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Abstract

Making use of the Stochastic Vacuum Model and the gluon gauge-invariant two-point correlation function, determined by
numerical simulation on the lattice in both quenched approximation and full QCD, we calculate the elementary (quark—quark)
scattering amplitudes in the momentum transfer space and at asymptotic energies. Our main conclusions are the following:
(1) the amplitudes decrease monotonically as the momentum transfer increases; (2) the decreasing is faster when going
from quenched approximation to full QCD (with decreasing quark masses) and this effect is associated with the increase of
the correlation lengths; (3) dynamical fermions generate two components in the amplitude at small momentum transfer and
the transition between them occurs at momentum transfer near #.@/ also obtain analytical parametrizations for the
elementary amplitudes, that are suitable for phenomenological uses, and discuss the effects of extrapolations from the physical
regions investigated in the lattice.

0 2003 Elsevier B.V. Open access under CC BY license,
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1. Introduction Stochastic Vacuum Model (SVM) [3]. In that formal-
ism the low frequencies contributions in the functional

Soft hadronic scattering, characterized by long dis- integral of QCD are described in terms of a stochastic

tance phenomena, is one of the great challenges inprocess, by means of a cluster expansion. The most

high-energy physics. The difficulty arises from the general form of the lowest cluster is the gauge invari-

fact that perturbative QCD cannot be applied to these ant two-point field strength correlator [3,4]

processes and, presently, we do not know even howto, _~ D

calculate elastic hadron—hadron scattering amplitudes(Flw(x IFpo (v ))

from a pure non-perturbative QCD formalism. How- _.CD g%(FF) 5 s 5 5 eD(-2/a
ever, progresses have been achieved through the ap- — 12(N2 - 1) {( nodvo = Bua dup ) (Z /a )
proach introduced by Landshoff and Nachtmann [1], 1
developed by Nachtmann [2] and connected with the + 5[3M(zp8ua —26vp) + 3 (268pp — 2p8p0)]
X (1—K)D1(22/a2)}, (1)
E-mail addresses: martini@ifi.unicamp.br (A.F. Martini), wherez = x — y is the two-point distanceg is a
menon@ifi.unicamp.br (M.J. Menon). characteristic correlation length a constantg?(F F)
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the gluon condensate ard. the number of colours  through the symmetrical two-dimensional Fourier
(C,D=1,...,N? —1). The two scalar function® transform

and D; describe the correlations and they play a cen- )
tral role in the application of the SVM to high en- f(qz) =/bdb Jo(gb)y (b) )
ergy scattering [4]. Once one has information about

D and D;, the SVM leads to the determination of the 0

elementary quark—quark scattering amplitude, which where g2 is the momentum transfek the impact

constitutes important input for models aimed to con- parameter andp is a Bessel function.

struct hadronic amplitudes. Numerical determinations  In the Nachtmann approach [2], the study of the

of the above correlation functions, in limited interval elementary scattering is based on the amplitude of

of physical distances, exist from lattice QCD in both quarks moving on lightlike paths in an external field,

guenched approximation (absence of fermions) [5,6] picking up an eikonal phase in traveling through the

and full QCD (dynamical fermions included) [7]. nonperturbative QCD vacuum. In order to have gauge
In a previous paper, we determined the elementary invariant Dirac’s wave function solutions a Wilson

amplitudes from lattice QCD in the quenched approxi- loop is proposed to represent each quark. In this

mation [8], using as framework the SVM. In this com- context the no-colour exchange parton—parton (loop—

munication, we apply the same procedure, now taking loop) amplitude can be written as [2]

into account the lattice results in full QCD. Our main s .

goal is to investigate the differences in the elemen- ¥ = (Tr[Pe i8 [100p 140uy Fuv (x3w) _ 1]

tary amplitudes associated with quenched theory and x Tr[pg—igfmop 249p0 Fpo (y;w) _ 1])

full QCD and also the effect of different bare quark . . .

masses. In addition, we obtain analytical parametriza- Wwhere <,') means _the fun_ctlonal integration over th_e

tions for the amplitudes that are suitable for phenom- gluon fields (the integrations are over the respective

enological uses, and discuss in some detail the regionloo_p areas_), aned IS a common reference point from
of validity of all the results. which the integrations are performed.

The Letter is organized as follows. In Section 2 This exprgs;ion is simplified in_ the Kramer and
we recall the main formulas related with the elemen- Dosch description by taking the Wilson loops on the

tary amplitudes in the context of the SVM and in Sec- Iighrt]-cone.l!n ;he,SV,M th?adi ng order contribution
tion 3 we review the parametrizations for the correla- to the amplitude is given by [4]

tors from numerical simulations on the lattice. In Secj y (b) = ned(b), (3)
tion 4 we present the results for the elementary ampli- , i L

tudes from full QCD with different quark masses and wherey, is a constant depending on normalizations and
discuss the similarities and differences with our pre- 2 _ .

vious result in the quenched approximation. The con- € =8 // A0y d0po TH(Fyuy (65 ) Fpg (35 w)).-
clusions and some final remarks are the contents of
Section 5.

)

Here (g2F ., (x; w) Foo (v; w)) is the Minkowski ver-
sion of the gluon correlator.

After a two-dimensional integratior,(b) may be
expressed in terms of the correlation functions in (1)

by [4]

In this section we briefly review the main steps of ¢(b) = ¢/ (b) + ey (b), (4)

the calculation scheme that allows the determination where
of the elementary amplitudes through the SVM [3,4].

2. Stochastic vacuum model

We refer the reader to [8] for more details concerning ) 7 . . o
specific calculation. a(b) =«(g FF)fdb (b' = b)F5 [ D (k)] (5)
The elementary amplitudg in the momentum b

transfer space may be expressed in terms of the el- ) [ d )
ementary profiley in the impact parameter space, €Il(®) =(1—«)(g°FF)F, [ﬁDl(k )}(b)- (6)
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For D = D or D1, D(k?) = Fa[D(z?)], where F, Table 1

denotes a-dimensional Fourier transform. Central values of the fit parameters (without statistical errors) for
With the above formalism, once one has inputs he correlators (7) and (8) [6,7]

for the correlation function®(z) and D1(z), the el- Parameters Full QCD Quenched
ementary amplitude in the momentum transfer space, mg.a=001  mg.a=002  approximation
Eqg. (2), may, in principle, be evaluated through 4, fm—4) 14.87 3104 1284
Egs. (3)—(6). It is important to stress that, as con- ag 0.71 066 0.69
structed, this approach is intended for the high energy A1 (m™) 1.709 4102 27.23

0.45 039 0.46

limit and small momentum transfer region, namely, 9

s — oo, Where /s is the c.m. energy ang? < i;gg)) 2224 g’gg g:ig
O(1) Ge\2.

3. Lattice parametrizations %;O gl

A amq:0.01

The determination of the correlation functions

through numerical simulation on a lattice is made by
means of the cooling technique, a procedure that re- =
moves the effects of short-range fluctuations on large “= °
distance correlators. The numerical results with the as-
sociated error are usually parametrized with the func-
tions [6,7]

5 r

|z| ao |z|
D(z) = AoeXp<—— +—zexpl—— ). (7) 5 2 ; s s 10
Aa |z] A & (Govd)
|z] ai |z] _ _ _
D1(z) = Arexp| N + —7 eXp ) (8) Fig. 1. Elementary amplitudes from full QCD and our previous
A kd a result in quenched approximation.

wherei 4 in the nonperturbative exponential terms is

the correlation length of the gluon field strengths. Dis- scattering amplitude in the momentum transfer space
cussions on these choices, including the perturbative- may be determined. The numerical results from full
like divergence at short distances, may be found in QCD, witha.m, = 0.01 anda.m, = 0.02, are shown
Refs. [6] and [8]. ) ) _ ) in Fig. 1, together with our previous result in the
These correlation functions were first determined quenched approximation. The normalized amplitudes
in the quenched SU(3) theory and in the interval gre gisplayed in the region of high momentum transfer,
of physical distances (Euclidean space) between 0.1up t0 10 Ge?.
and 1 fm [5,6]. After that, the effects of dynamical We see that in all the cases the amplitudes decrease
fermions have also been included (full QCD), for bare g aothly as the momentum transfer increases and they
quark masses.m, = 0.01 anda.my =0.02 @isthe  4q not present any zeros in that region. The overall
lattice spacing) and physical distances between 0.3 p5gic effect of the dynamical quarks is to originate a
and 0.9 fm [7]. The above parametrizations are the mqre rapid decrease of the amplitude, an effect that
same in all these cases and the numerical values Ofdepends on the bare quark mass: the smaller the mass
the parameters, obtained from Refs. [6] and [7], aré he faster the decrease. This behavior is associated

displayed in Table 1. with the correlation lengths, and,, since they are
the only parameters that decrease when going from
4. Results and discussion full QCD (with increasing quark masses) to quenched

approximation (see Table 1).
With the procedure described in Section 2 (see In order to obtain analytical expressions, suitable
[8] for all the calculational details), the elementary for investigating distinct contributions and also for
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Fig. 2. Fits to numerical points with parametrization (9) in the cases Fig. 3. Exponential components of the fit at large (a) and small (b)
of full QCD for mg4.a = 0.01 and quenched approximation, in the ~ momentum transfer in quenched approximation.
region of large (a) and small (b) momentum transfer.

QCD. This is a central point that we shall discuss in
phenomenological uses, we have parametrized thesecertain detail in what follows.

numerical points through a sum of exponentialgfn Let us start with the components with the highest
slopes, which appear in both cases in the small mo-

f@® i  _Big? ) mentum transfer region, namely, belg®~ 0.1 Ge\2

f@O ; 1a’e ' (Figs. 3 and 4). As mentioned before, the “real” lat-

tice results correspond to sets of discrete theoretical
By introducting a global uniform error of.8% in points with errors, in a finite interval of physical dis-
the numerical points, we fitted the data through the tances, roughly 0.1-1.0 fm. Therefore, the parame-
program CERN-Minuit. The results of the fits from trizations (7) and (8) extrapolate this interval down
full QCD with mg,.a = 0.01 (approximation to the  and above. The highest physical distance reached in
chiral limit) and in the quenched approximation are the simulations was 0.85 fm, which corresponds to
displayed in Table 2 and they are represented by the g2 ~ 0.24 Ge\2. Therefore, we conclude that the
solid lines in Fig. 2, in the regions of large and small components with the highest slopes in Figs. 3 and 4
momentum transfer. The corresponding exponential (g2 < 0.1 Ge\?) are associated with the extrapolations
components in each fit are shown in Fig. 3 for the above the physical region with “real” lattice results.
quenched approximation and in Fig. 4 for full QCD. In the same manner, the components with the smallest
An immediate conclusion from these results is the slopes are connected with extrapolations down the “re-
presence of an additional componentin the case of full al” lattice points in physical distances and they are the
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Table 2

57

Values of the fit parameters to the elementary amplitudes, Eq. (9), in the cases of quenched approximation and full @¢2 with01

Parameters: o

Bi (Gev—2)

i =

2

Quenched
Full QCD

0.03
0.16

0.69

0.54 0.20

0.28
0.10

55.0
170

0.57
0.41

1.52

0.09
0.07

4 full-QCD

E_ (b)

4 full-QCD

0.4 0.6 0.8 1
q’ (GeV?)

L
0 0.2

Fig. 4. Exponential components of the fit at large (a) and small (b)
momentum transfer in full QCD for,.a = 0.01.

responsible for the amplitudes in high momentum re-
gion (g2 > 6-7 Ge\ in Figs. 3 and 4); therefore, they
are outside the region of validity of the SVM, namely,
%> <0Q) Ge\2.

We conclude that in this context only the intermedi-
ate components, predominantin the interval, let us say,
0.5 < ¢2 < 2.0 Ge\?, can have physical meaning in
the sense of being in agreement with the SVM and the
“real” lattice results in both full QCD and quenched

case of the quenched approximation and two compo-
nents in full QCD. The transition between these two
components occurs af ~ 1 Ge\ (Fig. 4(a)), a limit
region for which the SVM is intended for.

5. Conclusionsand final remarks

In this work we have obtained analytical parame-
trizations for the quark—quark scattering amplitudes in
a nonperturbative QCD framework (SVM) and using
as inputs the correlation functions, determined from
numerical simulation on a lattice, in both quenched ap-
proximation and full QCD. The formalism is intended
for small momentum transfegf < O(1) Ge\?), as-
ymptotic energies — oo and physical distances be-
tween 0.1 and~ 0.9 fm. As discussed in Section 4,
these conditions put some restrictions in the physical
interpretations and, therefore, in the practical phenom-
enological uses of these amplitudes.

However, even under the above strictly conditions
we can surely extract some novel results: (1) the am-
plitudes decrease smoothly as the momentum transfer
increases and they do not present zeros; (2) the de-
creasing is faster when going from quenched approx-
imation to full QCD (with decreasing quark masses),
and this effect is associated with the increase of the
correlation lengthsi(4 and 1,); (3) the dynamical
fermions generate two contributions in the region of
small momentum transfer, which are of the same or-
der atg? ~ 1 Ge\ (only one contribution is present
in the case of quenched approximation).

We understand that result (3) may suggest some
kind of change in the dynamics at the elementary level,
nearg? ~ 1 Ge\? and at asymptotic energies. If that
is true, some signal could be expected at the hadronic
level. One possibility is that this effect can be asso-
ciated with the position of the dip (or beginning of

approximation. From Figs. 3 and 4 this “secure” re- the “shoulder”) in the hadronic (elastic) differential

gion is characterized by only one component in the

cross section data. The asymptotic condition embod-
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ied in our result indicates thag? ~ 1 Ge\? seems in was supported by FAPESP (Contract Nos. 01/08376-2
agreement with limit of the shrinkage of the diffraction and 00/04422-7).
peak, empirically verified when the energy increases in
the region 23 Ge\K /s < 1.8 TeV.
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