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Abstract

A credal network is a graphical representation for a set of joint probability distributions. In

this paper we discuss algorithms for exact and approximate inferences in credal networks. We

propose a branch-and-bound framework for inference, and focus on inferences for polytree-

shaped networks. We also propose a new algorithm, A/R+, for outer approximations in poly-

tree-shaped credal networks.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

A credal network provides a graphical representation for imprecision in probabi-

listic statements [10,12,19]. 1 Such graphical models can be viewed as Bayesian

networks with relaxed numerical parameters: each node in the graph represents
a random variable, and each variable is associated with a set of probability
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measures—the ‘‘size’’ of the sets of probability measures encodes the imprecision in

probability values. Such a model can be used to study robustness of probabilistic

models, to investigate the behavior of groups of experts, or to represent incomplete

or vague knowledge about probabilities [28].

An inference with a credal network is typically understood as the computation of
upper and lower probabilities for each category of a query variable. This calculation,

under the most commonly adopted semantics for credal networks (using strong

extensions), is NP-hard even for polytree-shaped networks [15]. Exact and approxi-

mate algorithms have been proposed in the literature, but no algorithm can handle

large credal networks exactly—even networks with a few nodes can present unsur-

mountable difficulties.

In this paper we propose new algorithms for inference in credal networks. The

central idea is to use branch-and-bound techniques to search for upper and lower
probability values. We also propose a new algorithm for outer approximations in

polytree-shaped credal networks, which we call A/R+. This new algorithm modifies

Tessem�s A/R algorithm to produce significantly better approximations.
Sections 2 and 3 review elements of the theory of credal networks. Section 4 pre-

sents a branch-and-bound framework for inferences in credal networks. Sections 5

and 6 focus on polytree-shaped credal networks: Section 5 introduces the A/R+ algo-

rithm and Section 6 describes a number of branch-and-bound techniques applied to

polytree-shaped credal networks.
2. Credal sets and credal networks

A set of probability distributions for variable X, called a credal set, is denoted by

K(X) [23]. In this paper we assume that every variable is categorical and that every

credal set is closed and convex with a finite number of vertices. A conditional credal

set is a set of conditional distributions, obtained applying Bayes rule to each distri-
bution in a credal set of joint distributions [28]. The credal sets {K(XjY = y): y is a
category of Y} are separately specified when there is no constraint on the conditional

set K(XjY = y1) that is based on the properties of K(XjY = y2), for any y15 y2—that

is, the conditional sets bear no relationship to each other. A collection of separately

specified credal sets for X conditional on Y is denoted by K(XjY). Given a collection
of marginal and conditional credal sets, an extension of these sets is a joint credal set

with the given marginal and conditional credal sets.

Given a credal set K(X) and a function f(X), the lower and upper expectations of
f(X) are respectively E [ f(X)] = minp(X)2K(X)Ep[ f(X)] and E½f ðX Þ� ¼ maxpðX Þ2KðX ÞEp

½f ðX Þ� (here Ep[f(X)] indicates standard expectation). Lower and upper probabilities
are defined similarly.

A credal network is a directed acyclic graph where each node of the graph is asso-

ciated with a variable Xi and with a collection of conditional credal sets K(Xijpa(Xi)),
where pa(Xi) denotes the parents of Xi in the graph. Note that we have a conditional

credal set for each category of pa(Xi). A root node is associated with a single mar-

ginal credal set.
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We take that in a credal network every variable is independent of its non-descen-

dants conditional on its parents. In this paper we adopt the concept of strong inde-

pendence: two variables X and Y are strongly independent when every extreme point

of K(X,Y) satisfies standard stochastic independence of X and Y (that is,

p(XjY) = p(X) and p(YjX) = p(Y)) [12]. When necessary, we use strong conditional
independence: X and Y are strongly independent conditional on Z when every ex-

treme point of K(X,YjZ = z) satisfies standard stochastic independence conditional
on every category z.

The strong extension of a credal network is the largest extension that satisfies the

independence relations just discussed. That is, the strong extension is the convex hull

of all joint distributions that satisfy the following Markov property: every variable is

strongly independent of its non-descendants conditional on its parents [13]. Given a

credal network with N variables, with local separately specified credal sets
K(Xijpa(Xi)), the strong extension of the network is then the convex hull of the set
of joint distributions

pðXÞ : pðXÞ¼
YN
i¼1

pðX ijpaðX iÞÞ; pðX ijpaðX iÞ¼qkÞ is a vertex of KðX ijpaðX iÞ¼qkÞ
( )

:

ð1Þ
Note that a credal network can have several extensions [12]; in this paper we focus

on strong extensions.
Fig. 1 shows a small polytree-shaped credal network with separately specified cre-

dal sets. Variables X1, X2, X4 and X5 are binary and variable X3 has three categories.

The symbol xi, j indicates the jth category of variable Xi.
3. Inferences and inference algorithms

A marginal inference in a credal network is the computation of lower/upper prob-
abilities in an extension of the network. If Xq is a query variable and XE represents a

set of observed variables, then an inference is the computation of tight bounds for

p(XqjXE) for one or more categories of Xq. The only known polynomial algorithm
for strong extensions is the 2U algorithm, which processes polytrees with binary vari-

ables [19]. Other than this ‘‘pocket’’ of tractability, all other situations seem to offer

tremendous computational challenges. In particular, inference is a NP-hard problem

even for polytrees [15].
Fig. 1. Credal network with separately specified credal sets.
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For inferences in strong extensions, the distributions that minimize or maximize

p(XqjXE) are vertices of the extension [19]. As these vertices are combinations of ver-
tices of local credal sets (Expression (1)), the problem we face is one of combinatorial

optimization: we must find a vertex for each local credal set K(Xijpa(Xi)) so as to
maximize/minimize p(XqjXE). Thus one can generate inferences by enumerating all
combinations of vertices [5], 2 or possibly exploring additional structure in separately

specified credal sets [9,15]. In any case, enumeration algorithms can be understood as

methods that perform probabilistic propagation (much in the style of variable elim-

ination or junction tree algorithms) by exchanging set-valued messages during the

propagation. Enumeration/set-propagation algorithms can be used in relatively

small networks, and can be dwarfed even in seemingly trivial models.

We can also view an inference as a continuous optimization problem. Consider

the computation of a posterior upper probability. The goal is to maximize the prob-
ability value

pðXq ¼ xq;kjXEÞ ¼
P

X 1;...;XN nfXq;XEg
Q

ipðX ijpaðX iÞÞP
X 1;...;XN nXE

Q
ipðX ijpaðX iÞÞ

; ð2Þ

by finding a distribution p(Xijpa(Xi)) in each local credal set K(Xijpa(Xi)) (for each
variable Xi and each category of pa(Xi)). Given our assumption of credal sets with

finitely many vertices, the maximization is subject to linear constraints.

This maximization problem belongs to the field of signomial programming [2], as

first observed by Andersen and Hooker [1]. Signomial programs are generally solved
by dividing the feasible set (‘‘branching’’ on various subsets) and obtaining outer

approximations (‘‘bounding’’ the objective function in each subset) [2,18]. That is,

signomial programming is solved by branch-and-bound procedures. The great

advantage of signomial programming over more general optimization problems is

that it is possible to obtain bounds for signomial programs using geometric program-

ming—a well establish field that can be tackled efficiently through convex program-

ming [2]. Note that strong extensions encode rather large signomial programs—the

‘‘degree of difficulty’’ of a geometric program depends on the number of polynomial
terms in the program, and Expression (2) summarizes a large number of such terms.

Instead of resorting to enumeration techniques or signomial programming, a dif-

ferent approach for exact inference is to manipulate the values of the joint distribu-

tion p(X) directly. That is, instead of optimizing Expression (2), one optimizes the

linear fractional function

pðXq ¼ xq;kjXEÞ ¼
P

X 1;...;XN nfXq;XEgpðXÞP
X 1;...;XN nXE

pðXÞ ;

subject to non-linear constraints on p(X). Note that the number of values of p(X)
is exponential on the number of variables in the network. Andersen and Hooker
2 The enumeration method proposed by Cano et al. [5] has been implemented in the JavaBayes system

version 0.347 (a freely available inference engine distributed at http://www.pmr.poli.usp.br/ltd/Software/

javabayes).

http://www.pmr.poli.usp.br/ltd/Software/javabayes
http://www.pmr.poli.usp.br/ltd/Software/javabayes
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present a sophisticated algorithm to circumvent these difficulties, but their algorithm

still requires signomial programming in auxiliary optimization problems [1].

Given the difficulties of exact inference, approximate inference algorithms have

received considerable attention in the literature. We distinguish between outer and

inner approximations; the former produce intervals that enclose the lower and upper
probabilities, while the latter produce intervals that are enclosed by the correct prob-

ability interval. Tessem�s A/R algorithm was the first one to produce tractable outer
approximate inference in polytree-shaped networks [26]. The A/R algorithm was

later extended to general topologies by Ha et al. [20]. Bounds have also been derived

from approximate combination of credal sets [27] and from approximate representa-

tion of credal sets [9]. Inner approximations are usually produced with local optimi-

zation methods and can be found in [1,6,5,11,29]. Overviews of inference algorithms

have been published by Cano and Moral [7,8].
4. Branch-and-bound techniques for inference with strong extensions

In this section we discuss the use of branch-and-bound algorithms for inference

with strong extensions. The idea is to view inference as a search: we must find

vertices of local credal sets that maximize/minimize Expression (2). Even though

we are inspired by signomial programming techniques, the idea here is to explore
specific properties of strong extensions. To simplify the discussion, we focus only

on the computation of upper probabilities; the computation of lower probabilities

is analogous.

Consider a generic maximization problem

ðP Þ max f ðwÞ
s:t: gðwÞ 6 0; w 2 W;

whereW � Rn, f and g are real valued functions. In the first iteration of a branch-and-

bound algorithm, the problem P is divided in sub-instances that are easier to solve or

approximate than P. The partitioning is made so that the solution for P is present in

one of the sub-instances [24]. Each sub-instance Pi is then analyzed. If Pi can be

quickly solved, then Pi is said to be trivial. If Pi is trivial, then the maximum of f in

Pi is computed; if this value is the highest value so far, it is retained as the current solu-
tion. IfPi is non-trivial, then it is evaluated with a relaxed algorithm that produces out-

er and inner bounds for Pi. These bounds are compared with the current solution and

• if it can be proved that the solution space of Pi cannot contain the global maxi-

mum, then Pi is discarded;

• otherwise, Pi is said to be critical and is solved through branch-and-bound.

This process is repeated for each sub-instance while there is a promising

alternative.
A depth-first branch-and-bound selects a promising sub-instance as soon as it is

generated. The sub-instance is partitioned into new sub-instances. A promising



Fig. 2. Depth-first branch-and-bound: input is the problem P; algorithm uses a global variable faux
(initialized with �1), and functions r and s that compute respectively outer and inner bounds. In the end,
maxf(w) is stored in faux.
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sub-instance is then selected, and partitioned. The procedure continues this way until

a trivial problem is reached or until all sub-instances of a partition are found not to

be promising. At those points the algorithm executes a backtracking step—that is,

the algorithm returns to a previously evaluated sub-instance and selects a still unex-

plored sub-instance. The advantage of this scheme is the minimal memory consump-

tion, because a few sub-instances are stored in memory at any given time.

A best-first branch-and-bound stores (potentially many) sub-instances in a heap as
it goes along. 3 Sub-instances stored in the heap are ordered according to their outer

bounds: the top element in the heap has the maximum outer bound. The algorithm

always takes the first critical sub-instance from the heap to be processed and possibly

partitioned. When a sub-instance is selected, it is evaluated; if it is critical, it is par-

titioned and their critical sub-problems are inserted in the heap. Thus the heap con-

tains every sub-instance that was considered critical when it was generated. The

nodes in the heap can be understood as the ‘‘frontier’’ of all sub-instances still unex-

plored. The advantage of best-first branch-and-bound is that it allows us to improve
approximations; we can gradually refine outer and inner bounds by looking at all the

nodes in the ‘‘frontier’’ (see Section 6.3). The disadvantage of best-first search is the

potentially enormous cost in memory (necessary to store the heap).

Figs. 2 and 3 present a convenient and informal summary of the depth-first and

best first branch-and-bound techniques. These descriptions were adapted respec-

tively from [25] and [3]. In both procedures the functions r and s are used as a prun-

ing mechanism, and r is used to drive the search as well.

Any branch-and-bound algorithm relies on two decisions: how to produce
bounds, and how to decompose a problem into sub-problems. We now consider

the computation of an upper probability �pðXq ¼ xq;kjXEÞ for a given credal network
N. The discussion of bounding methods is postponed to the next section; here we

deal with the decomposition strategy.

Suppose an inference is to be computed for credal network N. The root of

the search tree is then associated with N, and every node of the search tree is
3 A heap is a data structure where elements are kept sorted according to some priority scale. The

elements with higher priority are in the ‘‘beginning’’ of the heap; the element with maximum priority is

always the first one to be removed from the heap.



Fig. 3. Best-first branch-and-bound: input is the problem P; algorithm uses functions r and s that compute

respectively outer and inner bounds; the elements in OPEN heap are sorted with respect to their r bound.

In the end, max f(w) is stored in fmax.
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associated with a credal network derived from N. Consider then a node of the

search tree associated with credal network N0. Select one of the credal sets in

N0, say K(Xijpa(Xi) = q), and suppose this credal set has v vertices. Denote these
vertices by pk, k = 1, . . . ,v. Now create v nodes of the search tree and place them
as children of the original node. Each one of these children nodes is associated with

a ‘‘children’’ network N0
j. Network N0

j inherits all credal sets from N0 except the
set K(Xijpa(Xi) = q); the credal set K(Xijpa(Xi) = q) is replaced by distribution pj.
This decomposition procedure is then applied recursively, following the branch-

and-bound algorithm. Using this decomposition strategy, there is a gradual ‘‘thin-

ning’’ of the local credal sets. Any leaf node of the search tree contains a Bayesian

network, obtained by a particular selection of vertices in local credal sets. When a

leaf node is reached, the computation of probabilities is ‘‘trivial’’: a variable elim-

ination algorithm is used to perform inference in the Bayesian network at the leaf

[14].
This decomposition strategy depends on the selection of credal sets for expansion.

We always select the non-expanded credal set nearest to the queried variable, but we

always keep the query variable to be processed last (a similar criterion is used by

Draper and Hanks [17] to deal with partial evaluation of belief nets). We have tried

several criteria for selecting credal sets to expand, and we found that the procedure

just described is quite appropriate.
5. Bounds and the A/R+ algorithm

The discussion so far has been completely general and can be applied to any

credal network. In this section we concentrate on algorithms that produce outer

and inner bounds for inferences with polytree-shaped credal networks (note that
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inference with polytree-shaped networks is already a NP-hard problem [15]). We

again focus on upper probabilities; an outer bound for an upper probability is a

number that is larger than the upper probability, while an inner bound for an upper

probability is a number that is smaller than the upper probability.

An inner bound can be produced by any method that maximizes Expression (2)
up to a local maximum. Local optimization algorithms like gradient descent or

the expectation-maximization algorithm can produce such inner bounds [11,29]. It

is also possible to obtain inner bounds with genetic programming, simulated anneal-

ing and similar methods [5,6]. Generally these methods require tuning several para-

meters; we have implemented some of them and noticed that, while they produce

reasonable solutions, they are far from easy to apply. We have thus developed a

new algorithm for inner bounds using local search (reported elsewhere [16]). The idea

is to fix all probabilities p(Xijpa(Xi)), except one—and then to find the maximizing
value just for this ‘‘free’’ density, which can be done easily (the maximization prob-

lem has become a fractional linear one). Once the maximizing values for the ‘‘free’’

density are found, this density is fixed at its maximizing values, and a different den-

sity is ‘‘freed’’. Thus the algorithm follows a maximizing path where each movement

changes only one density in the credal network, moving between vertices of a single

local credal set at any given step. This algorithm produces excellent inner bounds (in

many cases the exact upper probability is found) and runs rather quickly. 4

Outer bounds for inference in polytree-shaped credal networks can be generated
with Tessem�s A/R algorithm [26]. The first assumption in Tessem�s algorithm is that
every credal set is approximated by a collection of probability intervals. Such

approximation is always possible (and always an outer approximation), as we can

obtain the probability interval

min
pðX Þ 2 KðX Þ

pðxjÞ; max
pðX Þ 2 KðX Þ

pðxjÞ
� �

ð3Þ

for any category xj of a variable X (and likewise for conditional probability values).

Obviously the replacement of credal sets by probability intervals introduces potential

inaccuracies into inferences.

Tessem�s central idea was to generalize Pearl�s belief propagation algorithm to
accommodate probability intervals (in an approximate way). The functions k and
p used in belief propagation are still defined with identical purposes, but they are
now interval-valued. Thus probability intervals for marginal probabilities p(X) are

computed from two interval-valued vectors p(X) and k(X) that contain interval-val-
ued versions of predictive and retrospective support for X. These vectors are com-

puted from interval-valued ‘‘messages’’ that X receives from its parents and

children. If Y and Z denote, respectively, a parent node and a child node of X, then

the messages that X receives from those nodes are denoted by pX(Y) and kZ(X).
The messages manipulated by the A/R algorithm are computed using interval

arithmetic and two additional techniques called annihilation and reinforcement (thus
4 The development of the algorithm for inner bounds was joint work with Cassio Polpo de Campos.
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the name A/R). To understand the mechanics of A/R, it is interesting to look at a

particular operation, the computation of the interval-valued function p. Consider
a function p(X) to be computed at a node X with parents Y1, . . . ,Yk. Fig. 4 shows
the computation of the lower value p*(X) (the same operations can be adapted to
compute the upper value p*(X)).
The algorithm in Fig. 4 initially combines the interval-valued messages that X re-

ceives from its parents into a ‘‘joint’’ interval-valued function b (step 1), using inter-
val multiplication. Then the algorithm applies the annihilation operation (steps 3a

and 3b) to determine a joint distribution p(Y1, . . . ,Yk) that minimizes the sum of

products in step 3c. Variable S 0 controls how much probability mass can be distrib-

uted during annihilation.

Tessem developed similar operations for computation of messages kX(Yi) and
pZi(X) (where Zi is a child of X). The A/R algorithm also employs direct interval mul-
tiplication to generate the function k(X). Finally, the algorithm uses annihilation or
reinforcement operations to ‘‘normalize’’ the functions kX(Yi), pZi(X), and p(X)k(X)
(‘‘normalization’’ means simply computing bounds that account for the fact that

probability distributions add up to one).

The A/R algorithm is clever, but it can be significantly improved as follows.

Consider a new method to compute the interval-valued p(X):
Fig. 4. Computation of p
*
(X) in the A/R algorithm. The input is the set of lower probabilities p(Xjpa(X))

and the messages pX(Yi) for Yi 2 pa(X).
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1. For each interval-valued message pX(Yi) received by X, create a credal set KX(Yi)
that is the largest credal set with lower/upper probabilities represented by pX(Yi).
Such a credal set can be easily generated [4,22].

2. Eliminate each parent Yi by multiplying vertices of KX(Yi) and vertices of

K(XjY1, . . . ,Yk), and summing out the parents Yi.
3. Use the resulting credal set K(X) to produce probability intervals p(X) through
Expression (3).

Step 2 performs an exact combination of vertices obtained from received intervals

and local distributions. This procedure operates with credal sets, then collapses

potentially complex credal sets into probability intervals, locally using credal sets

and propagating interval messages.

The operations just discussed can be extended to other interval-valued messages
used in belief propagation. For example, messages pZi(X) are computed using similar
operations as for p(X). We thus obtain the A/R+ algorithm:
Run all the steps of the A/R algorithm, but whenever interval-valued messages must

be multiplied, convert the messages into credal sets, operate with the credal sets

locally, and convert the results back to probability intervals.
The basic fact about A/R+ is that (proof in Appendix A):

Theorem 1. Interval-valued messages generated by the A/R+ algorithm are included or

equal to interval-valued messages generated by the A/R algorithm, and include or are

equal to probability intervals generated by (exact) set-valued message propagation.

We note that the credal sets handled by A/R+ can still become unmanageably

complex in some situations. When we must compute a message that requires an
excessively complex credal set, we simply resort to the original approximation pro-

posed by Tessem (we have a threshold indicating the maximum number of vertices

the algorithm should handle explicitly). 5

As the next section indicates, outer approximations generated by the A/R+ algo-

rithm are usually much more accurate than the ones produced by A/R. The appar-

ently mild difference between the algorithms leads to an order of magnitude

improvement in the bounds.
5 The A/R+ algorithm can be made even more flexible: we can postpone the re-conversion of credal sets

to interval-valued form until we reach a point where the number of vertices in the messages exceeds some

limit. We have not tried this option so far.
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6. Experiments

We have run a series of experiments with the branch-and-bound, A/R and A/R+

algorithms. Our purpose was to evaluate the accuracy and computational cost of

these algorithms.

6.1. The A/R and A/R+ algorithms

To evaluate the performance of the A/R+ algorithm, particularly in comparison

with the A/R algorithm, we ran two experiments.

The first experiment aimed at comparing the relative error of the A/R and A/R+

algorithms. Consider the computation of �pðX 5 ¼ x5;1Þ for three sets of networks with
the graph given by Fig. 5: (a) the first group (30 networks) contained only variables
with three categories and two vertices per local credal set; (b) the second group (15

networks) contained only variables with three categories and three vertices per local

credal set; (c) the third group (15 networks) contained only variables with four cat-

egories and two vertices per local credal set.

The numerical parameters for each credal network were randomly generated with

uniform distributions [21]. For every network in this test set, the upper probability
�pðX 5 ¼ x5;1Þ was computed with an exact enumeration algorithm, in some cases run-
ning during a considerable amount of time. The relative error was then measured be-
tween the exact answer and the results obtained with the A/R and A/R+ algorithms.

The mean error for the A/R algorithm was: 38% (first group), 15% (second group)

and 27% (third group). The mean error for the A/R+ algorithm was: 4% (first

group), 1% (second group) and 4% (third group). Even though the samples were

rather small, these tests indicate the superior performance of the A/R+ algorithm

(the main limiting factor in the number of samples and inferences in this experiment

was the time required by the exact enumeration algorithm to run).

To compare the amplitude of probability intervals computed by the A/R and
A/R+ algorithms, we run a few additional tests with the graph in Fig. 5. We gener-

ated five groups of credal networks, each one containing one hundred networks.

Groups were characterized by the number of categories per variable and number

of vertices per local credal set. Table 1 summarizes the results of inferences on the

event {X12 = x12,1}. While this experiment does not reveal by itself the accuracy of
Fig. 5. Polytree used in experiments.



Table 1

Comparison of interval lengths computed with the A/R and A/R+ algorithms

# Categories # Vertices A/R mean interval length A/R+ mean interval length

03 02 0.47 0.39

03 03 0.61 0.56

03 04 0.67 0.63

04 02 0.45 0.36

04 03 0.52 0.47
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A/R+, note the decrease in interval length (remember that the correct intervals are

enclosed by the intervals generated by A/R+).

To avoid the possibility that differences between A/R+ and A/R are just being

magnified by the particular graph in Fig. 5, we considered a second experiment with

a set of randomly generated polytrees (using the generator described by Ide and Coz-

man [21]). In all inferences we could try, we verified the same pattern of reduction in

the relative error. We generated 9 different polytrees, each with 20 variables; for each

polytree, we generated 5 sets of local credal sets. For each node of this set of net-
works, we run the A/R and the A/R+ algorithms, and in some of them we compared

the approximations with the exact inferences (obtained with a branch-and-bound

algorithm). The mean length of the intervals generated by the A/R algorithm are

significantly larger than the mean length for the A/R+ algorithm.

6.2. Depth-first branch-and-bound

We have tested the depth-first version of the branch-and-bound algorithm for
computation of exact inferences. We ran experiments with networks containing vari-

ables with tree and four states. Each configuration was again tested using several

randomly generated credal nets [21]. The main goal was to evaluate the reduction

in computational costs for inference, compared to exact enumeration algorithms.

First we took the polytree in Fig. 5. Results for queries on variable X5 (with

depth-first branch-and-bound) are reported in Table 2. The table shows results when

the branch-and-bound algorithm uses A/R and A/R+ as bounding methods. The
Table 2

Exact inference on x5,1 in the network of Fig. 3 with depth-first branch-and-bound

#s #c #v #p t A/R

sec (mean)

#n A/R

(mean)

t A/R+ secs

(mean)

#n A/R+

(mean)

35 3 2 221 5.4 3356.8 0.97 365.7

10 3 3 321 395 254559.3 17.44 7271.2

10 4 2 235 1511 527756.8 584 37143.7

Columns indicate the number of networks tested (#s), the number of categories per variable (#c), the

number of vertices in each credal set (#v), the total number of potential vertices for the strong extension

(#p), the time spent in inferences (t) and the number of expanded nodes in the search tree (#n).



J.C. Ferreira da Rocha, F.G. Cozman / Internat. J. Approx. Reason. 39 (2005) 279–296 291
first four columns summarize the characteristics of each group of networks and infer-

ences; the remaining four columns compare the performance of branch-and-bound

using A/R and A/R+ as bounding methods.

We observe that the size of the search tree explored by branch-and-bound is usu-

ally a tiny fraction of the potential number of vertices of the strong extension. Note
the enormous difference between potential vertices of the strong extension and actu-

ally expanded vertices. We can also see that A/R+ is superior to A/R.

As another example of the efficiency of the algorithm, take the computation of
�pðX 8 ¼ x8;1Þ in the graph of Fig. 5, with variables with three categories, and with a
random collection of credal sets, where each credal set has three vertices. In this case,

depth-first branch-and-bound obtained the exact solution after examining just 4634

vertices of the strong extension—note that the strong extension potentially contains

350 vertices. The relative error between the exact result and the inner bound, and the
exact result against A/R+ are 0.002 and 0.015 respectively.

We have observed such behavior in many experiments on randomly generated

networks. We have observed that polytrees with up to 10 variables can be usually

handled without problems.

6.3. Best-first branch-and-bound

We have also investigated the performance of best-first branch-and-bound meth-
ods for inference. Our tests indicated that the amount of memory required by these

algorithms is too large for exact inference—that is, the size of the OPEN heap grows

too quickly. However, it is still possible to use best-first branch-and-bound for

approximate outer intervals. The basic idea is to run the algorithm up to a prescribed

memory limit; upon termination, the OPEN heap is examined, and the element with

the maximum bound is selected and returned. Note that the top of the heap has the

maximum value of the outer bound r amongst all elements in the frontier—its r value

is thus guaranteed to be an outer bound for the original problem (it may even con-
tain the exact upper probability, in which case the whole frontier displays the same r

value). As more sub-problems are generated and stored in the OPEN heap, the outer

bound for the top of the heap can either stay the same or decrease, as sub-problems

have feasible regions that are contained in their generating problem.

We have conducted tests where the algorithm in Fig. 3 terminates after a pre-

scribed number of search nodes. Experimental results are summarized by Table 3.

The objective was to measure accuracy after evaluating at most 25,000 nodes of the

search tree (in some cases the exact result was obtained before that). We used the
graph in Fig. 3 and produced several credal networks by generating random local

credal sets. The upper probabilities �pðX 5 ¼ x5;1Þ, �pðX 7 ¼ x7;1Þ and �pðX 8 ¼ x8;1Þ were
computed for each one of the resulting networks. Table 3 shows the characteristics

of the generated networks and the ‘‘quality’’ of approximations; here we present the

difference between the answer generated by best-first branch-and-bound and the in-

ner bound generated by local search (discussed at the beginning of Section 5). We

also show the difference between the A/R+ outer bound and the inner bound, for

comparison. Similar results were obtained in tests with randomly generated graphs.



Table 3

Mean difference between outer and inner approximations for �pðX 5 ¼ x5;1Þ, �pðX 7 ¼ x7;1Þ and �pðX 8 ¼ x8;1Þ
Inference # Net. # Cat. # Vert. # Potential vertices A/R+* (mean) bfbb* (mean)

X5 = x5,1 16 03 03 321 0.006 0.00008

X5 = x5,1 10 03 04 242 0.024 0.011

X5 = x5,1 10 04 03 335 0.035 0.025

X7 = x7,1 16 03 03 332 0.016 0.011

X7 = x7,1 10 03 04 264 0.021 0.012

X7 = x7,1 10 04 03 335 0.022 0.017

X8 = x8,1 16 03 03 350 0.017 0.007

X8 = x8,1 10 03 04 2100 0.014 0.009

X8 = x8,1 04 04 03 3101 0.035 0.029

The branch-and-bound procedure terminates after evaluating 25,000 nodes of search tree. Columns

indicate the inference, the number of networks tested, the number of categories per variable, the number of

vertices in each credal set, the total number of potential vertices for the strong extension, and the rela-

tionship between outer and inner bounds, with best-first branch-and-bound and A/R+ algorithms. The

symbol A/R+* denotes the difference between A/R+ approximations and inner bounds, while the symbol

bfbb* indicates the difference between best-first branch-and-bound approximations and inner bounds.
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7. Inference with network fragments

If the credal network N is large, it may not be possible to run the branch-and-

bound algorithms to optimality. In this section we propose strategies to handle such

problems. The basic idea is to divide the credal network in parts and to run branch-

and-bound in these sub-networks, in some suitable order. We illustrate this idea

through an example.
Consider the network in Fig. 5, with variables with three categories and two ver-

tices per credal set. Suppose that we want to compute exact lower and upper prob-

abilities for variable X7 and that our space and time constraints allow us to perform

an exact inference just for X5, but not for X7. We then run branch-and-bound and

obtain lower and upper probabilities for X5. For example, in a particular instance

of the network shown in Fig. 5, we obtained p(X5 = x5,1) 2 [0.199;0.587],
p(X5 = x5,2) 2 [0.084;0.375], and p(X5 = x5,3) 2 [0.212;0.604]. We can easily generate
the largest credal set that is consistent with these intervals. We obtain K(X5) defined
by the vertices

fð0:413; 0:375; 0:212Þ; ð0:312; 0:084; 0:604Þ; ð0:587; 0:084; 0:329Þ;
ð0:199; 0:197; 0:604Þ; ð0:587; 0:201; 0:212Þ; ð0:199; 0:375; 0:426Þg:

Now we can remove X5 and its ascendants from the network, and replace X5 by a
new node X 0

5 that has the marginal credal set of X5 as its marginal credal set. The

transformed network is displayed in Fig. 6. We then run exact branch-and-bound

inference for X7, obtaining intervals p(X7 = x7,1) 2 [0.091;0.447], p(X7 = x7,2) 2
[0.157;0.564], and p(X7 = x7,3) 2 [0.208;0.591]. Incidentally, we computed the same
inferences with the exhaustive algorithm in the JavaBayes system and obtained the

same values.



Fig. 6. Transformed credal network.
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If inferences in the transformed credal network are still unfeasible, we can

run an approximate inference algorithm in the transformed credal network. Con-

sider running Tessem�s algorithm in the network in Fig. 6. We obtain the inter-

vals p(X7 = x7,1) 2 [0.053,0.502], p(X7 = x7,2) 2 [0.116,0.663], and p(X7 = x7,3) 2
[0.128,0.644]. We note that Tessem�s algorithm alone in the complete example

network produced the intervals p(X7 = x7,1) 2 [0.040,0.524], p(X7 = x7,2) 2
[0.106,0.698], and p(X7 = x7,3) 2 [0.097,0.667].
8. Conclusion

This paper has proposed a collection of simple ideas that advance the state of af-
fairs concerning inferences in credal networks. Perhaps the following perspective is

useful. As far as exact inference with strong extensions is concerned, our branch-

and-bound methods go considerably beyond what can be done with existing enumer-

ation techniques. However, they can handle relatively small networks, and they

should be most effective as tools for evaluating other (approximate) algorithms. It

seems that general medium and large credal networks will hardly admit exact infer-

ence, and approximate algorithms are likely to be important in those situations.

Thus one should have fast and accurate approximate methods, and one should have
ways to validate the accuracy of these approximate methods.

In this perspective, it is possible that the A/R+ algorithm will be the contribution

with most practical significance, while the branch-and-bound approach will serve as

a validation tool for other algorithms. In fact, the branch-and-bound strategy is best

viewed as a family of solutions for inference in strong extensions. Depth-first and

best-first techniques can be used in different scenarios, as they require different levels

of resources and have different characteristics. Outer approximations are certainly

‘‘safer’’ than inner ones, being able to produce both approximations can give valu-
able information about inferences.

Note that, even though we have restricted our experiments to polytree-shaped net-

works, multi-connected credal networks can be handled by bounding techniques

such as the algorithms of Ha et al. [20] and Cano et al. [9].

We also would like to emphasize the idea that a network can be processed in

pieces, as discussed in the previous section. Such a strategy seems to be appropriate

for large networks, possibly using different levels of accuracy in each one of the

partial inferences.
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Appendix A. Proof of Theorem 1

We first show that the approximate intervals calculated by the A/R+ algorithm

are contained in those computed by the A/R algorithm. Then we show that A/R+

produces outer approximations.

Part I: Both A/R and A/R+ maximize/minimize the same quantities, at every step

of the propagation scheme. In each step of message propagation, the A/R+ algo-

rithm enforces a constraint that A/R does not (the constraint that messages received

by a node X from its parents represent a normalized quantity). To illustrate this fact,

note that step 1 in Fig. 4 uses direct interval multiplication and does not constrain
functions defined by b to add to one. Thus the feasible set in each optimization is
smaller for A/R+ than it is for A/R, and consequently the bounds computed by

A/R+ for the predictive support and the kZ(X) messages are tighter than those com-
puted by A/R. As the computation of lower and upper probabilities for any node X

is obtained by manipulating these messages recursively, results produced by A/R+

are equal to or tighter than approximations by A/R at every message propagation.

Part II: Each operation transforming credal sets into intervals (Expression (3))

produces outer bounds, because it enlarges the feasible set in each optimization
problem generated during propagation. When intervals are locally transformed into

credal sets, the optimization problems manipulating these credal sets produce the

tightest possible bounds; however they start from larger feasible sets and conse-

quently contain the exact set-valued messages. Thus at any node X we obtain bounds

that contain the correct upper and lower probabilities. h
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