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Abstract Vibrio cholerae causes the cholera disease through
secretion of cholera toxin (CT), resulting in severe diarrhoea
by modulation of membrane transporters in the intestinal epithe-
lium. Genes encoding membrane-spanning transporters identified
as being differentially expressed during cholera disease in a
microarray screening were studied by real-time PCR, immuno-
histochemistry and in a CaCo-2 cell model. Two amino acid
transporters, SLC7A11 and SLC6A14, were upregulated in
acute cholera patients compared to convalescence. Five other
transporters were downregulated; aquaporin 10, SLC6A4,
TRPM6, SLC23A1 and SLC30A4, which have specificity for
water, serotonin (5-HT), magnesium, vitamin C and zinc, respec-
tively. The majority of these changes appear to be attempts of
the host to counteract the secretory response. Our results also
support the concept that epithelial cells are involved in 5-HT sig-
nalling during acute cholera.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Cholera has spread from the endemic region in South Asia in

repeated epidemics and is still causing a large number of deaths

in Asia, Africa, and to a lesser extent in Latin America. Vibrio

cholerae O1 and O139 are the causative agents of cholera. V.

cholerae colonises the small intestine, and after an incubation

period between 1 and 2 days, there is an abrupt onset of the dis-

ease with vomiting and electrolyte-rich watery diarrhoea. The

fluid loss is often so rapid and massive that patients can die if

left untreated [1]. The treatment is based on the simple concept

of replacing water and electrolytes as fast as they are being lost.
Abbreviations: CT, cholera toxin; ORS, oral rehydration solution; RT-
PCR, real-time PCR; SLC, solute carrier; AQP, aquaporin; TRPM6,
transient receptor potential cation channel subfamily M member 6;
SERT, serotonin transporter; SVCT1, sodium-dependent vitamin C
transporter 1; ZnT4, zinc transporter 4
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The patients are given an electrolyte solution intravenously fol-

lowed by an oral rehydration solution (ORS). The ORS is sup-

plemented with carbohydrates for more effective reabsorption

of electrolytes, as it is known that sugars are cotransported with

Na+ over the apical membrane of the enterocytes [2].

The major virulence factor responsible for the dehydrating

features observed during cholera is the cholera toxin (CT),

which is secreted by V. cholerae into the small intestine. The se-

vere diarrhoea evoked by CT is in part due to a direct effect on

the epithelial cells, caused by an increase in the intracellular lev-

els of cyclic adenosine monophosphate (cAMP). CT binds to

the epithelial cells via its five identical B-subunits and is taken

up by retrograde transport [3]. Thereafter, its enzymatically ac-

tive A-subunit ADP-ribosylates Gsa, leading to the activation

of adenylate cyclase and production of cAMP. There is also a

substantial amount of evidence to suggest the importance of

the local nerve reflexes, elicited by the CT-mediated release of

serotonin (5-HT) from enterochromaffin cells, for the secretory

response [4–7]. The 5-HT released stimulates a nerve reflex that

activates secretomotor neurons to release their transmitters

onto the epithelial cells [8,9]. Thus, the direct and 5-HT-medi-

ated effects on the epithelial cells converge to induce a cAMP-

dependent secretion of Cl� and HCO�3 , and together with the

accompanying inhibition of uptake of Na+ and Cl�, they result

in a massive loss of electrolytes and water during cholera.

Previous studies in various intestinal models, by us and oth-

ers, have shown that CT and cAMP also modulate numerous

additional transporters, including aquaporins (AQPs) and so-

dium-dependent carriers [10–12]. We have recently performed

a whole-genome microarray screening of seven cholera patients

during the acute and convalescent phase of the disease [13]. In

this paper, we have focused on the genes known to encode

membrane-spanning transporters. The membrane transporters

expressed differentially during the acute and convalescent phase

in intestinal mucosal biopsies from cholera patients have been

confirmed and analysed further using a CaCo-2 cell model.
2. Materials and methods

2.1. Study group
The study included 7 adult male patients, described previously [13],

with cholera caused by V. cholerae O1 El Tor and treated at the
ICDDR, B hospital in Dhaka, Bangladesh. Briefly, the patients were
blished by Elsevier B.V. All rights reserved.
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Table 1
Primers used for RT-PCR

Transcript Forward primer Reverse primer

AQP10 50-gggtcaagctccccatttacatc-30 50-tgtatagttctgtagggcatcatggtaga-3 0

AQP10v 50-ggacagtgttctttctccaagtcatattc-30 50-gcatgcctaagaacacaacctctaaat-30

SLC6A4 50-caattacttctccgaggacaacatca-30 50-ccccttagaccggtggatctg-30

SLC6A14 50-gctgcttggttttgtttctccttggtc-30 50-gcaattaaaatgccccatccagcac-30

SLC7A11 50-caaatgcagtggcagtgacctt-3 0 50-accgttcatggagccaaagc-30

SLC23A1 50-tcaatacaggcattcttgaagtggat-30 50-gcactgtgttgtcaagtatgaaagca-3 0

SLC30A4 50-tgttaactgacctaagcgccatca-30 50-cctctaagcgatgaaatccaaagg-30

TRPM6 50-gtggccattggcctgttttc-30 50-caggagccgtgagaaccagaa-30

GAPDH 50-gagcaccaggtggtctcctctgacttc-30 50-gccaaattcgttgtcataccaggaaatg-30
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severely dehydrated, as assessed by a physician. For microbiological
diagnosis, stool samples were analysed by dark-field microscopy and
for reactivity with serogroup-specific antibodies. To confirm the caus-
ative agent of the disease, stools were then plated and suspected vibrio
colonies were identified by slide agglutination. The stools were also
screened for other common enteric pathogens, including both bacteria
and parasites, of which none were detected in any of the patients. All
patients received intravenous rehydration, oral rehydration solution,
and antibiotics (five patients were given doxycycline, and two patients
were given ciprofloxacin) on the day of admission, which was 1 day be-
fore biopsies were first collected. The compositions of the rehydration
solutions have been described in detail before [1]. This study was ap-
proved by the ethics review committee of ICDDR, B and by the human
research board in Gothenburg.

2.2. Sample collection
Mucosal punch biopsies were collected from the second part of the

duodenum on the second day of hospitalization. This was considered
to be approximately two days after onset of diarrhoea (day 2) and is
referred to as the acute phase. Samples were also collected at day 30,
which is referred to as convalescence. Biopsy specimens were immedi-
ately put into RNAlater solution (Ambion) and kept at �70�C, or
fixed in buffered formaldehyde and stored at 4�C until used for isola-
tion of RNA and immunohistochemistry, respectively.

2.3. Cell culture and challenge with CT
The human intestinal epithelial cell line CaCo-2 was used for exper-

iments involving stimulation with CT as described previously [13].
Cells were grown in 6-well plates in Dulbecco’s modified Eagle medium
with non-essential amino acids (Gibco), 3 ml/well, supplemented with
10% foetal calf serum (FCS), glutamine, b-mercaptoethanol and genta-
mycin under a 5% CO2 atmosphere at 37�C. The cells were grown for 9
days after confluence before addition of CT (1 lg/ml) to the culture
medium. FCS was not present in the medium during CT challenge
and during the 12-h period preceding stimulation. For the controls,
the medium was just changed to a serum-free medium without the
addition of CT. The cells were challenged for 18 h before RNA was
isolated.

2.4. RNA isolation
Total RNA was isolated from RNAlater-preserved biopsies and

CaCo-2 cells using the GenElute Mammalian Total RNA Kit (Sigma)
according to the manufacturer’s instructions. The RNA concentration
was measured spectrophotometrically and the quality was checked
with an Agilent 2100 Bioanalyzer. Total RNA was used for real-time
PCR (RT-PCR) and microarray analyses.

2.5. Microarray experiments
The present study is based on a recent microarray screening [13].

Briefly, the RNA prepared from the cholera patients was converted
into labelled target cRNA and hybridised to Affymetrix human Gene-
Chip U133 plus 2.0 containing 54000 probe sets representing 47000
different transcripts. The hybridisation procedure was followed by
washing, staining and scanning, according to the GeneChip Expression
Analysis manual (Affymetrix). The resulting images were analysed with
Affymetrix GeneChip Operating Software. All probe sets were used for
scaling and normalisation. Log2 ratios for all transcripts between the
acute phase and the convalescence sample were calculated for each pa-
tient, generating a total of seven values for each transcript. A higher or
lower degree of expression in the acute phase compared to the conva-
lescent phase was referred to as up-regulation or down-regulation,
respectively. Transcripts for which the mean log2 acute phase to con-
valescence ratio was above 1.0 or below �1.0 were identified. To min-
imise the effect of individual outliers, transcripts were only selected if
an effect corresponding to a log2 ratio above 0.5 for up-regulations
or below �0.5 for down-regulations was observed in at least five of
the seven patients.

2.6. Relative quantification by RT-PCR
Two micrograms of total RNA for each sample was reverse tran-

scribed into cDNA. Oligonucleotide primers (Table 1) purchased from
TAG Copenhagen A/S were used for the relative quantification of the
selected transcripts using Applied Biosystems’ 7500 Real Time PCR
System according to the manufacturer’s protocol. Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as a reference gene in
all experiments. The relative levels of transcripts as log2 ratios between
the acute and convalescence samples for each patient were calculated.
For the CaCo-2 experiments a log2 ratio between the target gene and
the reference gene was derived for each sample. These relative expres-
sion values were adjusted so that the mean in the control group was set
to 0.

2.7. Immunohistochemistry
Paraffin-embedded duodenal sections from the cholera patients were

studied by immunohistochemistry to detect the SLC6A14 protein and
serotonin transporter (SERT) in the mucosa. A peptide corresponding
to the C-terminus of human SLC6A14 (CADHEIPTVSGSRKPE) [14]
was synthesised and used to raise a rabbit polyclonal antiserum
(Innovagen AB, Lund, Sweden). For detection of SERT a monoclonal
antibody (Abcam) was used. Alkaline phosphatase-conjugated anti-
bodies (Jackson ImmunoResearch) were used as secondary reagent
and the sections were developed using nitroblue tetrazolium and 5-bro-
mo-4-chloro-3-indolylphosphate as substrate.

2.8. Statistical analysis
Student’s t-test was used to evaluate differences in gene expression

between CT-stimulated and non-stimulated CaCo-2 cells. Correlation
between gene expression data generated by the microarray technique
and RT-PCR was determined with Pearson’s test.
3. Results

3.1. Microarray experiments

Recently, we have applied whole-genome microarrays to

screen for differentially expressed genes during acute cholera

compared to convalescence [13]. A total of 29 up-regulated

and 33 down-regulated transcripts were identified. Since, we

had described the differential expression of a number of mem-

brane transporter genes in the rat small intestine after CT chal-

lenge in an earlier study [10], we focused on this group of

transcripts in the current study. Among the differentially ex-

pressed transcripts in acute cholera, seven are known to encode



Fig. 1. Differentially expressed transporters during acute cholera as
compared to convalescence shown as log2 ratios measured by RT-
PCR. Horizontal lines indicate mean values.
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membrane transporter proteins (Table 2). Two amino acid

transporters, SLC7A11 (xCT) and SLC6A14 (B0+), were up-

regulated, and five transporters; the water channel AQP10,

the Mg2+ channel transient receptor potential cation channel

subfamily M member 6 (TRPM6), the serotonin transporter

SLC6A4 (SERT), the vitamin C transporter SLC23A1

(SVCT1), and the zinc transporter SLC30A4 (ZnT4), were

down-regulated during the acute phase in cholera patients

compared to convalescence.

3.2. RT-PCR

All the transcripts listed were subjected to confirmatory RT-

PCR analysis. Since two splice variants have been reported for

AQP10, designated AQP10v and AQP10, a primer pair specific

for AQP10v was used in addition to the primer pair recognis-

ing the core region [15,16]. The differential expression was con-

firmed for all the transcripts, including AQP10v (Fig. 1). At

the level of gene expression in individual patients, the results

generated by the microarray and PCR techniques correlated

well by showing the same trend in 44 of 49 analyses, and they

showed opposite results only once (a SLC30A4 measurement).

In addition, when applying Pearson’s test we also found a close

correlation between the results (P < 0.0001; r = 0.92).

3.3. Stimulation of CaCo-2 cells

The transporters were examined further in CaCo-2 cells, a

human intestinal cell line known to spontaneously differentiate

into cells resembling mature enterocytes when grown in culture

[17]. Five of the seven genes investigated, SLC7A11,

SLC6A14, TRPM6, SLC6A4 and SLC23A1, showed the same

expression pattern in CaCo-2 cells after challenge with CT for

18 h as observed during acute cholera. No significant change in

the levels of AQP10 and SLC30A4 transcripts were detected

between the control and the CT-stimulated group in the

CaCo-2 model (Fig. 2).

3.4. Immunohistochemistry

Immunohistochemical analyses could detect the expression

of the SLC6A14 protein and SERT in the intestinal epithelium

of cholera patients. In three of the patients, the analyses

showed higher expression of the SLC6A14 protein in the

brush-border membrane of the epithelium during the acute

stage of cholera than during convalescence, whereas the

expression of SERT in the epithelial cells was reduced
Table 2
Differentially expressed membrane transporters during acute cholera identifi

Affymetrix ID #1a #2 #3 #4 #5 #6 #7 log2 ratio

217678_at 1.4 0.9 0.9 1.2 �0.6 3.1 2.6 1.36
209921_at
219795_at 3.0 1.2 �0.2 0.9 �0.7 2.6 1.9 1.24

1555338_s_at �2.8 �0.9 �1.3 �1.7 1.2 �1.8 �2.5 �1.40
224412_s_at �1.7 �0.4 �0.6 �0.7 �0.3 �0.8 �4.0 �1.21

207519_at �1.6 �0.8 �0.7 �0.5 �0.8 �1.8 �1.9 �1.16

223732_at �1.8 �0.3 �0.7 �0.8 �0.8 �1.3 �2.2 �1.13

207362_at �1.0 0.2 �0.8 0.7 �1.1 �2.6 �2.7 �1.04

aColumns designated #1–#7 represent individual log2 ratios for the seven pa
bThe log2 ratios represent the ratios for acute/convalescence phase.
(Fig. 3). However, although these proteins were detected to

some extent in all patients, no differences in the expression

could be established in four of the patients using this ap-

proach.
4. Discussion

In this study, we have concentrated on seven genes known to

encode membrane-spanning transport proteins shown to be

differentially expressed, two up-regulated and five down-regu-

lated, during acute cholera in comparison to convalescence in a

previous whole-genome microarray screening [13]. Each of

these changes was confirmed by RT-PCR. The differential

expression of five of the seven genes was also detected in

CaCo-2 cells after challenge with CT, indicating direct effects

of CT on the epithelial cells in these cases. This also implies

that CaCo-2 cells are a good model for study of the epithelial

response to CT during acute cholera, which affords the oppor-

tunity to differentiate the direct effects of CT on the epithelial

cells from the nerve-mediated effects also present in the in vivo

situation.

The two up-regulated genes encode the amino acid trans-

porters SLC6A14 and SLC7A11, the former being dependent

on Na+ and having specificity for neutral and positively
ed by the microarray technique

mean b Gene name Gene product

SLC7A11 Solute carrier family 7, member 11
(Amino acid transporter xCT)

SLC6A14 Solute carrier family 6, member 14
(Amino acid transporter B0+)

AQP10 Aquaporin 10
TRPM6 Transient receptor potential cation channel

subfamily M member 6
SLC6A4 Solute carrier family 6, member 4

(Serotonin transporter, SERT)
SLC23A1 Solute carrier family 23, member 1 (Sodium-

dependent vitamin C transporter 1, SVCT1)
SLC30A4 Solute carrier family 30, member 4

(Zinc transporter 4, ZnT4)

tients included in the study.



Fig. 2. Expression of transporters in CaCo-2 cells stimulated with CT for 18 h. The relative expression values are adjusted transcript abundance log2

ratios, target gene:GAPDH, measured by RT-PCR. Mean values are indicated by horizontal bars. A significant difference between the CT-challenged
group and the control is denoted by ** (P < 0.01) and *** (P < 0.001). The data are based on three independent experiments (four cell cultures per
group and experiment).

3186 C.-F. Flach et al. / FEBS Letters 581 (2007) 3183–3188
charged amino acids, whereas the latter is dependent on Cl�

and highly specific for negatively charged amino acids, which

suggests a broad uptake of amino acids during cholera. The re-

sults also suggest that the addition of amino acids to the ORS

used to treat cholera patients should be reconsidered. In accor-

dance with the up-regulation of SLC7A11, it has been shown

that CT and cAMP can induce the expression of this trans-

porter in astrocytes and a neuronal cell line [18,19]. The up-

regulation of SLC7A11 may protect against oxidative stress,

as the transported cystine is the precursor for the antioxidant

glutathione. Regarding the up-regulation of SLC6A14, we

have found in an earlier study that CT induces the expression
of a Na+-coupled transporter for another major nutrient (con-

centrative nucleoside transporter 2) in the rat small intestine, a

host response that possibly counteracts the secretory process

[10]. That the SLC6A14 protein was found to be localised to

the brush-border membrane by immunohistochemistry further

emphasizes its role in the absorptive process.

SLC6A4, which encodes the serotonin transporter SERT,

was down-regulated during the acute stage of cholera. SERT

has earlier been shown, and was confirmed here, to be ex-

pressed in the intestinal epithelial cells [20,21], and has been

identified as the transporter responsible for turning off the 5-

HT signalling [22,23]. This, together with the fact that the



Fig. 3. Immunolocalization of SLC6A14 (A,B) and SERT (C,D) during the acute (A,C) and convalescent (B,D) stage of cholera. Expression of
SLC6A14 protein in the brush-border membrane of the duodenal epithelium is indicated by arrows.
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up-regulated SLC6A14 transports tryptophan, the precursor

for 5-HT, would potentiate the 5-HT-mediated secretion ob-

served during cholera. The finding that CT regulates these

transporters in the same manner in CaCo-2 cells further sug-

gests that epithelial cells are involved in the 5-HT signalling

in the gut mucosa. Indeed, the epithelial cells are the most

likely candidates to terminate the 5-HT signalling through

SERT-mediated uptake [20,23]. Furthermore, transgenic mice

lacking SERT show abnormal gastrointestinal motility associ-

ated with increased volume of water in their stool [24].

The down-regulated AQP10 was initially shown to be ex-

pressed in villous epithelial cells of the human small intestine

[15]. This would be in good agreement with the location pro-

posed for rodent AQP8 [25,26], the AQP shown to be down-

regulated after CT challenge in the rat intestine [10]. However,

it has been reported recently that the splice variant AQP10v is

located in capillary endothelial cells, whereas AQP10 is located

in endocrine cells of the small intestine [27]. Our results show

that AQP10v is down-regulated during acute cholera. In addi-

tion, a reduced level of AQP10 transcripts was also detected

using a primer pair that catches both of the AQP10 splice

forms. The sustained effect using the AQP10 primer pair is

accompanied by a significantly higher expression signal than

when using the AQP10v primer pair, indicating that both

splice forms are affected. In accordance with the suggested

localization of the AQP10 proteins, we detected no significant

change in the expression in CT-challenged enterocytes in vitro,

although the AQP10 transcripts were detected in these cells,

suggesting that the effects observed during cholera are re-

stricted to other cell types. In any case, a reduced expression

of AQPs should reduce the water permeability of the cell mem-

branes and thus limit the secretory response.

Three of the down-regulated transporters are involved in the

intestinal uptake of vitamins and minerals: SLC23A1 (vitamin

C), SLC30A4 (zinc) and TRPM6 (magnesium) [28–30]. Of
these, the down-regulation of SLC23A1 and SLC30A4 may

be of particular interest, since vitamin C has been shown to in-

crease the ‘‘open’’ probability and thus the Cl� secretion

through the cystic fibrosis transmembrane conductance regula-

tor (CFTR) [31], the main target for the modulatory action of

CT on Cl� secretion [32]. Also, there are significant losses of

zinc during diarrhoea and zinc replenishment has been re-

ported to reduce the recovery time in children with persistent

diarrhoea [33]. Zinc has also been shown to inhibit CT-induced

secretion in a CaCo-2 cell model [34]. In addition, SLC30A2,

another zinc transporter, which like SLC30A4 is believed to

function in the sequestration of zinc by intracellular vesicles,

is down-regulated upon severe zinc depletion in a rat model

[35]. Thus, the down-regulation of SLC30A4 during acute

cholera is probably an effect of intestinal zinc losses and not

a result of a direct effect on the epithelial cells, which is sup-

ported by the results that CT did not affect the gene expression

in the CaCo-2 cell model. The down-regulation of the magne-

sium channel TRPM6 is probably an attempt from the host to

limit the magnesium losses that are known to occur during

cholera [36].

In conclusion, we have determined the differential transcrip-

tion of seven membrane transporters during acute cholera

compared to convalescence. The majority of these changes

seems to be due to the direct effect of CT on epithelial cells.

These results may add new clues to help in elucidation of the

secretory response observed during cholera, and how it is

counteracted by the host. They may also suggest new therapeu-

tic targets.
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