At the time of Cobalt, Brachytherapy was competing with surgery, considered as a mini invasive treatment with a high local control. At the time of conformal radiotherapy, BT was the optimal technique to deliver a high dose to the target while sparing the bone structures and salivary glands then reducing complications and xerostomia. But it was often considered as an operator dependent technique as surgery was. Today, at the time of high tech Radiotherapy, BT is still competing with non invasive treatment by irradiation, IMRT or Stereotactic RT. Nevertheless, BT maintains its specific advantages which makes it the most conformal technique, delivering an accelerated and hyperfractionated technique of irradiation, then increasing the therapeutic ratio. The development of imaging for 3D dosimetry and Conformal BT, as well of the possibility to prescribe the dose rate and optimise the dose distribution improves the dose distribution and results of the technique.

The intraoperative placement of the catheters in the target mimics fiducials and improves the delineation of the target combined to the imagines and clinical exam during the procedure. This contributes, as well as the implantation inside the tissues to reduce the target volume with no ITV and a PTV equal to the CTV. The irradiation directly in the target also reduces the dose transmitted to the bone and the salivary glands as well as the nominal dose.

Considering the treatment of oropharyngeal cancer, BT delivered as a single BT, as well of the possibility to prescribe the dose rate and optimise the dose distribution improves the dose distribution and results of the technique.

The intraoperative placement of the catheters in the target mimics fiducials and improves the delineation of the target combined to the imagines and clinical exam during the procedure. This contributes, as well as the implantation inside the tissues to reduce the target volume with no ITV and a PTV equal to the CTV. The irradiation directly in the target also reduces the dose transmitted to the bone and the salivary glands as well as the nominal dose.

Dose measurements were performed with an 192Ir HDR-source (microSelectron, Nucletron, An Elekta Company) using the PFD90 diode and BluePhantom (iba Dosimetry GmbH).

Immersing the applicator into water radial dose distributions were acquired for each 45°. Measurements were performed for the central catheter and for the applicator (with or without the shields) respectively and were compared with the radial dose distribution from the TPS Oncentra Brachy 4.1 (Nucletron, An Elekta Company).

Results: The agreement of the measurements and the TPS for the central catheter was excellent at distances 0.5 mm to 40.0 mm from the applicator surface (relative error from -2.0 % to 1.4 %). At larger distances, the TPS increasingly underestimated the dose with an error of approx. 5 % at a distance of 60 mm. At clinical relevant distances (5 mm to 15 mm from the applicator surface) an under-dosage (2.1 % to 4.7 %) was found for the solid part of the applicator compared to the TPS estimations. Near the applicator surface the under-dosage was 10 %. At increasing distances the difference decreased eventually resulting in a small relative over-dosage far from the surface. General over-dosage behaviour was found for the hollow part. This was approx 8 % near the surface, and in the range of 3.9 % to 8.3 % at the clinical relevant distances. Transmission factors (50 mm from the applicator) for the shields were 0.34 and 0.31, respectively and were easily incorporated into the TPS.

Conclusions: The dosimetric properties of the prototype applicator were found to be acceptable. In clinical practice a renormalisation of the total treatment volume with no ITV and a PTV equal to the CTV. The irradiation directly in the target also reduces the dose transmitted to the bone and the salivary glands as well as the nominal dose.

The intraoperative placement of the catheters in the target mimics fiducials and improves the delineation of the target combined to the imagines and clinical exam during the procedure. This contributes, as well as the implantation inside the tissues to reduce the target volume with no ITV and a PTV equal to the CTV. The irradiation directly in the target also reduces the dose transmitted to the bone and the salivary glands as well as the nominal dose.

Dose measurements were performed with an 192Ir HDR-source (microSelectron, Nucletron, An Elekta Company) using the PFD90 diode and BluePhantom (iba Dosimetry GmbH).

Immersing the applicator into water radial dose distributions were acquired for each 45°. Measurements were performed for the central catheter and for the applicator (with or without the shields) respectively and were compared with the radial dose distribution from the TPS Oncentra Brachy 4.1 (Nucletron, An Elekta Company).

Results: The agreement of the measurements and the TPS for the central catheter was excellent at distances 0.5 mm to 40.0 mm from the applicator surface (relative error from -2.0 % to 1.4 %). At larger distances, the TPS increasingly underestimated the dose with an error of approx. 5 % at a distance of 60 mm. At clinical relevant distances (5 mm to 15 mm from the applicator surface) an under-dosage (2.1 % to 4.7 %) was found for the solid part of the applicator compared to the TPS estimations. Near the applicator surface the under-dosage was 10 %. At increasing distances the difference decreased eventually resulting in a small relative over-dosage far from the surface. General over-dosage behaviour was found for the hollow part. This was approx 8 % near the surface, and in the range of 3.9 % to 8.3 % at the clinical relevant distances. Transmission factors (50 mm from the applicator) for the shields were 0.34 and 0.31, respectively and were easily incorporated into the TPS.

Conclusions: The dosimetric properties of the prototype applicator were found to be acceptable. In clinical practice a renormalisation of...
the prescribed dose by 3.4 % due to the change in transmission and scatter condition should be considered. A POM insert for the hollow part of the applicator should be used when the shielding ability is not needed, in order to establish an isotropic dose distribution.

PD-0031
An Octree-based indexing method for Monte Carlo dosimetry in brachytherapy
V. Lahanas1, V. Peppa1, E. Panteles1, P. Papagianis1
1Medical School University of Athens, Department of Medical Physics, Athens, Greece

Purpose/Objective: Monte Carlo (MC) simulation in the patient geometry, as the latter is described by pretreatment CT image series, is a candidate dose calculation engine for individualized brachytherapy treatment planning, as well as a source of reference data for the benchmarking of advanced dose calculation algorithms beyond the TG43.

Reducing MC calculation time while preserving results accuracy is beneficial in both contexts, and one of the common practices is the sub-sampling of the original images. This study reports initial results from employing an octree-based voxel compression method in MC dosimetry for brachytherapy patients.

Materials and Methods: An application for preparing MC input files for a general purpose code (MCNP5 v.1.6) from information exported from a treatment planning station in the form of CT dicom images, RTDose, RTStruct and RTPlan has been developed.

An octree-based indexing method was considered for importing the patient geometry as an alternative to standard approaches such as the lattice feature of the MCNP geometric package.

According to this method a compression is achieved by combining voxels into octants provided that their difference in density is lower than a predefined density gradient threshold. The advantage of this method is that the highest resolution is maintained only in heterogeneous regions where high-density gradients are met.

A representative breast 199Ir HDR patient CT image series (512x512x32) was selected, and the density of each voxel was obtained by applying the CT HU calibration. After voxel compression, the patient geometry can be imported into the MCNP code by defining the planes describing the octants in the octree based method.

Results: Different density gradient thresholds were used for the representative breast case studied. Thresholds of 0.045 g/cm^3, 0.067 g/cm^3 and 0.1 g/cm^3 result to voxel number compressions of 70%, 80% and 88% relative to the original image series.

As shown by the comparison of the image of an indicative plane in the original (a) and compressed (b) geometry for the 0.1 g/cm^3 threshold, some information loss occurs along with CT noise filtering for density gradient below the threshold, and heterogeneity interfaces are correctly delineated.

Conclusions: A robust octree-based indexing has been developed and proved to be an efficient method for sub-sampling image data required for patient specific MC dosimetry in brachytherapy in agreement with previous findings in the literature. The dosimetric accuracy versus the calculation time efficiency achieved for different density gradient thresholds, as well as the comparison to alternative MCNP strategies (i.e. lattice feature employing the speed tally option) is work in progress.

Acknowledgement: This research has been co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program ‘Education and Lifelong Learning’ Investing in knowledge society of the National Strategic Reference Framework (NSRF). Research Funding Program: Aristeia.

PD-0032
Impact of heterogeneities in a gynecological cancer treatment using a HDR Ir-192 source
G. Fonseca1, B. Reniers1, F. Verhaegen1, H. Yoriyaz2
1Maastro Clinic, Department of Radiation Oncology, Maastricht, The Netherlands
2Instituto de Pesquisas Energéticas e Nucleares, Centro de Engenharia Nuclear, São Paulo, Brazil

Purpose/Objective: Modern treatment planning systems (TPS) for brachytherapy are now available that are based on model-based dose calculation algorithms (MBDCA). They enable heterogeneity corrections which are needed to replace the TG43 water-dose formalism with a more accurate approach. With the aim of evaluating differences between two TPS regarding the impact of heterogeneities such as applicators and tissues in a clinical case, five gynecological brachytherapy treatment plans were compared.

Materials and Methods: The treatment planning was done using a commercial TPS (BrachyVision™(BV), Varian). The plan was created for a Gammamed Plus source, 17 dwell positions and a prescribed dose of 7.5 Gy at 0.5 cm from the applicator, which consists of a hollow plastic cylinder with external diameter of 3.5 cm and 0.4 cm wall thickness. The applicator was contoured using CT images of the applicator only (1mm^3 voxel size) and then inserted in a real patient image using rigid image registration (Fig. 1.a and 1.b) considering its real composition. A water-based applicator was used to study tissue effect in a separate calculation. BV was used to obtain Dw,w (TG43) and also Dw,m through a grid based Boltzmann solver, ACUROS™ (AC), which can handle heterogeneities. The dose distributions were then compared to results (Dw,m) obtained with a Monte Carlo (MC) code, MCNP5, with tissue compositions provided by AC and the applicator defined through an analytical geometry. Simulation uncertainty (1σ) was lower than 1% inside the 50% isodose region.

Results: AC and MC results compared with TG43 presented differences up to 17% with mean difference inside the 100% isodose region of 5.2 ±1.2% and 5.3±1.5% (Fig. 1.c), respectively. These differences are mainly due to the air gap inside the applicator since the mean difference inside the 100% isodose region when using a homogeneous water applicator is about 1%. AC and MC presented good agreement with differences (Fig. 1.d) lower than 2% and 5% for 79% and 93% of the voxels of the scoring volume (Fig. 1.b), respectively. The mean differences between the Dw,m values (AC and MC) were also calculated separately for each tissue (bone, muscle and adipose tissue) and are within 1.0±0.1%, which represents no significant differences due the tissue composition. However, some regions show differences of about 10% (Fig. 1.d), especially near the applicator’s tip which can be partially attributed to the algorithm employed by AC which solves the Boltzmann equation by discretizing its six variables.

Conclusions: The effect of heterogeneities can be significant due to the applicator considered in this case and it seems to be a relevant aspect due several types of applicators commercially available. AC and MC have shown similar results with no apparent dependence of the tissue, however, dose differences can be higher in some regions which need to be evaluated in more detail.