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Abstract

Making use of the Stochastic Vacuum Model and the gluon gauge-invariant two-point correlation function, determ
numerical simulation on the lattice in both quenched approximation and full QCD, we calculate the elementary (quark
scattering amplitudes in the momentum transfer space and at asymptotic energies. Our main conclusions are the
(1) the amplitudes decrease monotonically as the momentum transfer increases; (2) the decreasing is faster w
from quenched approximation to full QCD (with decreasing quark masses) and this effect is associated with the inc
the correlation lengths; (3) dynamical fermions generate two components in the amplitude at small momentum tran
the transition between them occurs at momentum transfer near 1 GeV2. We also obtain analytical parametrizations for
elementary amplitudes, that are suitable for phenomenological uses, and discuss the effects of extrapolations from th
regions investigated in the lattice.
 2003 Elsevier B.V.
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1. Introduction

Soft hadronic scattering, characterized by long d
tance phenomena, is one of the great challenge
high-energy physics. The difficulty arises from t
fact that perturbative QCD cannot be applied to th
processes and, presently, we do not know even ho
calculate elastic hadron–hadron scattering amplitu
from a pure non-perturbative QCD formalism. Ho
ever, progresses have been achieved through the
proach introduced by Landshoff and Nachtmann
developed by Nachtmann [2] and connected with
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Stochastic Vacuum Model (SVM) [3]. In that forma
ism the low frequencies contributions in the function
integral of QCD are described in terms of a stocha
process, by means of a cluster expansion. The m
general form of the lowest cluster is the gauge inv
ant two-point field strength correlator [3,4]〈
FC
µν(x)F

D
ρσ (y)

〉

= δCD g2〈FF 〉
12(N2

c − 1)

{
(δµρδνσ − δµσ δνρ)κD

(
z2/a2)

+ 1

2
[∂µ(zρδνσ − zσ δνρ) + ∂ν(zσ δµρ − zρδµσ )]

(1)× (1− κ)D1
(
z2/a2)},

where z = x − y is the two-point distance,a is a
characteristic correlation length,κ a constant,g2〈FF 〉
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(1)
the gluon condensate andNc the number of colours
(C,D = 1, . . . ,N2

c − 1). The two scalar functionsD
andD1 describe the correlations and they play a c
tral role in the application of the SVM to high en
ergy scattering [4]. Once one has information ab
D andD1, the SVM leads to the determination of th
elementary quark–quark scattering amplitude, wh
constitutes important input for models aimed to co
struct hadronic amplitudes. Numerical determinati
of the above correlation functions, in limited interv
of physical distances, exist from lattice QCD in bo
quenched approximation (absence of fermions) [5
and full QCD (dynamical fermions included) [7].

In a previous paper, we determined the elemen
amplitudes from lattice QCD in the quenched appro
mation [8], using as framework the SVM. In this com
munication, we apply the same procedure, now tak
into account the lattice results in full QCD. Our ma
goal is to investigate the differences in the elem
tary amplitudes associated with quenched theory
full QCD and also the effect of different bare qua
masses. In addition, we obtain analytical parametr
tions for the amplitudes that are suitable for pheno
enological uses, and discuss in some detail the re
of validity of all the results.

The Letter is organized as follows. In Section
we recall the main formulas related with the elem
tary amplitudes in the context of the SVM and in Se
tion 3 we review the parametrizations for the corre
tors from numerical simulations on the lattice. In Se
tion 4 we present the results for the elementary am
tudes from full QCD with different quark masses a
discuss the similarities and differences with our p
vious result in the quenched approximation. The c
clusions and some final remarks are the content
Section 5.

2. Stochastic vacuum model

In this section we briefly review the main steps
the calculation scheme that allows the determina
of the elementary amplitudes through the SVM [3,
We refer the reader to [8] for more details concern
specific calculation.

The elementary amplitudef in the momentum
transfer space may be expressed in terms of the
ementary profileγ in the impact parameter spac
through the symmetrical two-dimensional Four
transform

(2)f
(
q2) =

∞∫
0

b db J0(qb)γ (b),

where q2 is the momentum transfer,b the impact
parameter andJ0 is a Bessel function.

In the Nachtmann approach [2], the study of
elementary scattering is based on the amplitude
quarks moving on lightlike paths in an external fie
picking up an eikonal phase in traveling through
nonperturbative QCD vacuum. In order to have ga
invariant Dirac’s wave function solutions a Wilso
loop is proposed to represent each quark. In
context the no-colour exchange parton–parton (lo
loop) amplitude can be written as [2]

γ = 〈
Tr

[
Pe

−ig
∫

loop 1dσµν Fµν(x;w) − 1
]

× Tr
[
Pe

−ig
∫

loop 2dσρσ Fρσ (y;w) − 1
]〉
,

where 〈·〉 means the functional integration over t
gluon fields (the integrations are over the respec
loop areas), andw is a common reference point fro
which the integrations are performed.

This expression is simplified in the Krämer a
Dosch description by taking the Wilson loops on t
light-cone. In the SVM theleading order contribution
to the amplitude is given by [4]

(3)γ (b) = ηε2(b),

whereη is a constant depending on normalizations a

ε(b)= g2
∫ ∫

dσµν dσρσ Tr〈Fµν(x;w)Fρσ (y;w)〉.

Here〈g2Fµν(x;w)Fρσ (y;w)〉 is the Minkowski ver-
sion of the gluon correlator.

After a two-dimensional integration,ε(b) may be
expressed in terms of the correlation functions in
by [4]

(4)ε(b)= εI(b)+ εII (b),

where

(5)εI(b) = κ
〈
g2FF

〉 ∞∫
b

db′ (b′ − b)F−1
2

[
D

(
k2)](b′),

(6)εII (b) = (1− κ)
〈
g2FF

〉
F−1

2

[
d

dk2D1
(
k2)](b).
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For D = D or D1, D(k2) = F4[D(z2)], whereFn

denotes an-dimensional Fourier transform.
With the above formalism, once one has inp

for the correlation functionsD(z) andD1(z), the el-
ementary amplitude in the momentum transfer spa
Eq. (2), may, in principle, be evaluated throu
Eqs. (3)–(6). It is important to stress that, as c
structed, this approach is intended for the high ene
limit and small momentum transfer region, name
s → ∞, where

√
s is the c.m. energy andq2 �

O(1) GeV2.

3. Lattice parametrizations

The determination of the correlation functio
through numerical simulation on a lattice is made
means of the cooling technique, a procedure that
moves the effects of short-range fluctuations on la
distance correlators. The numerical results with the
sociated error are usually parametrized with the fu
tions [6,7]

(7)D(z) = A0 exp

(
− |z|

λA

)
+ a0

|z|4 exp

(
−|z|

λa

)
,

(8)D1(z) = A1 exp

(
− |z|

λA

)
+ a1

|z|4 exp

(
−|z|

λa

)
,

whereλA in the nonperturbative exponential terms
the correlation length of the gluon field strengths. D
cussions on these choices, including the perturba
like divergence at short distances, may be found
Refs. [6] and [8].

These correlation functions were first determin
in the quenched SU(3) theory and in the inter
of physical distances (Euclidean space) between
and 1 fm [5,6]. After that, the effects of dynamic
fermions have also been included (full QCD), for ba
quark massesa.mq = 0.01 anda.mq = 0.02 (a is the
lattice spacing) and physical distances between
and 0.9 fm [7]. The above parametrizations are
same in all these cases and the numerical value
the parameters, obtained from Refs. [6] and [7],
displayed in Table 1.

4. Results and discussion

With the procedure described in Section 2 (s
[8] for all the calculational details), the elementa
Table 1
Central values of the fit parameters (without statistical errors)
the correlators (7) and (8) [6,7]

Parameters Full QCD Quenched

mq.a = 0.01 mq.a = 0.02 approximation

A0 (fm−4) 14.87 31.04 128.4
a0 0.71 0.66 0.69
A1 (fm−4) 1.709 4.102 27.23
a1 0.45 0.39 0.46
λA (fm) 0.34 0.29 0.22
λa (fm) 4.4 3.0 0.43

Fig. 1. Elementary amplitudes from full QCD and our previo
result in quenched approximation.

scattering amplitude in the momentum transfer sp
may be determined. The numerical results from
QCD, with a.mq = 0.01 anda.mq = 0.02, are shown
in Fig. 1, together with our previous result in th
quenched approximation. The normalized amplitu
are displayed in the region of high momentum trans
up to 10 GeV2.

We see that in all the cases the amplitudes decr
smoothly as the momentum transfer increases and
do not present any zeros in that region. The ove
basic effect of the dynamical quarks is to originat
more rapid decrease of the amplitude, an effect
depends on the bare quark mass: the smaller the
the faster the decrease. This behavior is associ
with the correlation lengthsλA andλa , since they are
the only parameters that decrease when going f
full QCD (with increasing quark masses) to quench
approximation (see Table 1).

In order to obtain analytical expressions, suita
for investigating distinct contributions and also f
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Fig. 2. Fits to numerical points with parametrization (9) in the ca
of full QCD for mq.a = 0.01 and quenched approximation, in t
region of large (a) and small (b) momentum transfer.

phenomenological uses, we have parametrized t
numerical points through a sum of exponentials inq2:

(9)
f (q2)

f (0)
=

n∑
i=1

αie
−βiq

2
.

By introducting a global uniform error of 0.5% in
the numerical points, we fitted the data through
program CERN-Minuit. The results of the fits fro
full QCD with mq.a = 0.01 (approximation to the
chiral limit) and in the quenched approximation a
displayed in Table 2 and they are represented by
solid lines in Fig. 2, in the regions of large and sm
momentum transfer. The corresponding exponen
components in each fit are shown in Fig. 3 for t
quenched approximation and in Fig. 4 for full QCD

An immediate conclusion from these results is
presence of an additional component in the case of
Fig. 3. Exponential components of the fit at large (a) and smal
momentum transfer in quenched approximation.

QCD. This is a central point that we shall discuss
certain detail in what follows.

Let us start with the components with the high
slopes, which appear in both cases in the small
mentum transfer region, namely, belowq2 � 0.1 GeV2

(Figs. 3 and 4). As mentioned before, the “real” l
tice results correspond to sets of discrete theore
points with errors, in a finite interval of physical di
tances, roughly 0.1–1.0 fm. Therefore, the para
trizations (7) and (8) extrapolate this interval dow
and above. The highest physical distance reache
the simulations was 0.85 fm, which corresponds
q2 � 0.24 GeV2. Therefore, we conclude that th
components with the highest slopes in Figs. 3 an
(q2 � 0.1 GeV2) are associated with the extrapolatio
above the physical region with “real” lattice resul
In the same manner, the components with the sma
slopes are connected with extrapolations down the
al” lattice points in physical distances and they are
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Table 2
Values of the fit parameters to the elementary amplitudes, Eq. (9), in the cases of quenched approximation and full QCD withmq .a = 0.01

Parameters: αi βi (GeV−2)

i = 1 2 3 4 1 2 3 4

Quenched 0.03 – 0.69 0.28 55.0 – 0.57 0.09
Full QCD 0.16 0.54 0.20 0.10 170.0 1.52 0.41 0.07
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Fig. 4. Exponential components of the fit at large (a) and smal
momentum transfer in full QCD formq.a = 0.01.

responsible for the amplitudes in high momentum
gion (q2 � 6–7 GeV2 in Figs. 3 and 4); therefore, the
are outside the region of validity of the SVM, name
q2 � O(1) GeV2.

We conclude that in this context only the interme
ate components, predominant in the interval, let us
0.5 � q2 � 2.0 GeV2, can have physical meaning
the sense of being in agreement with the SVM and
“real” lattice results in both full QCD and quenche
approximation. From Figs. 3 and 4 this “secure”
gion is characterized by only one component in
case of the quenched approximation and two com
nents in full QCD. The transition between these t
components occurs atq2 � 1 GeV2 (Fig. 4(a)), a limit
region for which the SVM is intended for.

5. Conclusions and final remarks

In this work we have obtained analytical param
trizations for the quark–quark scattering amplitude
a nonperturbative QCD framework (SVM) and usi
as inputs the correlation functions, determined fr
numerical simulation on a lattice, in both quenched
proximation and full QCD. The formalism is intende
for small momentum transfer (q2 � O(1) GeV2), as-
ymptotic energiess → ∞ and physical distances b
tween 0.1 and∼ 0.9 fm. As discussed in Section
these conditions put some restrictions in the phys
interpretations and, therefore, in the practical phen
enological uses of these amplitudes.

However, even under the above strictly conditio
we can surely extract some novel results: (1) the
plitudes decrease smoothly as the momentum tran
increases and they do not present zeros; (2) the
creasing is faster when going from quenched app
imation to full QCD (with decreasing quark masse
and this effect is associated with the increase of
correlation lengths (λA and λa); (3) the dynamica
fermions generate two contributions in the region
small momentum transfer, which are of the same
der atq2 ∼ 1 GeV2 (only one contribution is presen
in the case of quenched approximation).

We understand that result (3) may suggest so
kind of change in the dynamics at the elementary le
nearq2 ∼ 1 GeV2 and at asymptotic energies. If th
is true, some signal could be expected at the hadr
level. One possibility is that this effect can be as
ciated with the position of the dip (or beginning
the “shoulder”) in the hadronic (elastic) differenti
cross section data. The asymptotic condition emb
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ied in our result indicates thatq2 ∼ 1 GeV2 seems in
agreement with limit of the shrinkage of the diffractio
peak, empirically verified when the energy increase
the region 23 GeV� √

s � 1.8 TeV.
At last it should be noted that if there is no ne

effect above the physical distances presently inve
gated on the lattice (∼ 0.9 fm), the extrapolations ca
be considered as a good representation of the lattic
sults. In this case our analytical parametrizations m
be useful inputs for phenomenological uses in the
gion of small momentum transfer and asymptotic
ergies.
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