bnσ . (14)

In the same way, Nσ will be the number of cubes necessary to cover BRσ . We denote by Ai the
intersection of A and Bi . We apply the pigeonhole principle to say that one of the Ai ’s must be
large enough:

∃i0, µσ (Ai0) ≥
1

nσ
µσ (A

′).

To sum up our considerations on sets, for each A, we have found a subset Ai0 such that:

• Ai0 is a subset of a cube of radius ε,
• Ai0 is not too far from the origin (Ai0 ⊂ Brσ ),
• Ai0 is big enough compared to A : µσ (Ai0) ≥

1
2nσ
µσ (A).



P.-A. Zitt / Stochastic Processes and their Applications 118 (2008) 76–119 95

In some sense, we need only consider the case when A looks like a ball and is not too far from
the origin. We are going to see how this can be used to build a certain path between Ai0 and 0,
and from this path, deduce a capacity–measure inequality.

3.2. Building a path and straightening it out

Recall that our goal is to compare the capacity and the measure of sets, and more precisely to
bound the capacity from below and the measure from above.

The capacity is defined by an infimum bound:

Capµ(A) = inf
{∫

|∇ f |
2dµ, 1A ≤ f ≤ 1, µ(supp f ) ≤

1
2

}
, (15)

where supp f is the support of f . Note that we only define capacities for sets whose measure is
less than 1/2. This restriction explains why we use functions recentered by their median when
we deduce functional inequalities from capacity–measure criteria.

Since we seek a bound from below, we consider a function satisfying the conditions, and we
try to bound:∫

|∇ f |
2dµ.

The key idea is to find a region of Rd which should contribute a lot to this integral. Since the
function f equals 1 near A, and 0 near 0 (the measure of its support being less than 1/2), there
must be a transition between A and 0: this is where the gradient of f comes in. Still on the
intuitive level, if the integral is to be small, we had better make this transition in a region where
µ has less mass, i.e. in a zone where V is large. This is the reason we introduced the good paths:
to go from A to zero, a large contribution to the energy should appear along these good paths.

To put these ideas on firmer ground, we will build, starting from A (or more precisely from
Ai ), an open set CA with good regularity properties, and then bound the capacity by integrals
over this open set. This construction is depicted in Fig. 2.

Once this set is built, we proceed in two steps. First, for all functions f satisfying the
conditions of (15),∫

|∇ f |
2dµσ ≥

∫
|∇ f |

21CA dµσ .

On the path, we know by design that V is bounded above by V (x?A) + η. Indeed, V is less than
V (x?A) along γ , and the size ε of the cubes has been chosen so that on each cube, the oscillation
of V is less than η. Therefore, we may compare our integral with an integral with respect to the
Lebesgue measure:∫

|∇ f |
2dµσ ≥

1
Zσ

exp
(

−
V (x?A)− η

σ

)∫
|∇ f |

21CA dλ. (16)

The next step is to bound the latter integral on CA. Our only hypotheses is that f must be 1 on
A, and 0 near zero. The idea is then to apply a Poincaré inequality to compare the energy to a
variance. Unfortunately, though we know that a Poincaré inequality effectively holds under quite
general assumptions for a bounded domain in Rd (this is proved in many textbooks on partial
differential equations, see e.g. [11], p. 275–276), the explicit constants and their behaviour when
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Fig. 2. Building the path LA . (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

the domain changes is not well known. However, there is a case for which we have such explicit
estimates, namely the case of convex domains.

Theorem 25 (Poincaré Inequality in Convex Domains). Let L be a convex bounded domain in
Rd . Then λL , the normalized Lebesgue measure on L, satisfies a Poincaré inequality, and the
constant can be bounded above using only the diameter dL of the domain:

VarλL ( f ) =

∫ (
f −

∫
f dλL

)2

dλL ≤
d2

L

π2

∫
|∇ f |

2dλL .
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Fig. 3. Straightening of elementary cubes.

This theorem is proved e.g. by Payne and Weinberger, and Bebendorf in [24,4]. Note that other
bounds in more complicated cases have been derived (see [8] for star-shaped domains, or [7] for
bounds depending on the geometry of the boundary).

In order to use this result, we try to “straighten out” the set CA.
We will build a function φ sending CA to a tube LA. This function will be defined piecewise,

on each of the little cubes that CA crosses. Let us denote these cubes as C0, . . .Cm . It is easy to
see that the intersection of CA and one of these cubes can only take a finite number of shapes (up
to a rotation and/or translation). In d = 2 for example, only two different shapes are possible
(either a straight tube or a bent one, see Fig. 2). Each of these shapes may be “straightened out”
into a tube by a diffeomorphism. We have to be a bit careful in choosing these diffeomorphisms
φ j (one for each shape). We will ask two things: they should behave like a rigid motion in the
neighborhood of the edges (so we may “glue” two transformations together), and their Jacobian
matrix should be sufficiently “nice” (the “niceness” needed will be made precise later). Such a
choice is possible; see Fig. 3 for an explanation of one possible way to find such good functions.

Once this is done, we only have to glue our pieces together. Let us denote the pieces CA ∩ Ci
by Ti . We leave T0 where it stands, and look at T1. We have seen that it may be straightened
into a tube, T ′

1: define φ on T1 to be precisely this transformation. Now consider T2: we can
straighten it by one of our φ j , and then use a rotation and/or a translation to put it next to T ′

1.
Since we have asked that the φ j should be rigid motions near the edges, the two pieces of φ
define a diffeomorphism from T1 ∪ T2 to the straight tube T ′

1 ∪ T ′

2. We may iterate the process
and eventually we get a diffeomorphism φ from CA to LA. One can see on the figure that a little
extra care is needed to deal with the end of the path CA — however, adding just one φ j to our set
of transformations settles the question.

Remember that our goal is to use the Poincaré inequality on the convex set LA. For this to
work, we need to control some quantities related to the map φ.

Proposition 26. There exists a constant Cφ , which may depend on ε but not on σ , such that, at
every point, the Jacobian matrix Jφ satisfies

1
Cφ

≤ | det(Jφ)| ≤ Cφ,

λ1(Jφ
t Jφ) ≥ C−1

φ ,
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where λ1(M) is the smallest eigenvalue of the symmetric matrix M.

Proof. This holds by the design of the map φ. At each point, φ is the composition of a rigid
motion (which has no effect on the eigenvalues or the determinant of the Jacobian matrix), and
of one of the φ j . For a given φ j , the properties hold: we have designed the φ j as restrictions
of diffeomorphisms on larger sets, so the bounds hold by compactness. Since there are a finite
number of φ j , we may choose bounds that do not depend on j . This proves that the bounds hold
for φ. �

We may now give our “straightening” its rigorous form, namely a change of variables.

Proposition 27. Let U and V be open sets, and let φ be a diffeomorphism from U onto V .
If the inequalities in the preceding lemma hold with a constant Cφ , then for all continuously
differentiable function f on U , we have:∫

U
|∇ f |

2dλ ≥ C−2
φ

∫
V

|∇g|
2dλ

where g = f ◦ φ−1.

Proof. Let us define F by F(x) = |∇ f |
2(x). Then, by a change of variables, and thanks to the

upper bound on | det(Jφ)|,∫
U

|∇ f |
2dx =

∫
U

F(x)dx =

∫
V

F ◦ φ−1
| det(Jφ ◦ φ−1)−1

|dy

≥
1

Cφ

∫
V

F ◦ φ−1dy.

Since f = g ◦ φ, the gradients are given by:

(∇ f )x = (t Jφ)x (∇g)φ(x).

Taking norms, and using the lower bound on the first eigenvalue, we get:

(|∇ f |
2)x =

t
∇ g Jφ

t Jφ ∇g ≥ C−1
φ (|∇g|

2)φ(x).

Rewriting this in y variables,

F ◦ φ−1(y) = (|∇ f |
2)φ−1(y) ≥ C−1

φ (|∇g|
2)y .

Finally,∫
U

|∇ f |
2

≥
1

C2
φ

∫
V

|∇g|
2. �

Putting the last two propositions together, we can show:

Proposition 28. There exists a C, depending only on ε, such that if f satisfies the following
conditions:

(1) f is continuously differentiable from CA into [0, 1],
(2) λ({ f = 0}) ≥ l0,
(3) λ({ f = 1}) ≥ l1,
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then ∫
|∇ f |

2dλ ≥
C

N 2
σ

min(l0, l1).

We recall that Nσ is the number of balls of radius ε needed to cover the big ball BRσ .

Proof. Suppose f satisfies the hypotheses. Define g = f ◦ φ−1, as in the preceding proposition.
The various bounds needed on the Jacobian matrix of φ are provided by Proposition 26. The
lower bound on det(Jφ) implies that g must vanish at least on a set of Lebesgue measure C−1

φ l0,
the same being true for the set where g = 1. The change of variables has shown:∫

|∇ f |
2dλ ≥ C−2

φ

∫
|∇g|

2dλ.

On the right-hand side, we can now use the Poincaré inequality:∫
|∇g|

2dλ ≥
λ(LA)

CP (LA)
VarλLA

(g),

where λLA is the normalized Lebesgue measure on LA. The very purpose of our change of
variables was to make the domain convex, so that we could make use of Theorem 25. The
constant may therefore be bounded by a square of the diameter of LA. Since LA results from
gluing together at most Nσ little cubes of radius ε, the square of the diameter may be bounded
by ε2 N 2

σ .
We now turn to the variance, and use the information on the sets where g is 0 or 1. We

denote by l ′0, l
′

1 the respective (non-normalized) measures of these sets, and by m the mean of g
(m =

∫
gdλLA ∈ [0, 1]). Then:

λ(LA)× Var(g) =

∫
(g − m)2dλ ≥ m2l ′0 + (1 − m)2l ′1.

The right-hand side is easily shown to be greater than l ′0l ′1/(l
′

0 + l ′1). The latter is bounded
below by half the minimum of l ′0 and l ′1 (because the numerator is less than 2 max(l ′0, l

′

1)). Since
l ′0 ≥ C−1

φ l0, and a similar result holds for l1,∫
|∇ f |

2dλ ≥
Cε
N 2
σ

min(l0, l1). �

We may now prove the measure–capacity inequality we are looking for. Indeed, recall that our
aim is to bound the capacity of a set A from below by a function of its measure. The previous
inequality is almost what we want: on the left-hand side is (up to a factor, see (16) above) the
quantity whose infimum gives the capacity (Eq. (15)); and on the right-hand side, l0 and l1 are
measures of some sets. It remains to show that these measures may be compared to the measure
of A.

3.3. The measure–capacity inequality

Let us put together the results from the previous section (Eq. (16) and Proposition 28)∫
|∇ f |

2dµσ ≥
1

Zσ
exp

(
−

V (x?A)− η

σ

)∫
|∇ f |

2dλ

≥
Cε

Zσ N 2
σ

exp
(

−
V (x?A)− η

σ

)
min(l0, l1), (17)
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where l0, l1 are the Lebesgue measures of the following sets:

l0 = λ({ f = 0} ∩ CA) l1 = λ({ f = 1} ∩ CA).

To bound l0, we use the fact that f vanishes on a sufficiently large set (as measured by µσ ).
Since µσ concentrates around 0, f should vanish near the origin. More precisely, for a fixed ε,
we know that for σ small enough, the cube centered on 0 and of radius ε concentrates 3/4 of the
measure. If this cube is labelled B0, we have:

µσ ({ f = 0} ∩ B0) ≥
1
4
.

Since V is non negative, µσ and λ are easily compared.

1
4

≤ µσ ({ f = 0} ∩ B0) =
1

Zσ

∫
1 f =01B0 exp

(
−

V

σ

)
dλ

≤
1

Zσ

∫
1 f =01B0 dλ.

The integral on the right-hand side is less than l0, and therefore:

l0 ≥ m0 =
Zσ
4
.

Let us derive a similar bound, m1, for l1. On the cube Bi0 , V ≥ V (xA) − η (recall xA is the
center of Bi0 ), so:

µσ (Ai0) =
1

Zσ

∫
1Ai0

exp
(

−
V

σ

)
dλ

≤
1

Zσ

∫
1Ai0

exp
(

−
V (xA)

σ
+
η

σ

)
dλ

≤
1

Zσ
exp

(
−V (xA)+ η

σ

)
λ(Ai0).

Therefore:

l1 ≥ λ(Ai0) ≥ m1 = Zσ exp
(

V (xA)

σ
−
η

σ

)
µσ (Ai0). (18)

Since we would like to control min(l0, l1), we now have to compare the two bounds m0 and
m1. This is possible thanks to the following inequality:

µσ (Ai0) ≤
1

Zσ
exp

(
−V (xA)+ η

σ

)
εd .

If we gather almost all terms on the left-hand side, we recognize m1:

m1 ≤ εd .

Since m0 = Zσ /4, it holds that m0 ≥ Zσm1ε
−d , and since Zσ goes to zero, it also holds that

m1 ≥ Zσm1ε
−d , so that both l0 and l1 may be bounded below by this quantity:

min(l0, l1) ≥
Z2
σ

εd exp
(

V (xA)

σ
−
η

σ

)
µσ (Ai0).
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Going back to (17), we conclude:∫
|∇ f |

2dµσ ≥
Cε

Zσ N 2
σ

exp
(

−
V (x?A)− η

σ

)
min(l0, l1)

≥
C ′
εZσ
N 2
σ

exp
(

V (xA)− V (x?A)− 2η

σ

)
µσ (Ai0).

By the definition of x?A, V (xA)− V (x?A)− 2η ≥ −d? − 2η ≥ −D?. On the other hand, Ai0 was
chosen precisely because it contained enough of A’s mass: µσ (Ai0) ≥ (2nσ )−1µσ (A). Finally,
every function f we can choose in the definition of capacity must satisfy:∫

|∇ f |
2dµσ ≥

CεZσ
2N 2

σnσ
exp

(
−

D?

σ

)
µσ (A).

Taking the infimum over all possible f finally yields the following result.

Proposition 29. Let κ(σ ) be a positive number, less than 1/2. Let nσ , Nσ be defined as in the
discussion near Eq. (14). Then the following bound holds:

∀A, µσ (A) ≥ κ(σ ) H⇒ µσ (A) ≤
N 2
σnσ

C ′
εZσ

exp
(

D?

σ

)
Capµσ (A). (19)

3.4. Conclusion

The bigger part of the proof has now been done; the last thing we need to check is that the
number of balls nσ and Nσ do not grow too fast as σ decreases. Then we will apply Theorem 35
to deduce the one-point inequality of Theorem 23 from our measure–capacity inequality.

Recall that we are given a real number m, which is strictly smaller than 1 + mV . Define

κ(σ ) = exp
(
−

1
σm

)
. We want to find an rσ such that the mass of Brσ is greater than 1 − κ . For

any set A, we may write:

µσ (A) =
1

Zσ

∫
1A exp

(
−

V

σ

)
=

Z2σ

Zσ
×

1
Z2σ

∫
1A exp

(
−

V

2σ
−

V

2σ

)
=

Z2σ

Zσ
×

∫
1A exp

(
−

V

2σ

)
dµ2σ .

If V takes large values on A, we can get a good bound:

µσ (A) ≤
Z2σ

Zσ
exp

(
−

infAV

2σ

)
µ2σ (A).

We get rid of the µ2σ (A) by roughly bounding it by 1. Then we use the growth hypothesis on V
(Hypothesis 2), with A = Bc

rσ : we get infA V ≥ ln(rσ )mV − C , so that, for any m′

V < mV

inf
A

V ≥ ln(rσ )m
′
V
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whenever rσ is big enough. We fix an m′
∈ ]m, 1 + m′

V [, and choose:

rσ = exp

((
1
σ

)(m′
−1)/m′

V
)
,

which ensures, for σ small enough:

inf
A

V ≥

(
1
σ

)(m′
−1)

,

µσ (Bc
rσ ) ≤

Z2σ

Zσ
exp

(
−

1

2σm′

)
.

The asymptotic behavior of Zσ (cf. Appendix C.1) implies that Z2σ /Zσ converges, and since
m′ > m,

µσ (Bc
rσ ) ≤ exp

(
−

1
σm

)
for σ small enough. This shows that rσ satisfies the condition we wanted.

We may now end the proof of the theorem. Coming back to the measure–capacity inequality
(19), we note that Rσ , nσ and Nσ all behave like rσ to a certain power (for Rσ we use
Hypothesis 5, and nσ , Nσ are just a number of cubes of fixed radius in the big cubes of side
length rσ and Rσ ). Therefore, there exists a C such that

∀A, µσ (A) ≥ κ(σ ) H⇒ µσ (A) ≤
rC
σ

Zσ
exp

(
D?

σ

)
Capµσ (A). (20)

The value of rσ , and the fact that m′
− 1 is strictly less than mV

′, make exp(D?/σ) the biggest
term (recall that Zσ ∼ Cσ d/2), so that, up to a slight increase of D?,

∀A, µσ (A) ≥ κ(σ ) H⇒ µσ (A) ≤ exp
(

D?

σ

)
Capµσ (A).

This inequality, thanks to Theorem 35 below, implies precisely the one-point weak Poincaré
inequality we claimed in Theorem 23.

4. A measure–capacity criterion for one-point weak Poincaré inequalities

4.1. Definitions

In this section, we study the interplay between weak Poincaré inequalities and
measure–capacity inequalities. Let us start by recalling exactly what a weak Poincaré inequality
is.

Definition 30 (Röckner and Wang, [28]). Let µ be a measure, and let N be a norm stronger than
the L2(µ) norm. The measure µ is said to satisfy a weak Poincaré inequality for the norm N if
there exists a decreasing positive function α, defined on R?+ such that:

∀ f ∈ L2(µ), f such that µ f = 0, ∀r > 0, µ( f 2) ≤ α(r)E( f )+ rN ( f )2.

If this holds, α will be called a compensating function.
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Remark 31. Weak Poincaré inequalities were originally written with functions recentred by their
mean value µ( f ), and an L∞ norm. However, the approach using measure–capacity inequalities
developed in [3,2] works with functions recentred by their median m f . When the norm is the
sup norm, it is easy to go from one to the other: the three quantities osc( f ), ‖ f − m f ‖∞ and
‖ f − µ( f )‖∞ are within (universal) bounds of each other.

Since we need to work with another norm, we will show that we can still go from N ( f −m f )

to N ( f − µ f ) (cf. (A.2) in Appendix A).

This is equivalent to the slightly modified definition:

Proposition 32. A weak Poincaré inequality holds if and only if:

∀r > 0, ∃cr ,∀ f ∈ L2(µ), µ( f ) = 0 H⇒ µ( f 2) ≤ crEµ( f )+ rN ( f )2. (21)

If the inequality holds for a given couple (r, cr ), we will say that µ satisfies a one-point weak
Poincaré inequality.

Therefore the weak Poincaré inequality holds if and only if a one-point inequality holds for each
point r .

Proof. The only thing to check is that we can deduce the inequality of the definition from (21).
To each r , we associate cr according to (21). Then we just define α(r) = inf{cs; s ≤ r}. The
function α is decreasing. Now let f be a function in L2 and r > 0. For any ε, we may find an
s ≤ r such that:

cs ≤ α(r)+ ε.

If we apply (21) with this s, we get (since s ≤ r ):

µ( f 2) ≤ csE( f )+ sN ( f )2

≤ α(r)E( f )+ rN ( f )2 + εE( f ).

Since this is true for any ε, we may let it go to zero, and we have found our function α.

We will be specifically interested in these inequalities for one special norm. We now define
this norm and recall some of its properties, without proofs. For a short introduction (with the
results we need here), see e.g. [1]; for an extensive treatment refer to [25].

Let φ,ψ be defined on R+ by ψ(x) = x log(1 + x), φ(x) = ψ(x2). For any measurable f ,
define the Orlicz norm (usually called the Luxembourg norm; there is another natural norm on
the Orlicz space, which will not be needed here) of f to be:

‖ f ‖φ = inf
{
λ,

∫
φ

(
| f |

λ

)
≤ 1

}
.

Note that, with this definition, ‖1‖φ need not be equal to 1. The set of functions f for which
this norm is finite is denoted Lφ , it is a vector space, and it is complete for the Orlicz norm. In
the same way, if ψ?, φ? are the convex dual functions of ψ, φ, we may define the corresponding
Orlicz spaces. It is easily seen that for every positive f , ‖ f 2

‖ψ = ‖ f ‖
2
φ . The dual functions

allow us to state the following Hölder-like property.

Proposition 33 (Hölder–Orlicz). If f, g are two measurable functions, respectively in Lψ and
Lψ? , then f g is in L1, and∣∣∣∣∫ f gdµ

∣∣∣∣ ≤ 2‖ f ‖ψ‖g‖ψ? .
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The constant 2 is necessary because we will work with Luxembourg norms. To conclude this
account on the Orlicz norm, we recall here the norm of an indicator function:

Proposition 34. Let A be a measurable set. Then 1A is in the Orlicz space Lψ and:

‖1A‖ψ? = ψ̂(µ(A)),

where ψ̂(x) =
1

(ψ?)−1(1/x)
. Moreover, for all x sufficiently small, and for ψ(x) = x log(1 + x),

we have the following bound:

ψ̂(x) ≤
2

log(1/x)
.

Proof. Once again we refer to [1,25] for the first result. The explicit bound on ψ̂ follows easily
from the bound ψ? ≤ xex and the definition of ψ̂ . �

4.2. Measure–capacity inequalities for large sets and one-point inequalities

Here we show the result which was used in the preceding section: if we can compare the
measure and the capacity of large sets, we can deduce a one-point weak inequality.

Theorem 35. Suppose that there exists a κ < 1/2, and a real constant Cκ such that, for every
set A whose measure is larger than κ , we have:

Capµ(A) ≥ Cκµ(A). (22)

Then µ satisfies the one-point weak Poincaré inequality:

Varµ(g) ≤
c

Cκ

∫
|∇g|

2dµ+ κosc2(g),

where c is universal. We may replace the L∞ norm by an Orlicz norm, in which case the
inequality reads:

Varµ(g) ≤
c

Cκ

∫
|∇g|

2dµ+ 4ψ̂(κ)‖g − mg‖
2
φ .

Remark 36. Note that if (22) holds for all sets, regardless of their measure, then µ satisfies a
(strong) Poincaré inequality (since we may take κ = 0). This is well-known, cf. [2] and the
references therein. This characterization of a functional inequality in terms of a relation between
measures and capacities of sets is in fact more general, and provides a way to compare many
functional inequalities. For a detailed account on these questions, and links with isoperimetric
properties, we refer to [2] (especially Section 5).

Proof. We follow the proof of Theorem 2 in [3] (which deals with the (full) weak inequality).
Let f be a function and m a median for f . We cut the space in half, according to whether f

is greater than m or not; we denote by Ω+,Ω− the two sets. The integral may be written as:

Varµ( f ) ≤

∫
( f − m)2dµ =

∫
Ω+

( f − m)2dµ+

∫
Ω−

( f − m)2dµ.

We will show how to deal with the leftmost integral, the other one being similar.
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Let us write g = f − m, and define c by:

c = inf{t ≥ 0, µ(g2 > t) < κ}.

If c is zero, then µ(g > 0) is less than κ , and:∫
Ω+

g2dµ ≤

{
κ sup g2 in the L∞ case,
ψ̂(κ)‖ f − m‖

2
φ in the Orlicz case,

so the inequalities we are looking for hold in the half-space Ω+.
Thus we need only consider the case where c is strictly positive. By a continuity argument (µ

will always have a density), we can find a set Ω0 such that µ(Ω0) = κ and {g2 > c} ⊂ Ω0 ⊂

{g2
≥ c}. We fix a ρ > 1, and introduce the level sets Ωk = {g2

≥
c
ρk }. We decompose the

integral over these sets:∫
Ω+

g2
=

∫
Ω0

g2dµ+

∑
k≥1

∫
Ωk\Ωk−1

g2dµ

≤

∫
Ω0

g2dµ+

∑
k≥1

c

ρk−1 (µ(Ωk)− µ(Ωk−1)) .

Put µk = µ(Ωk), and apply the Abel transform to the sum:∑
k≥1

1

ρk−1 (µk − µk−1) =

∑
k≥1

µk

ρk−1 −

∑
k≥0

µk

ρk

=

∑
k≥1

µk

(
1

ρk−1 −
1
ρk

)
− µ0.

This is where we do not follow [3]: since we simply suppose an inequality between capacity and
measure, we can get rid of the µ0 and write∑

k≥1

1

ρk−1 (µk − µk−1) ≤ (ρ − 1)
∑
k≥1

µk

ρk .

The rest of the proof follows the same line as in [3] — at this point, we use the measure–capacity
inequality on each set Ωk . They are designed to have their measure bigger than κ , so that we may
apply our hypothesis:

µk ≤
1

Cκ
Cap(Ωk).

Now, to bound the capacity from above, we apply the definition with well-chosen functions gk :

gk = min

(
1,

(
g −

√
cρ−k−1√

cρ−k −

√
cρ−k−1

)
+

)
.

This entails:

µk ≤
1

Cκ

∫
|∇gk |

2dµ

≤
ρk+1

Cκc(
√
ρ − 1)2

∫
Ωk\Ωk−1

|∇g|
2dµ.
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Summing over k, we get:∫
Ω+

g2dµ ≤

∫
Ω0

g2dµ+
ρ(ρ − 1)

Cκ(
√
ρ − 1)2

∫
|∇g|

2dµ.

We may now choose ρ; the (non optimal) choice ρ = 4 gives:∫
Ω+

g2dµ ≤

∫
Ω0

g2dµ+
12
Cκ

∫
|∇g|

2dµ.

The only thing left to do is to take care of the integral on Ω0. This is done with a Hölder-like
inequality. In the Orlicz norm case, for example, we write:∫

Ω0

g2dµ ≤ 2‖g2
‖ψ‖1Ω0‖ψ

?

≤ 2‖( f − m)2‖ψ ψ̂(κ) ≤ 2ψ̂(κ)‖ f − m‖
2
φ,

thanks to the Hölder–Orlicz inequality and the relation between φ and ψ (see the beginning of
this section). This concludes the proof (the extra factor 2 comes from the bound on Ω−, and we
can set the universal constant c = 24). �

4.3. Weak inequalities for different norms

To conclude this section, let us state a corollary to the previous result, and prove that
weak Poincaré inequalities for many different norms are in fact equivalent. Moreover, if a
compensating function is known for one norm, we can immediately deduce a function for another
norm; this result was used in the one dimensional case (Section 2) where the explicit Hardy-like
criteria were known for the L∞ norm.

Theorem 37. Let φ,ψ be two Young functions, with φ(x) = ψ(x2). A measure µ satisfies a
weak Poincaré inequality with the L∞ norm if and only if it satisfies one with the Orlicz norm
‖ · ‖φ .

Moreover, if β is a compensating function for the L∞ norm, then the following function may
be chosen for the Orlicz norm:

α(s) =
c

4
β

(
1
4
ψ̂−1

( s

2

))
,

where c is universal (c = 24 works).

Proof. Let us begin with some notations. We will denote by M-C(κ,C(κ)) the following
comparison between measure and capacity:

∀A, µ(A) > κ H⇒ Cap(A) ≥ C(κ)µ(A).

Similarly, PWP(r,C(r),N ) will denote the one-point weak Poincaré inequality for a norm N
with constants r,C(r), and WP(α,N ) will be the (full) weak inequality, with a norm N and a
compensating function α. In the previous section, we showed:

M-C(κ,C(κ)) H⇒ PWP
(
κ,

c

Cκ
, ‖ · ‖∞

)
,

M-C(κ,C(κ)) H⇒ PWP
(

2ψ̂(κ),
c

Cκ
, ‖ · ‖φ

)
.
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Going the other way round is easy. Indeed, suppose that PWP(r,C(r), ‖ · ‖∞) holds. Let A be a
set whose measure is less than 1/2, but greater then 4r . Let g be any function which may appear
in the definition of the capacity of A (cf. (15)), and let mg be a median of g. Then:

Varµg ≤ Cr

∫
|∇g|

2dµ+ r‖g − mg‖∞.

Without loss of generality, we suppose that 0 ≤ g ≤ 1, so that the L∞ norm is bounded by
1. Moreover, r is less than µ(A)/4, and the variance on the left-hand side is bounded below by
(1/2)min(µ(A), 1/2) ≥ (µ(A)/2) (by the same argument used previously, during the proof of
Proposition 28). This entails:

µ(A)

2
≤ Cr

∫
|∇g|

2dµ+
µ(A)

4
.

This immediately implies the measure capacity inequality M-C(4r, 4/Cr ).
If we now try to derive an inequality with an Orlicz norm starting from one with an L∞ norm,

we just translate them in terms of measure and capacity:

PWP(r,Cr , ‖ · ‖∞) H⇒ M-C(4r, 4/Cr )

H⇒ PWP
(

2ψ̂(4r),
cCr

4
, ‖ · ‖φ

)
.

If we are looking for a full weak Poincaré inequality, we fix an s, and define r = (1/4)ψ̂−1(s/2).
We may then apply PWP(r, β(r), ‖ · ‖∞) to obtain:

PWP(s, cβ(r)/4, ‖ · ‖φ).

Since s is arbitrary, this concludes the proof. �
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Appendix A. Orlicz norms, entropy and centering

The proof of weak Poincaré inequalities starting from measure–capacity comparisons for an
Orlicz norm leads us to consider norms of functions recentered by their median. In fact, what
one obtains when applying these criteria is of the form:

Varµ( f ) ≤ β(s)E( f )+ s‖ f − m f ‖
2
φ,

where m f is a median for f . The aim of this section is to bound this term by more tractable
quantities (we will use an entropy and a moment).

More precisely we prove the following result:

Lemma 38. Let φ be the Young function x 7→ x2 log(1+ x2). There exists a C such that, for any
positive f and any probability measure µ, the following holds:

‖ f − m f ‖
2
φ ≤ C

(
Entµ( f 2)+ 3Eµ( f 2)

)
.
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The proof is given in several steps, and borrows several arguments from [5]. First of all, we
get rid of the median and replace it by a mean value.

‖ f − m f ‖φ ≤ ‖ f − µ f ‖φ + ‖µ f − m f ‖φ

≤ ‖ f − µ f ‖φ + |µ f − m f |. (A.1)

Let us consider the last term.

µ f − m f =

∫
f (x)dµ− m f =

∫
( f − m f )+dµ−

∫
( f − m f )−dµ,

where the integrals are both positive. The absolute value of the left-hand side may then be
bounded above:

|µ f − m f | ≤ max
(∫

( f − m f )+dµ,
∫
( f − m f )−dµ

)
.

Each of the arguments in the max can be controlled by Hölder’s inequality.∫
( f − m f )+dµ =

∫
( f − m f )1 f>m f dµ

≤ ‖ f − m f ‖2‖1 f>m f ‖2

≤
1

√
2
‖ f − m f ‖2 (since µ( f > m f ) < 1/2)

≤
1

√
2

√
5

2
‖ f − m f ‖φ (cf. [5], Lemma 4.3).

Coming back to (A.1), we get:

‖ f − m f ‖φ ≤ ‖ f − µ f ‖φ + |µ f − m f | ≤ ‖ f − µ f ‖φ +

√
5
8
‖ f − m f ‖φ .

Since
√

5
8 ≤ 1, we may put it on the other side to get:

‖ f − m f ‖φ ≤ C‖ f − µ f ‖φ (A.2)

where C = (1 −

√
5
8 )

−1 is universal.

The next step is to bound the Orlicz norm by an entropy. Once again, we use a result from
Bobkov and Götze [5]:

‖ f − µ f ‖
2
φ ≤

3
2

sup
a∈R

Entµ(( f + a)2).

Since we would like to deal only with the entropy of f 2, we try to compare the entropies of
translated functions. Rothaus’ lemma tells us:

Entµ(( f + a)2) ≤ Entµ( f̃ 2)+ 2Varµ( f ),

where f̃ is the centered function f −µ f . The only thing left to do is to bound the entropy of the
square of this centered function. This is done in the following lemma.
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Lemma 39. Let f be a positive function, and f̃ = f − µ f . Then the following holds:

Entµ( f̃ 2) ≤ Entµ( f 2)+

∫
f 2dµ.

Proof. Both sides of the equation are homogeneous (of order two), so we may as well suppose∫
f 2dµ = 1. We rewrite the left-hand side.

Entµ( f̃ 2) =

∫
f̃ 2 log( f̃ 2)dµ− Eµ( f̃ 2) log(Eµ( f̃ 2))

=

∫
f̃ 2 log( f̃ 2)dµ− Varµ( f ) log(Varµ( f )).

The second term is easily dealt with. Indeed, since
∫

f 2
= 1, Varµ f must be between 0 and 1.

Since x 7→ |x log(x)| is bounded by 1/e on this interval, one can write:

Entµ( f̃ 2) ≤

∫
f̃ 2 log( f̃ 2)dµ+

1
e
.

We decompose the integral into two parts, according to whether f is less than 1 or not.

Entµ( f̃ 2) ≤

∫
f̃ 2 log( f̃ 2)1

| f̃ |≤1dµ+

∫
f̃ 2 log( f̃ 2)1

| f̃ |>1dµ+
1
e

≤

∫
f̃ 2 log( f̃ 2)1

| f̃ |>1dµ+
1
e
,

since the first term is less than 0. Now, on the set where | f̃ | exceeds one, f must be above its
mean: f is indeed positive, and since

∫
f 2dµ = 1, µ f must be in [0, 1]. So | f − µ f | may be

greater than 1 only when f itself is greater than 1. This shows that, on {| f̃ | > 1},

1 ≤ f̃ = f − µ f ≤ f.

Since x 7→ x log(x) increases on [1,∞), we have:

Entµ( f̃ 2) ≤

∫
f̃ 2 log( f̃ 2)1

| f̃>1|
dµ+

1
e

≤

∫
f 2 log( f 2)1

| f̃>1|
dµ+

1
e
.

At this point, note that on { f > 1}, f 2 log( f 2) is positive, and since 1
| f̃ |>1 ≤ 1 f>1,

Entµ( f̃ 2) ≤

∫
f 2 log( f 2)1 f>1dµ+

1
e

≤ Ent( f 2)−

∫
f 2 log( f 2)1 f<1dµ+

1
e

≤ Ent( f 2)+
2
e
.

Since 2
e ≤ 1, the proof is complete. �

Gathering our results, we have shown that:

‖ f − m f ‖
2
φ ≤ C‖ f − µ f ‖

2
φ (inequality (A.2))
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≤
3C

2
sup
a∈R

Ent(( f + a)2) (Bobkov and Götze’s lemma)

≤
3C

2

(
Ent( f̃ 2)+ 2Varµ( f )

)
(Rothaus’s lemma)

≤
3C

2

(
Ent( f 2)+ 3Eµ( f 2)

)
(Lemma 39).

The last line is precisely the result we claimed in Lemma 38.

Appendix B. A moment bound

In this appendix, we prove Lemma 10. The proof mainly follows the one in Miclo’s doctoral
dissertation, with a few changes to accomodate our hypotheses.

B.1. Outline of the proof

We need to introduce some notation.
For ε > 0, we denote by Lε the generator of the diffusion at a fixed temperature ε:

Lε =
ε

2
1−

1
2
∇V ∇ · .

We will need a smooth version of a step function; we call it f and suppose that it satisfies:

f (x) =


0 if x ≤ 0,

exp
(

− exp
(

1
x

))
on [0, 1],

1 on [2,∞[.

We recall the hypotheses on V :

• it goes to infinity at infinity,
• its gradient ∇V is bounded, and
• its Laplacian 1V is negative for large x .

Note that, since V is continuous, there must be an R such that 1V is negative whenever
V (x) ≥ R.

Finally, let g be an increasing function, going to zero at zero.
The idea of the proof is that, as time goes by, the value of V at X t has a typical scale, namely
1

g(σ (t)) , for a function g to be made precise later, so that when we try to estimate E(V p(X t )), we
only have to take into account the small values of V .

More precisely, let ρε(·) = f (g(ε)V (·)− (R + 1)). This is a smooth approximation of
1V ≥

R
g(ε)

. We may bound the expectation of V p(X t ):

E[V p(X t )] = E[V pρσ(t)(X t )] + E[V p(1 − ρσ(t))(X t )]

≤ E[V pρσ(t)(X t )] +

(
R + 3

g(σ (t))

)p

. (B.1)

To bound the first term, we use the explicit expression of the generator. Intuitively, we write, for
ht = V pρσ(t):

d
dt
(Pt ht ) = PtLσ(t)ht + Pt

(
d
dt

ht

)
,
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and integrate between two times t and t ′. To ensure that everything exists, we use the stopping
time Tk = inf{t, V (X t ) ≥ k}. We get:

E[ht∧Tk (X t∧Tk )] = E[ht ′∧Tk (X t ′∧Tk )] + E
[∫ t∧Tk

t ′∧Tk

Lσ(s)(hs)(Xs)ds

]
+ E

[∫ t∧Tk

t ′∧Tk

σ ′(s)g′(σ (s)) f ′ (g(σ (s))V (Xs)− (R + 1)) V p+1(Xs)ds

]
. (B.2)

Since V is positive, f and g are increasing and σ decreases, the whole last term is negative. We
try to estimate the second one, and study Lσ(s)hs(Xs).

Lemma 40. Let us define ϕ : x 7→ x log2(x). There exists an M and a time t ′ (which may depend
on p and on the initial law) such that:

∀t ≥ t ′,∀x, Lσ(t)(ht )(X t ) ≤ exp
(

−
M

ϕ (σ(t)g(σ (t)))

)
.

We postpone the proof and finish the argument. The inequality dictates the choice of g: g =

ln(1/·)−3 guarantees

σ(t)g(σ (t)) =
1

ln(t)(ln ln(t))3
,

ϕ(σ (t)g(σ (t))) =
ln2 (1/ ln(t)(ln ln(t))3

)
ln(t)(ln ln(t))3

=
ln2 (ln(t)(ln ln(t))3

)
ln(t)(ln ln(t))3

.

Indeed, the upper bound on the generator then becomes

Lσ(t)(ht )(X t ) ≤ exp
(

−
M

ϕ(σ(t)g(σ (t)))

)
≤ exp

(
−M ln(t)×

(ln ln(t))3

ln2 (ln(t)(ln ln(t))3
)) .

Since the ratio (ln ln(t))3/(ln2(ln(t) ln ln(t)3)) goes to infinity, it eventually exceeds 2/M , so that
for t big enough,

Lσ(t)(ht )(X t ) ≤ exp (−2 ln(t)) .

Going back to the bound on the expected value we were looking for, the two previous
arguments imply:

E[ht∧Tk (X t∧Tk )] ≤ E[ht ′∧Tk (X t ′∧Tk )] +

∫
∞

t ′
exp (−2 ln(t)) .

Everything was done in order to make the last integral finite. We can then let k go to infinity, and
since t ′ is fixed, we get the existence of a constant Mp (which depends on p and on the initial
law) such that:

E[ht (X t )] ≤ M.

Plugging this back into inequality (B.1) yields:

E[V p(X t )] ≤ M +

(
R + 3

g(σ (t))

)p

.
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The expression of g shows that, for a new constant M :

E[V p(X t )] ≤ M(σ (t) ln(t)(ln ln(t))3)p,

and the result is proved.

B.2. An estimate on the generator

We now turn to the proof of Lemma 40. We have to bound Lε(ρεV p)(x), and our first step
will be to give a more explicit expression for this quantity. We will need the derivatives of ρε(x).
To simplify notations, we will write y = y(x, ε) = g(ε)V (x)− (R + 1).

ρε(x) = f (g(ε)V (x)− (R + 1)) = f (y),

∇ρε(x) = g(ε) f ′(y)∇V (x),

1ρε(x) = g(ε)2 f ′′(y)|∇V |
2
+ g(ε) f ′(y)1V .

The quantity we would like to estimate is

Lε(ρεV p)(x) = ρεLεV p(x)+ ε〈∇ρε,∇V p
〉(x)+ V pLερε(x)

We consider three cases, according to the value of V (x)g(ε).

B.2.0.1. V is small: V (x)g(ε) ∈ [0, R + 1]. On this interval, ρε vanishes, so Lε(ρε) is zero.

B.2.0.2. V is large. Let λ be a strictly positive real, to be fixed later on. We consider the case
where V (x)g(ε) ∈ [R + 1 + λ,∞), which may be rewritten as: y ∈ [λ,∞). We develop the
expression of Lε(ρεV p).

Lε(ρεV p)(x) = ρεLεV p(x)+ εg(ε) f ′(y)× pV p−1
|∇V |

2

+ V p
(

1
2
ε1ρε −

1
2
〈∇ρε,∇V 〉

)
.

We compute the derivatives of ρε and put together the terms involving |∇V |
2.

Lε(ρεV p)(x) = ρεLεV p(x)

+

(
εg(ε) f ′(y)pV p−1

+ V p
(

1
2
εg(ε)2 f ′′(y)−

1
2

g(ε) f ′(y)

))
|∇V |

2

+
1
2
εg(ε) f ′(y)V p1V

= A + B + C.

Since V × g(ε) ≥ R, V ≥ R. We already noted that R may be chosen so that, if V is bigger than
R, 1V is less than zero, and this makes the third term C negative. The term B can be rewritten
as:

B =

(
εg(ε) f ′(y)pV p−1

+ V p
(

1
2
εg(ε)2 f ′′(y)−

1
2

g(ε) f ′(y)

))
|∇V |

2

= V pg(ε)

((
pε

V
−

1
2

)
f ′(y)+

1
2
εg(ε) f ′′(y)

)
|∇V |

2. (B.3)

We add another condition on f : it should be concave when y is near 2 (e.g. on [
3
2 , 2]). On

[λ, 3/2], f ′′/ f ′ is bounded — let M be a bound (λ will be chosen so that other useful bounds
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hold on f on [0, λ], cf. infra). This entails:

∀y ≥ λ, f ′′(y) ≤ M f ′(y).

Coming back to B, we deduce:

B ≤

(
pε

V
+

Mεg(ε)

2
−

1
2

)
f ′(y)g(ε)V p

|∇V |
2.

The term between brackets is negative, uniformly in x as soon as ε is small enough.
Finally, the first term A = LεV p is also negative:

A =
ε

2
1(V p)−

1
2
〈∇V,∇(V p)〉

=
ε

2

(
p(p − 1)V p−2

|∇V |
2
+ pV p−11V

)
−

p

2
V p−1

|∇V |
2

≤
p

2
|∇V |

2V p−2 ((p − 1)ε − V ) .

Once more, the term between brackets is negative when ε is small (because V ≥ R). To conclude,
for any λ, there exists an ε0 such that:

∀ε < ε0,∀x, V (x)g(ε) ≥ R + 1 + λ H⇒ Lε(ρεV p) ≤ 0.

B.2.0.3. V is of the order of R/g(ε). Finally, let us treat the case where g(ε)V (x) ∈ [R + 1, R +

1 + λ]. Let us reuse the decomposition Lε(ρεV p) = A + B + C from the previous paragraph.
The same reasoning applies for A and C , and they are both negative, so it suffices to get a bound
on B. From (B.3):

B =

((
pε

V
−

1
2

)
f ′(y)+

1
2
εg(ε) f ′′(y)

)
g(ε)V p

|∇V |
2.

If we choose R sufficiently big and ε small enough, the quantity between brackets in front of
f ′(y) is less than (−1/4).

B ≤

(
−

1
4

f ′(y)+
1
2
εg(ε) f ′′(y)

)
g(ε)V p

|∇V |
2.

Recall that f = exp(−τ), where τ(y) = exp(1/y), for any y ∈ (0, 1]. This implies:

B ≤

(
1
4
τ ′ f +

1
2
εg(ε)(−τ ′′ f + (τ ′)2 f )

)
g(ε)V p

|∇V |
2

≤
1
2

(
1
2
τ ′ f + εg(ε)(τ ′(y))2 f (y)

)
g(ε)V p

|∇V |
2.

Define hε =
1
2τ

′ f + εg(ε)τ ′2 f . We study it by differentiating:

h′
ε =

(
1
2
τ ′′

−
1
2
τ ′2

+ 2εg(ε)τ ′τ ′′
− εg(ε)τ ′3

)
f.

The explicit expression of τ ensures:

∃λ∀y ∈ [0, λ] 0 ≤ τ ′′(y) ≤
1
4
τ ′2(y).
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This λ does not depend on ε. This can be used to bound h′
ε from below:

h′
ε(y) ≥

(
−

1
2
τ ′2(y)+

1
2
εg(ε)τ ′(y)3 − εg(ε)τ ′(y)3

)
f (y)

≥

(
−

1
2

−
1
2
εg(ε)τ ′(y)

)
τ ′(y)2 f (y).

Let y1,ε be the solution of the equation: −1 − εg(ε)τ ′(y) = 0. When ε is small, y1,ε will be
less than λ, and the monotonicity of τ ′ will give:

∀y ≤ y1,ε, h′
ε(y) ≥ 0.

Similarly, h′
ε can be bounded above:

h′
ε ≤

(
1
8
τ ′2(y)−

1
2
τ ′2(y)− εg(ε)τ ′3(y)

)
f (y)

≤

(
−

3
8

− εg(ε)τ ′(y)

)
τ ′(y)2 f (y).

Now, let y2,ε be the root of −
3
8 − εg(ε)τ ′(y) = 0. Once more, when ε is small, y2,ε falls within

[0, λ]. We deduce:

∀y ∈ [y2,ε, λ], h′
ε(y) ≤ 0.

We now know that hε increases on [0, y1,ε], and decreases on [y2,ε, λ], so that its maximum must
be reached somewhere between these two points. More precisely, whenever ε is less than some
ε0, the following holds:

∃yε ∈ [y1,ε, y2,ε],∀y ∈ [0, λ], hε(y) ≤ hε(yε).

The bounds on yε , the fact that τ decreases, and the equations defining y1,ε, y2,ε allow us to
conclude:

∀y ≤ λ, hε(y) ≤

(
1
2
τ ′(yε)+ εg(ε)τ ′(yε)

2
)

f (yε)

≤

(
1
2
τ ′(y2,ε)+ εg(ε)τ ′(y1,ε)

2
)

f (y2,ε)

≤

(
−

3
16εg(ε)

+
1

εg(ε)

)
f (y2,ε)

≤
1

εg(ε)
f (y2,ε).

It remains to estimate f (y2,ε) = exp(−τ(y2,ε)). Since y2,ε is defined as a solution of an equation
involving τ ′, we would like to compare τ and τ ′. The explicit expression for τ easily implies:

ln(|τ ′(y)|) = ln(y−2)+
1
y

≥
1
y
,

therefore:

τ(y) = y2
|τ ′(y)| ≥

|τ ′(y)|

ln2(|τ ′(y)|)
.
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Applying this for y = y2,ε , for which |τ ′(y)| = 3/(8εg(ε)), entails:

τ(y2,ε) ≥
3

8εg(ε) ln2(8εg(ε)/3)

≥
3

8εg(ε) ln2(εg(ε))
.

Turning back to f , and defining ϕ : x 7→ x ln2(x), and M = 3/8, we have:

f (y2,ε) = exp(−τ(y2,ε)) ≤ exp
(

−
M

ϕ(εg(ε))

)
.

We now come back to the upper bound on B, and plug it into the last equation.

B ≤
1
2

×
1

εg(ε)
exp

(
−

M

ϕ(εg(ε))

)
g(ε)V p

|∇V |
2.

Since we suppose that V (x)g(ε) belongs to [R+1, R+2], we may bound V p by (R+2)pg(ε)−p.
We also supposed that ∇V is bounded, so that there exists an M ′ such that:

B ≤
M ′

εg(ε)p exp
(

−
M

ϕ(εg(ε))

)
.

Up to a slight change of the constant M in the exponential, we may neglect the pre-exponential
term and write:

B ≤ M ′′ exp
(

−
M

ϕ(εg(ε))

)
.

This concludes the proof.

Appendix C. Regularity results and estimates on the process

C.1. An equivalent of the partition function

We recall here Laplace’s method, which enables us to study the asymptotic behaviour of the
partition function, i.e. the constant Zσ =

∫
exp(−V/σ)dx .

Theorem 41. Let V be a function from Rd to R, satisfying Hypotheses 1 and 2 (V has a unique,
well behaved, global minimum, and V goes to infinity at infinity rapidly enough). Then Zσ exists,
and the following holds:

Zσ ∼
σ→0

(2πσ)d/2
√

det HessV
.

To prove this classical result, we cut the integral into two parts, the main one (near the origin)
and a remainder. Before we proceed, let us remark that, up to a change of coordinates, we may
as well suppose that Hess(V )0 is a diagonal matrix, and we have Taylor’s formula:

V (x) =
1
2

∑
i

λi x2
i + ε(x)

∑
i

x2
i ,

where ε(x) goes to zero at 0. We choose an r such that, on B = [−r, r ]
d , ε(x) ≤

1
4 (inf λi ).
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Let us begin with the negligible part, outside of B. Since V goes to infinity, and 0 is the unique
global minimum, there exists an η > 0 such that V (x) ≥ η outside B. We introduce an exp(−V )
in the integral (the growth hypothesis makes it integrable), and use this bound:∫

x 6∈B
exp(−V/σ)dx =

∫
x 6∈B

exp(−V ) exp (−(1/σ − 1)V (x)) dx

≤

∫
x 6∈B

exp(−V )dx exp (−(1/σ − 1)η)

≤ Z1 exp (−(1/σ − 1)η) .

Let us turn to the main term. We divide it by σ d/2 (so that we only have to find a limit). We
change variables and use x = φσ (y) defined by xi = yi

√
σ/λi .

σ−d/2
∫

B
exp(−V/σ)dx1 · · · dxn

= σ−d/2
∫

1x∈B exp

(
−

1
2

∑
i

λi

σ
x2

i +
ε(x)

σ

∑
i

x2
i

)
dx

=
1

√
λ1 · · · λn

∫
1φσ (y)∈B exp

(
−

1
2

∑
y2

i + ε(φσ (y))
∑

i

y2
i

λi

)
dy.

The function inside the integral converges pointwise to exp(−
∑

y2
i ) when σ goes to zero

(because φσ (y) goes to zero for a fixed y). It is bounded from above by the integrable function

exp
(
−

1
4

∑
y2

i

)
(because φσ (y) ∈ B), and we may apply Lebesgue’s dominated convergence:

σ−d/2
∫

B
exp(−V/σ)dx1 · · · dxn −→

σ→0

(2π)d/2
√
λ1 · · · λn

.

With the bound on the remainder, this gives the equivalent of Zσ .

C.2. Finiteness of the entropy and regularity

We begin by proving that the relative entropy It is finite. To do this, we study directly the
explicit density, which we know thanks to a Girsanov transform. We follow a proof from [27],
with a few minor changes to deal with the non-homogeneity in time.

Recall that the process X is defined by the following SDE:

dX t =

√
σ(t)dBt −

1
2
∇V (X t )dt.

If we define a new reference martingale Mt =
∫ t

0

√
σ(s)dBs , we may define X as the solution to

the SDE:

dX t = dMt −
1
2
∇V (X t )dt.

Note that Mt is just a Brownian motion under a (deterministic) change of time — if we define
τ(t) =

∫ t
0 σ(s)ds, Mτ−1(t) is a Brownian motion. To find the density of the law of X t with respect

to its equilibrium measure µt , we decompose it into three terms:

dL(X t )

dµt
=

dL(X t )

dL(Mt )
×

dLMt

dλ
×

dλ
dµt

.
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To compute the first term, we use the (trajectorial) density of X[0,t] with respect to M[0,t], which
is given by Girsanov’s theorem:

F = exp
(

−
1
2

∫
∇V (Ms)dMs −

1
2

∫ t

0

|∇V |
2

4
(Ms)d〈M〉s

)
= exp

(
−

1
2

∫
∇V (Ms)dMs −

1
8

∫ t

0
|∇V |

2(Ms)σ (s)ds

)
.

To get rid of the martingale term in the exponential, we apply Itô’s formula to V and the
martingale M :

V (Mt ) = V (x)+

∫ t

0
∇V (Ms)dMs +

1
2

∫ t

0
1V (Ms)d〈M〉s .

The functional F may thus be rewritten:

F = exp
(

1
2

V (x)−
1
2

V (Mt )+

∫ t

0

(
1
4
1V (Ms)−

1
8
|∇V |

2(Ms)

)
σ(s)ds

)
.

The three densities we are looking for are:

dL(X t )

dL(Mt )
(Mt ) = f (Mt ) = E[F |F{t}]

dL(Mt )

dλ
(y) = exp(−2vt (y)) = (2πτ(t))−d/2 exp

(
−
(x − y)2

2τ(t)

)
dλ
dµt

(y) = Zσ(t) exp
(

V (y)

σ (t)

)
,

where x is the starting point X0. We take the product of these terms; the last two quantities may
be put into the conditional expectation, so that the density we are looking for (say G) may be
written as:

G(Mt ) = Zσ(t)E
[

F exp
(

V (Mt )

σ (t)
− 2vt (Mt )

)
|F{t}

]
.

Let us now define γ : x 7→ x log(x), and start to study It . By definition, It =
∫
γ (G(y))dµt (y).

Since G is best expressed as a conditional expectation, we rewrite It :

It = E
[
γ (G(Mt ))

dµt

dL(Mt )

]
= E

[
γ (G(Mt ))

1
Zσ(t)

exp
(

−
V (Mt )

σ (t)
+ 2vt (Mt )

)]
. (C.1)

Since γ is convex, we may apply Jensen’s conditional inequality to γ (G(Mt )), and develop γ :

γ (G(Mt )) ≤ E
[
γ

(
Zσ(t)F exp

(
V

σ(t)
− 2vt

))
|F{t}

]
≤ E

[
Zσ F exp

(
V

σ(t)
− 2vt

)(
log Zσ(t) + log F +

V

σ(t)
− 2vt

)
|F{t}

]
.
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Multiply both sides by (Z−1
σ(t) exp(−V/σ(t) + 2vt )), and take the expected value; the left-hand

side becomes It (thanks to (C.1)), the conditioning disappears and we get:

It ≤ E
[

F

(
log Zσ(t) + log F +

V (Mt )

σ (t)
− 2vt (Mt )

)]
.

Recall that F is a density, so that E[F] = 1, and we may take the constant Zσ(t) out of the
expectation. We add and substract (2/σ(t)) log(F) inside the integral — this will help us get rid
of the term V (Mt )/σ (t):

It ≤ log(Zσ(t))−

(
2
σ(t)

− 1
)

E
[
F log F

]
+ E

[
F

(
2
σ(t)

log F +
V (Mt )

σ
− 2vt (Mt )

)]
.

Since x log x is bounded below, and we may suppose that 2/σ(t) − 1 > 0, the second term is
bounded from above (for any finite time t). The same is true for the first term. The only thing to
check is that the last term is finite; let us call this term A. Since F is given by an exponential, A
is given by:

A = E
[

F

(
1
σ(t)

V (x)+
1

4σ(t)

∫ t

0

(
21V − |∇V |

2
)
(Ms)σ (s)ds − 2vt (Mt )

)]
.

Let us consider the quantity between brackets. The first term is finite and does not depend on Mt .
The integral is bounded above by something also independant of Mt (indeed, 21V − |∇V |

2 is
uniformly bounded from above, because 1V is negative outside a compact set). The only thing
left to check is that:

E [F(−2vt (Mt ))] < ∞.

We have already seen the explicit value of vt :

exp (−2vt (y)) = (2πτ(t))−d/2 exp
(

−
(y − x)2

2τ(t)

)
.

Taking logarithms, we see that:

−2vt (y) = −
d

2
log(2πτ(t))−

(y − x)2

2τ(t)

≤ −
d

2
log(2πτ(t)).

Since this bound does not depend on y, E[−F × (2vt (Mt ))] is finite. This concludes the proof.
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