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We consider the propagation of three-dimensional nonlinear magnetized two-ion-temperature dusty
plasma. The problem formulation of this mathematical model leads to nonlinear extended Zakharov-
Kuznetsov (EZK) dynamical equation in three-dimensional by applying the reductive perturbation theory.
We found the families of dust and ion solitary wave solutions of the three-dimensional nonlinear EZK
dynamical equation using the auxiliary equation mapping method and direct algebraic mapping method.
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1. Introduction and problem formulation of derivation EZK
equation

Dusty plasmas are the ionized gases containing small particles
of solid matter since their discovery in laboratory as well as in
space. The nonlinear propagation of such waves can give rise to
the formation of solitons with negative or positive wave ampli-
tudes, which has potential applications in astrophysical and space
environments as well as in laboratory and technological studies
[1]. Furthermore, electrostatic solitary waves have been observed
in several regions, including the Earths magnetotail, solar wind,
and polar magnetosphere [1]. Solitary waves and solitons repre-
sent one of the interesting and famous aspects of nonlinear phe-
nomena in spatially extended systems. They appear as specific
types of localized solutions of various nonlinear partial differential
equations and possess several important properties [2]. Extended
Zakharov-Kuznetsov equation used to describe the nonlinear
dust-ion-acoustic waves in the magnetized two-ion-temperature
dusty plasmas [3-6], or the propagation of the low-frequency
ion-acoustic waves in a dense quantum magneto-plasma, or the
obliquely propagating higher-order dispersion electron-acoustic
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solitary waves in a magnetized interactionless plasma. Some
numerical and analytical studies have been conducted on extended
Zakharov-Kuznetsov equation [7-10]: the explosive and periodic
solutions have been obtained, existence and instability of the prop-
agating solitary wave solutions have been simulated numerically,
the conserved quantities and one-soliton solutions have been given
via the mapping and Ansatz methods and Lie Group analysis, the
symmetry solutions and reductions have been investigated, and
some analytical solutions have been obtained [11-18].

The nonlinear propagation of dust-ion-acoustic solitary waves
and shocks in a four component dusty plasma consisting of dust
particles which are extremely massive and usually negatively
charged, electrons, high-temperature ions and low temperature
ions in the presence of an external magnetic filed M. The dynamics
of the propagation dust-ion-acoustic waves such as plasma are
governed by the fluid equations (the normalized fluid equations
of continuity and motion and system is closed by Poisson’s equa-
tion) as

N
AV V(]') = 47e (anjzdj +MNe — Ny — Tlih>, (1)
=
ong;
Ttdj + V- (ngug) = 0, (2)
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ouy,
ndjmdj< ot + (ud, V)lld}) = ZdjenddeJ — Zdjndje(udj X M), (3)

ne = vexp(spi¢), ny = Wexp(—s¢), nin = vrexp(—sp,¢), (4)

where ¢ is the electrostatic potential; ug is the velocity of the jth
dust grain; ugj, g and wg; are the velocities of the dust grain flow
along x,y and z directions, respectively; t refers to the time; ng is
the number density of the jth dust grain; n.,n; and ny represent
the number density of electrons, low-temperature ions and high-
temperature ions, respectively; at equilibrium, the charge neutrality
can be given as njy + Njpg = ZJN: 1NaoiZ4j + Neo, Where ngg; is the equi-
librium number density of the jth dust grain; Z; is the charge of the
jth dust grain divided by the electron charge e, neg, ny, and ny,, refer
to the equilibrium number densities of electrons, low-temperature
ions and high-temperature ions, respectively; my; are masses of N
different species of dust grain. And v = e/ (ZaoNewr); 1 = Tit/Te;
/}2 - lh/Tev S = eff/Te, Teff = ZdONmt(neO/TE + nllO/Tll + niha/Tih);
ty = i/ (ZaoNeot); ty = Nino/(ZaoNiot); Te, Ta and Ty, refer to the tem-
peratures for electrons, lower and higher temperature for ions; Zy
is the average charge number residing on the dust grain;
Niot = 34 Mgy

Assumed that the linear dispersion
— uoel<1x+k2y+kgz—wt; Udj — yoel<1x+k2y+kgz—wt; de

relation  as
udj — Woek1x+k2y+k32—mt;
where ki, k, and k3 are the wave numbers in the x,y, z directions,
respectively, om refers the frequency of the linear wave. Using
the reductive perturbation technique and transformations, the
new stretching coordinates (space and time) of the scale are given
as

x1=€2x, y,=€?y, z1=€2(z-wvot), t; =€, (5)

where 1 is the phase velocity of the wave along the x-direction; € is
a small expansion parameter proportional to the amplitude of the
perturbation which characterizes the strength of the nonlinearity
of the system. To obtain the dimensional nonlinear EZK dynamical
equation, expand the fluid velocity, density and electrostatic poten-
tial in power series of €. By applying the reduction perturbation
method from Egs. (1)-(4) and new scaling (5), then the collecting
coefficients of lowest order of €, by eliminating the second order
quantities from Eqs. (1)-(4), and using the expressions for the first
order quantities (5), can be reduced the three-dimensional nonlin-
ear EZK equation as

¢ ¢ Py P\
+A¢> +BW+C<6x8y2+axazz =0, (6)

3 N ndo'Z3- 1
A= Z_HOZ< nizAdj> — EUOSZ(Vﬁ] — M= /“‘hﬁ%)?

Ug N
B= 5 21 NgojMg;)

where x,y,z and t represent the partial derivatives, A is the nonlin-
ear coefficient, B and C are the dispersion coefficients. Consider the
traveling wave solutions as

(x.y,2,t) = $(0),

where ki, k;,k; and @ are wave numbers and frequency. Then Eq.
(6) becomes

—w¢' + Akipd’ + Bk, ¢ + Cky (5 + k3) ¢ = 0. (8)

and 0 = kix+ kyy + ksz — o, (7)

2. Families of solitary wave solutions

We found the families of solitary wave solutions for the nonlin-
ear three-dimensional extended ZK dynamical equation by apply-
ing the extended direct algebraic mapping and extended sech-
tanh function methods. The different values for the electrostatic
potential ¢ give different analytic solutions of Eq. (6), which gives
the following families:

Families I: By applying the auxiliary equation mapping method,
the nonlinear three-dimensional extended ZK dynamical equation
has general solution in series as:

0) = ia,»F’ )+ Zb iF (0 )+Zn:c,~Fi’2(9)F 0
i=0 i=-1 i=2
+ Y dFOF 0) ©)
i=—1

where  ap,ai,...a,,by,...by,Co,...Cp,d1,...d, are
constants, the value of F(0) and F'(0) satisfy the following

arbitrary

F(0) = /pF2(0) + qF (0) + rF* (0);
F"(0) = pF(0) +3qF*(0) + 2rF°(0);
F"(0) = (p+3qF 0) + 6rF2(0 ) F(0): (10)
F®(0) = 1F(0)(2p* + 15pqF(0) +
F(0) + 60qu3(0) + 48r2F4(0)),

5(3¢* + 8pr)

Balancing the highest order nonlinear term and the highest
order linear partial derivative term in Eq. (8) yields the value of
m = 2. The solution of Eq. (6) takes the form

b b,
_ 2 N
¢(0) = ao + a1F(0) 4 axF(0) +F(0) +F2( 0
F'(0) F(0)
+d 11
Fo) 2P ()

Substitute Eq. (11) into Eq. (8) and collect coefficients of
Fi(0)F(0)(j = 0,1;i=0,1,2,3,...n), then set each coefficient equal
to zero to derive a set of over-determined algebraic equations. By
solving this system, the parameters dag,da;,d,,b,bs,c2,d1,d> can
be determined as

+6F (0)

+di ==

©—Bpk3 —BCpk, I —BCpk; k3 _ 6Bq(K3 +Ck3+CK3)
A b

Qo = Aky )
3Bq? (k2 +Ck3+Ck?) 2
02:—71/%2 3 b]:b2:C2:d1:d2:O, r:Z—p

(12)

Substituting from Eqs. (12) into (11), the electrostatic potential
of Eq. (6) can be obtained as a ion-acoustic solitary wave solutions
as:

91(%.Y.2,6) =gk (2Bka (k3 + C(IG +K3))p -+~ 3Bky (K; + C(KG +K3))ps?
tanh? [VTﬁ(kaJr kay +ksz—w7T)+ 00])
(13)

by (x,y,2,t) = (w Bpk; - Bfl;jjlkz BCp’ﬂka) +12Bq(k? + CkZ + Ckz)\/

s sinh[/p(kyx+kyy+ksz—wt)+0p] 3B 2
(1 + p+cosh[\/ﬁ(k1x+k2y+kgz—wr)+()0]) T (kl + Ckz + Ck3)

+ gs_sinh[\/p(kyX+kyy+ksz—w1)+0p) 2
q p+cosh[y/p(ki x+kyy+k3z—wT)+00]

(14)
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b3(%,y,2,t) =

<1 i s(p 1+(,—.2+cosh[\/ﬁ(k1x+k2y+kgz—wr)+00])> _ 3B(k% I Ckg 4 Ck%)p

§ (2RO 0) 4 GBp(K; + CIG + CKS)

o+sinh[y/p(ky x-+kyy+k3z—wT)+00)

1 s (m/ 1+02 +cosh[\/ﬁ(k1x+kzy+kng(or)+()0]) 2
+ o+sinh[y/p(ky X+kyy+k3z—wT)+00]
(15)

Families II: By applying the direct algebraic mapping method,
the nonlinear three-dimensional extended ZK dynamical equation
has general solution in series as:

0) :iaiFi +Zb F(0 +ZC,F’ 2(0)F (0
i=0 i=—1
+ S dFOF0), (16)
i=—1

where dap,ay,...ay, by,...by,Ca,...Cy,dy,...d, are arbitrary con-
stants, the value of F(0) and F'(0) satisfy the following

F'(0) = /pF2(0) + qF*(0) + rF°(0);
F"(0) = pF(0) + 2qF>(0) + 3rF> (0);
F"(0) = (p+6qF*(0) + 151F*(0) ) F (0); (17)
F¥(0) = F(0) (p2 +20pgF?(0) + 6(4q> + 13pr)F* ()
+120qrF%(0) + 105r2F8(9)),

o~

Balancing the highest order nonlinear term and the highest
order linear partial derivative term in Eq. (8) yields the value of
m = 4. The solution of Eq. (6) takes the form

b b b b
71+ 22 n 33 + 44
F(0) " F*() F0) F'0)

+ ©oF (0) + CsF(0)F (0) + caF* (O)F (0) + dh F/<( 0>)

¢(0) = ao + a1 F(0) + a:F*(0) +

+d;

F (0 F(0 F(0
) g, FO)  FO)
F(0) TF0)  F0)
Substitute Eq. (18) into Eq. (16) and collect coefficients of
Fi(O)F(0)(j = 0,1;i=0,1,2,3,...n), then set each coefficient equal
to zero to derive a set of over-determined algebraic equations. By

solving this system, the parameters ao,as,as,ds,as,bq,bs,
bs,b4,Cy,C3,C4,dy,d>,d3,dy can be determined as.

(18)

Casel
00:7&7 a, =0, 0227%, as =0, (14=7A3,::’I)J,
Cy) =C4 = O7
C3= *i\‘,ﬁj’, di=dy=d3;=ds=0, k;= 70)7:?5%%@
(19)
Case II
b3(x,y,2,t) = ! 2

Aky (q—\ /q2—4prsin[2 ﬁ(k1x+k2y+k32—u)f)+90])

(12Bpk; (I + C(KG + K6))(q? — 4pr) + g — 24pBk, (K + C(k5 + k3))/P(4PT — @7)
—2q+/q% — 4pr(6Bpk, (k; + C(K; +k3))p + )

cos[2,/=p(kiX + kay + k3z — T) + O]

6Bq(k3-+C(k2+k?))
G =a=0, a=—-—"—"722>,

(20)
12Br(k2 +C(k3+13))

A =———"F5 "7, G=0=d=dy=d3=d;=0

12B(k2 +C(k3+k2)) /T
C3 = ! A2 2 ’ p =

(0]
4Bk, (kK3 +C(k3+K3))

Substituting Eqs. 19,20 into (9), the electrostatic potential
of Eq. (6) can be obtained as a ion-acoustic solitary wave solutions as:
Case I

(b] (X7y727 t) = ﬁ
(qz — 6pr — 3q,/pr sech’ {@ (kX + kay + ksz — o7T) + 90]
21
+3(g? 4pr)tanh[ (k1x + koy + ksz — w7) + 90] @1

—6prtanh’ H’ (kix + koy + ksz — w7) + 90])

¢2(X7yaz7 t) = =

7
2Akyp(4pr—q2) < —cosh(2/P(ky x+kyy+ks z—wr)+()0]>

q2-4pr
<3pq + 20rp + 24rp? q4pEPq + ZPQM cosh
[2v/D(kix + Koy + ksz — 0T) + 6o)
+p(q? — 4 pr)cosh[4/p(kix + kzy + ksz — T) + 6]
(48p*r — 12pg?), /qf;prsmh [2v/D(kix + Koy + ksz — 7) + 00]>

Ps(x,y,2,t)=— 4l (22)
3( y ) Akq (q—\/qz—4prsin[2\/—_p(l<1x+k2y+l<3z—wr)+ﬁo])2

(—2(q*—6pr)+6+/pr(4pr — q?)cos [2/=p(kiX + kzy + ksz— cT) + o]
+q+/q? — 4pr sin[2/=p(kix+ kay + ksz— 1) + 6o
(q? —4pr)sin® [2v/=D(k1X+kay +k3z— wT) + 0o])

(23)

Case 11

A e o

(K5 +C(k5 +Kk3)) /P sech® [ /B(kix +kay +kaz — T) + o]
+6Bp(K; +C(K; +k3)) (1 + tanh[/p(kix+ koy +ksz — 7T) + 0]
—13Brp? (k7 + C(k; +k3)) (1 + tanh [ /B (ks x+ koY + ksz — T) + 0o )?
(24)

48Brp? (K2 +C(k3+Kk3))

b2 (%,y,2,t) =

Ak1
Alg?—4pr) ( 4

\V q2-apr
12Bpq (k2 +C(k3+k3))
A (q—\/q2 —4prcosh(2/p(kix-+kyy-+ks z—o;r)+()0])
4SBp(kf +C(k§ +k§ ))v/preanh|y/p(k; x-+kyy+ksz—m)+6p]

2
Av/q*—4pr (—2+ (l+\/q;’7_4pr> sech?[\/p(k, x+k2y+k32—wr)+()o])
x sech’ [y/B(kix+kay +ksz— T) + 0o ]

2
—cosh(2/p(ky x-+kyy+ksz— wr)+00]>

+

(25)

(26)

sin[2y/=p(kix + koy + ksz — wt) + o] + (¢* — 4pr)w sin® [2v/=D(kix + koy + k3z — wT) + ()OD
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The electrostatic potentials defined in the pervious cases are a
Hamiltonian system for which the momentum is given by

S
M = lim & / $Ado, (27)
0

5002

where i = 1,2, 3. The sufficient condition for ion acoustic solitary
wave solutions stability is

oM
700 (28)
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