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ABSTRACT

The paper presents a method to estimate the Statistically Equivalent Periodic Unit Cell (SEPUC) corre-
sponding to a masonry with quasi-periodic texture. The identification of the texture and the constituent
phases (unit blocks and mortar joints) is achieved by means of digital image processing techniques
applied to color image of the masonry wall. A statistical analysis of geometrical parameters (width and
height of blocks, thickness and length of mortar joints) allows to estimate their probability distribution
and to identify the typology of the texture. Subsequently a Monte Carlo analysis is performed using
several tentative SEPUCs generated with different dimensions of blocks and joints according to the
estimated distributions. A criterion was eventually proposed to identify, among the numerically
generated ones, the SEPUC which is more suitable to model the behavior of masonry wall. The SEPUC
is analyzed with techniques available for periodic texture, applying periodic boundary conditions, in
order to estimate the equivalent elastic stiffness. The proposed method is validated comparing the results
in the elastic range obtained with SEPUC and those obtained imposing essential and natural boundary
conditions on the original texture.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

When dealing with the analysis of historical and monumental
constructions, the engineer faces the challenge of estimating the
mechanical characteristics of masonry. Moreover, very often the
constituents of the masonry, blocks and mortar, are not arranged
in a periodic pattern, where periodic means that blocks and mortar
are placed in such a way that a cell may be identified within the
texture which is capable of generating the whole masonry by
means of pure translations. Nevertheless, in historical masonry
very often a quasi-periodic texture is found, where quasi-periodic
in this context means that rows of blocks with almost the same
height can still be identified, even if the width of the stones inside
each row and the height of different rows may vary. Therefore, it is
very important to have models that can take into account the effec-
tive texture (i.e. the arrangement of blocks and joints) of historical
masonry.

Considering the masonry with periodic texture, several meth-
ods are available in literature, developed starting from the work
of Pande et al. (1989), with particular reference to the work of
Anthoine (1995) which employed periodic boundary condition on
a representative periodic cell.
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Somewhat different methods must be used when dealing with
masonry which have non-periodic texture. In particular, the
concept of Representative Volume Element (RVE) is widely used.
The RVE is defined as the cell for which the overall behavior (and
therefore the elastic characteristics) is independent of the applied
boundary conditions (Hill, 1963). It has been shown that, if the
texture is ergodic, it is possible to consider only one sufficiently
large domain subjected to boundary conditions in terms of stresses
or displacements to estimate its mechanical characteristics (Sab,
1992). In Cluni and Gusella (2004) the homogenization was
achieved by means of “test-windows” of increasing dimensions
subjected to natural (i.e. in terms of stresses) and essential (i.e.
in terms of displacements) boundary conditions until a mechanical
convergence criterion was satisfied; moreover, the mechanical
convergence criterion can be coupled with a statistical conver-
gence criterion which take into account the most relevant informa-
tion about the pattern (Gusella and Cluni, 2006). In a recent work
(Cavalagli et al., 2011) this approach has been extended also to the
estimation of the strength domain. Another approach for the esti-
mation of the elastic characteristics of the non-periodic masonry
which uses the texture derived from digital image processing is
proposed in Lombardo et al. (2009).

For a quasi-periodic masonry, instead of the RVE, some form of
“statistically equivalence” may be used to treat the masonry as a
periodic medium. For example, the homogenized elastic character-
istics may be estimated using a Statistically Equivalent Periodic
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Unit Cell (SEPUC), as in Sejnoha et al. (2008). In the case of non-lin-
ear behavior, it was shown in Sab (1994) that for Statistically
Homogeneous Ergodic (SHE) media the results obtained in the case
of periodic media are also valid. Besides natural and essential
boundary conditions, periodic boundary conditions may be used
in order to estimate the RVE of random media (Sab and Nedjar,
2005).

The main objective of the paper is the proposal of a new method
to estimate the SEPUC of a masonry whose constituents (unit
blocks and mortar joints) are arranged in a quasi-periodic pattern.
The method takes into account the statistical description of the
dimensions of the constituents (width and height of blocks, thick-
ness and length of joints) and of their arrangement. The proposed
method is based on the identification of texture and the generation
of several tentative SEPUCs with dimensions of the constituents
according to their probability distribution. A criterion based on
the minimization of differences from mean values of statistical
characteristics of the constituents and of concentration ratio is pro-
posed to choose, among the others, the SEPUC of the masonry wall.
The method is validated in the elastic range: in particular the SE-
PUC is analyzed with periodic boundary conditions and the results
are compared to that obtained using the entire masonry wall sub-
ject to essential and natural boundary conditions.

The paper is written in the following sequence. In Section 2 a
procedure based on algorithms available in digital image process-
ing is proposed to obtain a consistent separation of the phases. In
order to perform the statistical analysis the blocks are converted
to equivalent rectangles and this allows to estimate the probability
distributions of the dimensions of the constituents and their
arrangement (texture) as described in Section 3. The statistical
analysis allows to identify the periodic Statistically Equivalent Tex-
ture (SET) corresponding to the actual one, and several candidate
SEPUCs are generated with different dimensions of the phase
according to the their respective estimated probability functions.
The choice of the SEPUC most suitable to model the masonry wall
is made using a criterion which is presented in Section 4 with sev-
eral alternatives. The proposed criterion is validated in Section 5
where the results obtained are compared to those which can be
found by more consolidated approaches in the elastic range.

2. Digital image processing for the separation of phases

The first step in the procedure proposed in the present paper is
the identification of stones and mortar joints and therefore to
achieve a consistent separation of the phases starting from a color
digital image of masonry. This can be achieved by means of Digital

image processing (DIP) techniques (Gonzalez and Woods, 2002;
Gonzalez et al., 2004).

In the present paper the procedure is used for two different
masonries: the first one was also studied in Cavalagli et al.
(2011), (indicated as masonry wall #1 in the following) and is
shown in Fig. 1(a), while the second (indicated as masonry wall
#2 in the following) is shown in Fig. 1(b).

A digital image can be described through functions f(x,y) where
x and y are the spatial coordinates of the pixel. The range of x is
0,1,...N—1 and the range of y is 0,1,...M — 1, where N is the
height of the image and M is the width of image, expressed in pix-
els. In the present cases, N = M = 1500.

A single image may be described by one ore more functions
f(x,y): for example, in a gray-scale image one function is sufficient,
whose values are the gray levels, while a color image with RGB
coding uses three functions f,fc and fz, whose values are the red
(R), green (G) and blue (B) levels of the pixels.

In the following is presented the sequence of operation used to
obtain the binary image from color image in the case of the ma-
sonry of Fig. 1(a); a similar procedure is used for masonry of
Fig. 1(b).

The conversion from a color image represented by the vector of
functions {f,fc,fs} to a gray-scale image represented by function
g(x,y) is defined by the operator that calculate the value of
luminance:

g(x,y) =0.2989 - fp(x,y) + 0.5870 - fo(x,y) + 0.114 - fz(x,y) (1)

The quality and definition of the image was improved using the
median filter (Fig. 3(a)) which replaces the value of gray level of the
pixel by the median of the gray levels on the surrounding pixels:

g(x,y) = median {g(s, ) for (s, ) in Ny } (2)

where Ny, is a square of side 3 pixels center in pixel at (x,y).

The gray-level image is then processed in order to separate the
phases. In particular, noting that the histogram of gray levels
(Fig. 2) has two dominant modes, the stones are identified as the
“bright” portions of the image and the mortar as the ‘“dark”
portion.

Therefore the binary image (Fig. 3(b)) of the wall can be ob-
tained with the following:

0 if gly) <k

1 if gx,y) >k ®

bixy) = {

where k is the gray level used as a threshold (see Fig. 2). In the
present case the value of the threshold level k is determined

(a)

Fig. 1. Color image of the masonries analyzed: (a) masonry wall #1, (b) masonry wall #2.
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Fig. 2. Distribution of gray levels in the image of the masonry wall #1 in Fig. 1(a). The vertical line indicate the threshold used to separate phases: stones on the right, mortar

on the left.

l

Fig. 3. Digital image processing of the image of masonry wall #1 (Fig. 1(a)): (a) conversion to gray-scale and application of median filter, (b) conversion to black and white, (c)

filling of the holes, (d) erosion and dilatation.

through Otsu’s method (for a detailed description see Gonzalez
et al., 2004).

In the resulting binary image, the white portions (with value 1)
are considered to be occupied by the stone phase, and the remain-
ing black portion (with value 0) by the mortar phase.

Subsequently, morphological operators are used in order to
enhance the quality of the separation of phases.

The use of morphological operator on black and white images is
simplified if set operations are used. If f(x, y) is the function which

describes the black and white image, the same image can be seen
as a set F: the relations which allow the passage from f to F and
vice-versa are:

1
0

if (x,y)eF
if (x,y)¢F

Note that 1-valued pixels are said foreground pixels, while O-
valued pixels are said background pixels.

F={(xy/f(xy) =1} and f(x,y):{ @
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Fig. 4. Binary images of the analyzed walls: (a) masonry wall #1 shown in Fig. 1(a), (b) masonry wall #2 shown in Fig. 1(b).

The usual operation on sets (union, intersection, complement)
are valid. Moreover, translation of set I is also defined. For defini-
tion of set operations see A.

The morphological operators mainly used are erosion and dila-
tion: they respectively reduce and enlarge the area occupied by
foreground pixels.

The dilation of image F is defined as follows:

Fol={xyllxyNF#0} (5)
where
1={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)}
(6)
The erosion of image F is defined as follows:
Fol={Xy)lxy NF#0} (7)

Dilation and erosion can be combined together in several ways.
In particular they can be used to fill the holes of the image, i.e. to
remove background pixels inside foreground objects that result
at the end of thresholding, as can be seen in Fig. 3(b): in fact, since
in actual masonry mortar areas can not be present inside the stone,
these should be removed. This operation, which is described in de-
tail in Appendix A, allows to obtain the image shown in Fig. 3(c).

Thereafter, erosion and dilation operators are applied in succes-
sion in order to smooth edges of the stones, obtaining images
shown in Fig. 3(d).

3. Statistical analysis of the masonry texture

The aim of the operations described in the present Section is to
obtain, starting from the binary image of masonry obtained at the
end of preceding Section, the identification of stones and mortar
joints and then to perform a statistical analysis which allows to
identify the main characteristics of the constituents (size of the
stones, dimensions of the joints) and of their spatial relations.

The binary images are analyzed to detect the stones, which are
identified with the regions defined using the methods briefly de-
scribed in Appendix A.

For each stone the following properties can be computed: area
A; centroid (x¢,Y;) ; major and minor moments of inertia, J,, and
J; orientation 0, defined as the angle between the minor principal
axis (associated to J,,) and the horizontal axis.

The value of A can be used to remove from the image the stones
with A < A, where A is a prefixed value, in order to eliminate the
stones very small. The result is shown in Fig. 4(a) for the masonry
wall #1 and Fig. 4(b) for the masonry wall #2.

Then, the width B and height H of the rectangular equivalent to
each stone was found imposing that:

o the area, A, is conserved
o the ratio of moments of inertia, fﬂ is conserved.
m

The values of B and H are therefore given by:

A2 1/4
A
B=4 (8b)

Note that in what follows B always denote the horizontal
dimension of the stone while H denote the vertical dimension,
while in (8) it was assumed B > H which corresponds to assume
orientation 0 € [0, w/4], therefore if the orientation is greater than
1/4 the value from (8) are switched. Moreover, it is assumed that
each rectangle has the same centroid (x¢,y) of the stone.

Once the position of the centroid and the dimensions of the
stones, assumed to be rectangular, is known it is possible to eval-
uate the thickness of both bed and head mortar joints. The stone
i faces stone j, and therefore a mortar joint is present between
the two stones, only if both the following inequalities hold (see
Fig. 5):

Mrﬂd<%+§+m (9a)
|Xci — Xcj] < % % + Ag (9b)
where Ag and Ay are:

Ap = min {B;} (10a)
Ay = min {H;} (10b)

To separate head joint from bed joints the following criterion
was used. If:

Hi  H;
Vei=Yeil <5 +5 (11)

than the joint between stones i and j is an head joint, whose thick-
ness and length are given by:
B,‘ + Bj

2

£ = [xei — xej| - (12a)
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Fig. 5. Identification of facing stones with joint's dimensions.

(a) (b)

Fig. 6. Image of the wall with equivalent rectangular stones and bed (dark gray) and head (light gray) mortar joint: (a) masonry wall #1, (b) masonry wall #2.

Fig. 7. Joint distribution of B and H for masonry wall #1.

= _| o | n H; + H;j (12b) (modification on (12b) and (13b) are necessary when the length of

i = ~WVei = Yo 2 the joint is equal respectively to the height or width of one of the
else the joint between stones i and j is a bed joint, whose thickness ~ Stones) )

is: The proposed approach was applied to the masonry wall #1

(Fig. 1(a)) using binary images shown in Fig. 4(a), obtaining the

th— \J/C‘ _ J/c'| _Hi+H; (13a) equivalent rectangular stones and corresponding head and bed

! ! 2 joints shown in Fig. 6(a). Note that only entire stones and the cor-

B 1B responding mortar joint between them were used. The equivalent

ls. = —|Xc,i - XcJ| 4+ er J (13b) rectangular stones for masonry wall #2 (Fig. 1(b)) using binary im-

age in Fig. 4(b) is shown in Fig. 6(b).
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Fig. 9. Estimation of probability density function for masonry wall #1 shown in Fig. 1(a): (a) stones’ width, (b) stones’ height, (c) height of first family, (d) height of second
family, (e) bed joints’ length, (f) bed joints’ thickness, (g) head joints’ length, (h) head joints’ thickness.

The joint distribution of dimensions (B and H) of the stones is
shown in Fig. 7 for masonry wall #1 and in Fig. 8 for the masonry
wall #2. This approach allows to identify possible different families
of stones. In the case of masonry wall #1 two families of stones can

be identified on the base of their height: one is characterized by an
height H; < H while the other is characterized by an height H; > H
with H = 13 cm; 29% of the stones belongs to the first family, while
the remaining 71% belongs to the second family.
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Fig. 10. Estimation of probability density function for masonry wall #2 shown in Fig. 1(b): (a) stones’ width, (b) stones’ height, (c) height of first family, (d) height of second
family, (e) bed joints’ length, (f) bed joints’ thickness, (g) head joints’ length, (h) head joints’ thickness.

It is also evident that the distribution of stones width B; is the
same in the two families.

For masonry wall #2 it should be noted that the distribution of
the dimensions of the blocks (Fig. 8) shows a slightly grouping in
two families but without a definite gap as in the case of masonry
#1. From this observation in the parametric description of the peri-
odic cell (in the following Section 4.1) two cases will be consid-
ered: a single family of stones and two families with A = 15 cm.

Moreover, the probability density function can be estimated for
all the relevant geometric characteristics: width and height of the
stones, thickness of both head and bed joints. The results are
shown in Fig. 9 for the masonry wall #1 and in Fig. 10 for the ma-
sonry wall #2. In the figures, for each distribution the curve of log-
normal probability density function with same mean and variance
is also plotted.

It should be noted that in the case of masonry wall #1 the pres-
ence of two families can be assessed, besides what shown in
Fig. 9(b), also from the length of head joints (Fig. 9(g)). The appar-
ent increase of the horizontal joints’ thickness at the lower part of
the wall (Fig. 4(a)) could be superficial and due to imperfections of
the geometry of the stones (in practice, masons fill with mortar the
missing and broken parts of the stone). This aspect can be resolved
by a ad-hoc “fine tuning” operation, or, if it is limited as in the con-

sidered masonry, its influence is considered to be negligible by
taking into account the whole wall; eventually, to cope with this
aspect, different portions of the wall can be considered. In the
present study, in order to propose and check a method without
intervention of the user, the second approach has been followed.

Moreover, the description of the texture of the wall may be en-
hanced by another parameter: the coordination number. Its defini-
tion is borrowed from crystallography and, for each stone, it is the
number of the nearest neighboring stones. Here neighboring
stones means that the stones share a mortar joint. The histograms
of coordination number is shown in Fig. 11 for both masonries.

It is evident that for both masonry the majority of the stones
has coordination number equal to 6.

4. Estimation of the Statistically Equivalent Periodic Unit Cell
(SEPUC)
4.1. Parametric description of the periodic cell

The geometrical description of the equivalent periodic cell is

strictly based on the choice of the geometrical parameters ana-
lyzed in the previous section by means of statistical methods. A
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Fig. 12. Main characteristics of some periodic masonry textures.

specific number of them must be selected in order to obtain a con-
sistent Statistically Equivalent Texture (SET). These parameters,
that represent the minimum number of geometrical descriptors
necessary to define the arrangement of the stones and the mortar
joints, are accountable for the equivalent texture obtained, by the
periodic translation of the cell, and then for its equivalent mechan-
ical response.

In the following, for clearness of explanation, the procedure that
leads to the definition of the SET for the masonry wall #1, shown in
Fig. 1(a), will be illustrated step-by-step. Nevertheless, a similar
procedure was used for the definition of SET for masonry wall #2.

In order to identify the SET, in Fig. 12 some characteristics
(width of the stones, coordination number, length of bed mortar
joints) for several commonly used periodic textures made by bricks
(running bond, stack bond, Flemish bond, English cross bond) are
shown. Indicating with D the major dimension of the brick, it is as-
sumed that the other dimensions are 1 (D —s) and 1 (D — 3s), the
latter usually being the height, where s is the thickness of mortar
joints: for example, the standard “UNI” brick in Italy has
D =250 mm (which give dimensions of brick 250 x 120 x 55)
and is used with mortar joints having thickness s = 10 mm.

Concerning the periodic textures, some considerations which
may be helpful in the following can be made. In a running bond
texture the length of bed mortar joints is roughly the half of the
width of bricks, while in a stack bond pattern it is the very same.

The height of the bricks is the same for all the pattern; however,
in running and stack bond patterns also the width is the same
for all the bricks, while for English and Flemish bond textures the
bricks can be separated in two different families relying on the
width. The mean value of the coordination number is 6, except
for stack bond where it is 4; nevertheless, bricks may have two dif-
ferent coordination numbers (for example, in the English cross
bond one third of the bricks have coordination number equal to
8 and two-third of the bricks have coordination number 5).

In the case of masonry wall #1, the Fig. 9(a) highlights that the
width of the blocks has a unimodal distribution. Therefore a run-
ning or stack bond may be used as reference pattern. Nevertheless,
from the Fig. 9(e) a unique mode for the length of the bed joints can
be observed, whose value is almost equal to half the mode of
blocks width distribution, so that a running bond arrangement
for the SET can be taken into account. The choice of a running bond
pattern instead of a stack bond is also confirmed by the analysis of
coordination number in Fig. 11(a), which indicates a mean value of
CN = 6 and therefore corresponding to that of the running bond.

It is worth noting that, among all possible arrangements, the
running bond texture for masonry with coordination number
CN = 6 gives an upper bound for the stiffness of the masonry, as
shown in Cecchi and Sab (2009).

The evident bimodal distribution of the height of the blocks
(Fig. 9(b)) induces to look at the presence of two families of stones,
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Fig. 13. Statistically Equivalent Textures (SET) for masonry wall #1, obtained by the periodic translation of the cell with (a) three and (b) and (c) seven rows.

relying on the values of height (H1 the minor and H2 the greater).
Therefore the actual texture of the wall, with stones laid out in
rows of constant height, can be considered to be quasi-periodic
according to the definition given in the Introduction. This feature
can also be directly attained by the comparison between the prob-
ability distributions of the heights of the blocks and of the lengths
of the head joints (Fig. 9(b) and (g)), that show almost the same
probability density.

In the masonry wall the ratio between the number of stones
with height H2 and H1 is about 2.4. For this reason three types
of texture have been studied (Fig. 13): the first contains the peri-
odic repetition of three rows, with ratio 2:1 between the height
values, and the others are characterized by seven rows, with a ratio
of 5:2. In the first case there is only a possible sequence of row
heights [H2-H2-H1]. In the second case two sequences have been
considered, [H2-H2-H2-H2-H2-H1-H1] and [H2-H2-H2-H2-H1-
H2-H1]. In this way the fundamental parameters able to fully de-
scribe the equivalent texture are the width B, the heights H1 and
H2, and the thickness of bed and head joints, t’ and t" respectively.
The three textures considered are shown in Fig. 13, while the three
periodic cell together with the corresponding translation vector
base which allows to generate the wall texture are shown in
Fig. 14.

In the case of masonry wall #2, the same arguments used for
masonry wall #1 permit to assume a SET with a running bond pat-
tern. Moreover, following the analysis of stone heights (Section 3)
two different types of textures have been studied: the first one is
made of a single family of stones, and therefore is indicated with
[H], while the second is made by the repetition of two rows with
stones of height H1 and H2 with a ratio 1:1 and therefore with se-
quence [H2-H1]; the two textures are shown in Fig. 15.

The two cells represented in Fig. 16 have been chosen for the
proposed textures. It is worth noting that the choice of the cell in
Fig. 16(b), which is not the smallest possible, was dictated by the
necessity to use the same periodic boundary conditions assumed
for masonry wall #1 and discussed in Section 5.1.

Maybe it is not surprising that in both cases the SET consists in a
running bond pattern. When the mason builds a masonry using
stones of different dimensions, the state-of-the-art laws suggest
that each row have stones of about the same height. Moreover,
they also impose that vertical (head) joints should not be aligned,
and the mason will try to place the head joint approximately near
the middle of the beneath stone. Therefore, although the random
width of the stones, the arrangement of the head joints tends to
be that of a running bond pattern, given that the stack bond is
structural weaker than the others and that the English cross or

A

(a) (c)

Fig. 14. Periodic cells analyzed for the characterization of the textures used for
masonry wall #1 and shown in Fig. 13.

Flemish bond textures require the availability of two well distinct
groups of stones, each with almost the same width. This latter
requirement could be difficult to fulfill in the case of stones not
artificially made (bricks). This is not the case of the masonries con-
sidered in the present study where the width of the stones is de-
scribed by a single probabilistic density law with one mode.
Nevertheless the proposed method, based on a probabilistic regu-
larization of quasi periodic patterns, appears to be easily applicable
to geometric characteristics with bimodal densities adopting the
same approach used for the height of the stones in masonry #2
(analysis with different patterns and comparison).

4.2. Generation of periodic unit cell samples

What follows is valid for the SET of masonry wall #1 (shown in
Fig. 1(a)). Nevertheless similar operations are valid for the SET of
masonry wall #2 (shown in Fig. 1(b)). The generation of periodic
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Fig. 15. Statistically Equivalent Textures (SET) for masonry wall #2, obtained by the periodic translation of the cell with (a) a single family and (b) two families of stones.

Y

(a) (b)

Fig. 16. Periodic cells analyzed for the characterization of the textures used for
masonry wall #2 and shown in Fig. 15.

Table 1

Parameters of log-normal distributions for generated quantities of masonry wall #1.
X X $2 u a2
B 25.418 40.991 3.205 0.062
H1 11.202 0.559 2414 0.004
H2 15.865 0.666 2.763 0.003
tb 1.397 0.311 0.262 0.148
th 1.485 0.498 0.294 0.204

unit cell was achieved by taking into account the following geo-
metrical characteristics discussed in the previous section:

e height of stones of the first family, H1;

e height of stones of the second family, H2;
o width of stones, B, valid for both families;
o thickness of bed mortar joints, t’;

o thickness of head mortar joints, t";

The mean value, x, and the variance, s?, of each geometrical
characteristic shown in Fig. 9 have been evaluated. Moreover, the
parameters u and ¢? of the log-normal distribution of each quan-
tity, which correspond to the mean and standard deviation of the
underlying normal distribution, are reported together with the
preceding values in Table 1. The values of i and 62 have been used
to generate the samples.

It was assumed independence between t’ t" and the other
quantities. Nevertheless, statistical analysis suggests a correlation
between width B; and height H; for both families, that can be ex-
pressed as:

1 py py 1 -0.14 -0.18
R=|p;, 1 0]|=|-014 1 0 (14)
p, 0 1 -0.18 0 1

20 T T T L
o & O actual
18 . Loe et . e generated H
a
) I I I L
10 20 30 40 50

Fig. 17. Actual and generated values of B and H for masonry wall #1.

where:
P = Ei[(B — Ei[B]) - (H - Ei[H])]
\/ E [(B —E [B])z] E; [(H - E,-[H])z}

(15)

where E;[-] denote the average operator E[-] evaluated taking into ac-
count only stones of the family with height Hi.

The logarithm of generated values of B, H1 and H2, indicated as
E, H1 and HZ, were placed into column vectors B, ﬂ, @ The val-
ues in these vectors, scaled to have zero mean and unit variance,
are placed in the matrix:

G- [B..72) 16)

Eventually, the correlation expressed by R can be obtained mul-
tiplying G by VR (Miller and Childers, 2004) where:

R 1 p1 p2
R=|p 1 o0 (17)
b 01

and p; are evaluated similarly to p;, with (15) using B,H1 and H2
instead of B,H1 and H2.

After re-scaling, the values of B, H1 and H2 with the desired val-
ues of mean, variance and correlation coefficients are obtained.

A total of 1000 samples were generated. The results for B and H
are shown in Fig. 17 .

In the case of masonry wall #2 the mean x and variance s? esti-
mated from statistical analysis, as shown in Fig. 10, and the param-
eters u and o? of the associated log-normal distribution are
reported in Table 2 for each quantity of interest.

Also in this case total of 1000 samples were generated. The re-
sults for B and H are shown in Fig. 18.
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Table 2

Parameters of log-normal distributions for generated quantities of masonry wall #2.
X X s2 " o2
B 26.918 44.010 3.264 0.058
H 15.212 4.644 2.712 0.021
H1 13.217 1.036 2.578 0.006
H2 17.059 0.885 2.835 0.003
th 1414 0.344 0.251 0.222
th 1.775 0.394 0.519 0.105

Both for masonry wall #1 and masonry wall #2, Figs. 17 and 18
show a good agreement between generated and actual values of
stones dimensions and of their correlation.

4.3. Identification of SEPUC

The Statistically Equivalent Periodic Unit Cell is defined as a cell
that, when arranged in the periodic pattern according to SET,
originates a texture which, globally, is equivalent to the actual
masonry. The criterion which permits to consider the equivalence
effective is based on the minimization of an error function (),
where Q; with i=1,2,...,1000 is the ith sample. The definition
of F(Q;) use n geometrical parameters X; (dimensions of the
blocks and of the mortar joints) and the concentration ratio ¢y, de-
fined as the percentage of the area of masonry wall occupied by the
blocks, of each sample as follows:

1 \sz—/\’k| | C1i—C1 |
Tl-‘rl(Z C1

where X is the mean of geometrical parameter X, and ¢, is the
concentration ratio of the entire wall. In the case of masonry

F (L) (18)

wall #1, for all of SET (Fig. 14) n=5, and
22 I
0O actual
20 °  generated []
18 1
=16} = i
O, : .
o o14f ‘8. - |
12 . . ]
a
10 | 1
8 L | L Il
10 20 30 40 50
B [cm]
(a)
22 I
actual
20 | generated [
18 1
=16} .
2,
T 14 i
12 .
a:
10 | 1
1 Il 1 L
10 20 30 40 50
B [cm)]
(b)

Fig. 18. Actual and generated values of B and H for masonry wall #2: (a) one family
of stone heights, (b) two families of stone heights.

Xy =B, X, =H1,X; =H2, X4 =t’ and X5 =t while in the case
of masonry wall #2, for first type of SET (Fig. 16(a)) n =4, and

X1 =B X, =H, x4 — i and xs =t" and for second type of SET
(Fig. 16(b)) n=5, and X; =i X, =H1,X3=H2 x,=t" and
X5 = th,

The choice of the error function (18) has been made according
to the following considerations:

o the existence of a correlation between the concentration ratio of
the strong phase and the stiffness of the masonry requires to
minimize the difference between c;; and ¢4;

e the minimization of the previous difference may lead to dimen-
sions of blocks and joints not representative of the actual ones
and so the minimization of the difference from the mean values
of geometrical parameters is required.

Nevertheless, in order to assess the influence of each of the pre-
ceding factors, and to evaluate the effect of considering a different
statistics (median instead of the mean), four other criteria have
been considered:

o FalQ) =1 i g

o Fpl(Q) = Tiy

o Fe(Qy) =

o Fp(Q) =g <Zk 1%‘*’@)

where X, is the median of X.

5. Numerical analysis
5.1. Definition of the periodic boundary conditions

The definition of a periodic cell implies the explanation of the
periodic boundary conditions which assure the periodicity of the
deformations and the anti-periodicity of the stresses (Anthoine,
1995). These conditions depend not only on the geometry of the
cell but also on its translation vector base. The cells of Fig. 14 are
characterized by six nodes that identify six boundary portions on
which the periodicity conditions are defined (Fig. 19). Only three
of the six nodes are representative of the translation vector base,
in this case the nodes 1, 2 and 6, that are generally called “control-
ling points”.

Following the mathematical approach of Mistler et al. (2007),
the generic states of macroscopic stress and strain of the cell, ex-
pressed through tensors (6) and (&) respectively, can be obtained
by the definition of specific conditions in terms of forces and/or

. d .
4y 6y
N T—>u4:c I—>u6w T_’USZ
K
4 F 46 E 3
'I
4
’,
II
h A Re D
'l
'I
Uly s Usy Uy
4
’
X 4 B I C >T0
1 Uiz 5> Usz 9> U2y
* i *

Fig. 19. Translation system and periodic reference system of the cell.
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displacements on three of the six degree of freedom of the control-
ling points, uy, Uy, and ug,, called master d.o.f. The other d.o.f. of
the controlling points are restrained or constrained in order to
inhibit any rigid translation and rotation of the cell:

Uix = Uy = 0
_d h (19)
Usx = Tu2x + 7u2y

in which I h and d are the geometric parameters describing the
dimensions of the cell and of the periodic translation vector base
(Fig. 19). The relation [ = 2d can be easily derived. The periodicity
conditions in vector format are:

U —uy=u; —y (20a)
U —Ug =Ug — Uy (20b)
Ur —Uc=Ug — Uy (20c)

which,expanding each component and taking into account the
boundary conditions (19), become:

Upx — Upy — Upx =0 (21a)

Upy — Uay — Upy = 0 (Zlb)
1 h

uEX—uBX—§u2X+Tu2y =0 (21c¢)

Ugy — Upy — Uy = 0 (21d)
1 h

uFX—uCX—§u2x+Tu2y:0 (21e)

Upy — Uy — Ugy + Uzy = 0 (Zlf)

Specific values of boundary conditions to be assigned at the
master nodes determine predefined macroscopic tension (@) or
strain (g) tensors over the cell, so that the effective macroscopic
stiffness elastic tensor C can be directly obtained through the
relation:

(6)=(C:¢) (22)
Considering the following three elementary tensors:
10 00 0 1
111 — 122 — I]Z — 121 _ 2
{0 0} ' 0 1) 10 3)

the components of tensor C are obtained by means of a strain
approach, i.e. by analyzing the three cases (&) =I' through the
relations:

Upy = l{en) (24a)
UQy = I(Szz) (24b)
Ugy = h<822> + I<812> (24C)

5.2. Results and discussion

The periodic cells generated as described in Section 4.2 have
been analyzed with the periodic boundary conditions described
in the Section 5.1 by means of the finite element method. For each
cell the elastic stiffness tensor has been estimated. The analyses
have been performed in the elastic field using 4-node elements
(Cavalagli et al., 2011). For both masonry walls, the elastic charac-
teristics assigned to the blocks (E,, v,) and mortar (E,, v,,) are the
same used in Cavalagli et al. (2011), i.e.
E, = 6740 MPa, v, =0.167, E,, = 1700 MPa and v, =0.2. This

have permitted to validate the proposed criterion by comparing
the results in terms of effective elastic properties of the homoge-
nized continuum. In Fig. 20 the stress fields for a generic statisti-
cally periodic cell for each texture of masonry wall #1 are shown
for each case of boundary conditions applied, in particular the
stress component ¢y; is represented for the case (g) =I'', g, for
(&) =1* and 7, for (g) = I'2.

The Frobenius norm of the stiffness matrices calculated for each
generated cells, together with the limits of Reuss and Voigt, are
plotted versus c; in Fig. 21 for masonry wall #1 and in Fig. 24 for
masonry wall #2. In the same Figures, the points corresponding
to the samples which minimize criteria 7, F,, 5, F¢ and Fj, are
highlighted. For masonry wall #1 the results concerning the tex-
ture [H2-H2-H2-H2-H1-H2-H1] are not shown because they are
very similar to those of texture [H2-H2-H2-H2-H2-H1-H1], with
differences of less than 1 %e.

The analysis of Fig. 21(a) and (b) and Fig. 24(a) and (b) high-
lights that, in terms of the effective elastic properties, the behavior
of the textures is quite similar. Therefore, in order to reduce the
computational burden, is more convenient to use the texture with
three rows of stone, [H2-H2-H1], in the case of masonry wall #1,
and with a single family of stones, [H], in the case of masonry wall

et T N
p o rﬂ X Og
- ’ ) ,-,(Dw-‘
- [ () |

-8
-8
|
-8
-

Fig. 20. Stress fields for the generic periodic unit cell of masonry wall #1 for
different boundary conditions applied.
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Fig. 21. Frobenius norm of the elastic stiffness tensor for the generated samples of
periodic unit cell for masonry wall #1: (a) texture [H2-H2-H1] (Fig. 14(a)), (b)
texture [H2-H2-H2-H2-H2-H1-H1] (Fig. 14(b)).
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Fig. 22. Comparison of results obtained for masonry wall #1 using SEPUC and those
obtained using the “test-windows” method with essential and natural boundary
conditions.

#2. Moreover the figures also show the correlation between
concentration ratio of the strong phase and the stiffness of the
masonry recalled in Section 4.3.

Within this textures, the criteria introduced in Section 4.3 pick
out five SEPUCs, one for each error function (F,F,, Fj, F¢, Fp):
two of the SEPUCs, those associated with 7 and F}, are the same
in the case of masonry wall #1 (Fig. 21); two pairs, those associated
with 7 and F, and with F}; and F}, are the same in the case of ma-
sonry wall #2 (Fig. 24). It should be noted that the concentration
ratio is correlated with the stones’ dimensions and the joints’
thickness. Nevertheless this relationship can be assumed deter-
ministic only in the case of periodic masonry, whereas when deal-
ing with quasi periodic masonry the relationship between the

10.8 cm

15.7cm | [1.6 em
11

|

24.8 cm

Fig. 23. Statistically Equivalent Periodic Unit Cell for masonry wall #1.
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Fig. 24. Frobenius norm of the elastic stiffness tensor for the generated samples of
periodic unit cell for masonry wall #2: (a) single family texture (Fig. 16(a)), (b)
texture [H2-H1] (Fig. 16(b)).

mean (or median) of the geometric characteristics and the concen-
tration ratio of the wall is probabilistic. For this reason the concen-
tration ratio has been considered to be unrelated to the stones’
dimensions and the joints’ thickness in the criteria F (Eq. (18))
and with a weight equal to those of each geometric characteristics.
In general, the criteria which minimize the difference in terms of
geometric parameters and the criterion relative to concentration
ratio only assume minimum values at two different generated
samples, none of which is the sample which minimize the
proposed criterion F (Eq. (18)). The occasional coincidence of the
SEPUC for two different criteria may be due to the inherent charac-
teristics of the original masonry (for example masonry wall #2
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Table 3
Geometrical parameters and Frobenius of the elastic stiffness tensor of masonry wall #1 for the SEPUC according to each criterion (values in cm and MPa).
SEPUC Crit. B H1 H2 th th IICl|
[H2-H2-H1] F 2438 10.8 15.7 16 15 7985.1
Fa 243 11.0 16.0 15 14 8115.5
Fp 231 11.6 16.0 13 14 8189.4
Fe 15.7 10.8 15.5 1.2 1.6 7862.5
Fp 231 11.6 16.0 13 14 8189.4
[H2-H2-H2-H2-H2-H1-H1] F 24.8 10.8 15.7 1.6 15 8001.7
Fi 243 11.0 16.0 1.5 14 8131.6
Fp 23.1 11.6 16.0 13 14 8202.1
Fe 19.1 10.8 16.2 1.6 14 7863.2
Fp 231 11.6 16.0 13 14 8202.1

Table 4

Components of the elastic stiffness tensor of masonry wall #1 evaluated with “test-
windows” method in essential and natural boundary conditions for [/B = 8.0 and with
periodic boundary conditions on SEPUC (values in MPa).

ij Ess. B.C. Nat. B.C. SEPUC
11 5590.0 5554.6 5581.5
12 1006.9 1006.0 855.8
22 5194.6 5168.8 5208.6
33 1991.8 1972.7 2003.5
8300 I
Ess. B. C.
Nat. B. C.
8200 F H
8100 i
o %
8000 E
7900 foie-eee- T J— - SRV - bt o RN R
| | | | | I | |

1.5 30 45 6.0 75 9.0 105 12.0

Fig. 25. Comparison of results obtained for masonry wall #2 using SEPUC and those
obtained using the “test-windows” method with essential and natural boundary
conditions.

seems more regular than masonry wall #1) and to the peculiar out-
comes of the Monte Carlo simulations with a limited number of
samples. Comparing the results with those obtained by the classi-
cal homogenization approaches (Cavalagli et al., 2011), shown in
Fig. 22 and in Table 3 for masonry wall #1 and in Fig. 25 and in

;HM

0.75 cm
15.1 cm

2 25.6 cm L
7 1
Fig. 26. Statistically Equivalent Periodic Unit Cell for masonry wall #2.

Table 6

Components of the elastic stiffness tensor of masonry wall #2 evaluated with “test-
windows” method in essential and natural boundary conditions for [/B = 9.0 and with
periodic boundary conditions on SEPUC (values in MPa).

i Ess. B.C. Nat. B.C. SEPUC
11 5601.1 5569.9 5572.3
12 1021.4 1021.2 869.2
22 5279.6 5257.3 5316.8
33 2020.4 2004.0 2039.3

Table 5 for masonry wall #2, the proposed criterion F(€;), defined
by (18), which minimize both the difference from the mean values
of geometrical parameters and from the actual concentration ratio,
appears the best to identify a periodic cell able to represent the
elastic response of the entire wall. It is also shown in Table 3 and
Table 5 that the minimization of difference of the concentration ra-
tio alone, F¢ (), leads to a cell with dimensions of stones and
mortar joints quite different from the mean values of actual tex-
ture, as anticipated in Section 4.3. The converse is also true: even
if the Monte Carlo generation should generate a sample with ex-
actly the mean of the parameters X, which is unlikely, this would
have a concentration ratio different from the actual one, and so F

Table 5
Geometrical parameters and Frobenius of the elastic stiffness tensor of masonry wall #2 for the SEPUC according to each criterion (values in cm and MPa).
SEPUC Crit. B H th th IIC]|
[H] F 25.6 15.1 1.7 1.5 8061.5
Fa 25.6 15.1 1.7 1.5 8061.5
i 26.4 15.2 1.7 1.3 8231.2
Fe 26.4 17.8 23 1.5 7960.5
Fh 26.4 15.2 1.7 13 8231.2
Crit. B H1 H2 th th IIC]|
[H2-H1] F 25.6 13.2 17.0 1.7 1.5 8062.9
Fa 25.6 13.2 17.0 1.7 1.5 8062.9
Fi 26.0 133 18.2 1.7 13 8249.0
Fé 19.9 134 18.6 1.7 14 7954.1
Fp 26.0 133 18.2 1.7 13 8249.0
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could not be null. The SEPUCs that satisfy the proposed criterion
for masonry #1 and masonry wall #2 are shown in Fig. 23 and in
Fig. 26 respectively and the components of the elastic stiffness ten-
sor compared with those obtained by the classical homogenization
approaches are shown in Table 4 and in Table 6.

6. Conclusions

The structural analysis of historical masonry constructions of-
ten presents as a crucial task, due to the non-periodicity texture,
the definition of the mechanical characteristics of the homoge-
nized continuum. In this paper a method for the estimation of a
Statistically Equivalent Periodic Unit Cell (SEPUC) corresponding
to a masonry with quasi-periodic texture is proposed. The SEPUC
can subsequently be used for the estimation of mechanical charac-
teristics of the masonry with one of the well established methods
proposed in literature for periodic media. The aim is to provide a
suitable and easy-to-use tool to the engineer.

Starting from a digital image of a masonry wall, the procedure
lead to the definition of a SEPUC by means of Digital image pro-
cessing techniques and of statistical analysis of the constituents
geometrical parameters. In particular, after a consistent separation
of the phases, the geometrical parameters of the stones and of the
mortar joints are analyzed. This allows to identify the characteris-
tics of the actual texture of the masonry, which are used to gener-
ate several periodic unit cell, candidate to be the SEPUC. The cells
are then analyzed with a finite element model, with the application
of periodic boundary conditions, in order to obtain the equivalent
elastic stiffness tensor. The choice of SEPUC is made with a pro-
posed criterion which take into account both the dimensions of
the stones and mortar joints and the concentration ratio of the
phases. It is worth noting that the elastic analysis is used as a suit-
able tool to validate the reliability of the identification of the SE-
PUC among all possibilities. In fact the proposed criterion gives
the best results when compared with the effective elastic proper-
ties obtained by classic homogenization techniques.

As a development of the research, the SEPUC will allow to ana-
lyze the non-linear behavior of the masonry by a multi-scale
approach.
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Appendix A. Morphological operations using set definition for
images

A.1. Set operations
If Q and S are two set that represent two input images, the usual

set operations can be used to obtain a third set P which represents
the output image:

P=QuS=P={xy)lxy)eQor (xy) €S} (A1)

P=QnS=P={(xyY)|xYy) €Qand (x,y) €S} (A2)

P=Q =P={(xylkxy ¢Q} (A3)
Moreover translation is defined as:

P=Quy = P={(st)|(s,t) = (a+x,b+y)for(a,b) € Q} (A4)

A.2. Hole filling operator

The operator used to fill the holes of the image, i.e. to remove
background pixels inside foreground objects that result at the
end of thresholding, requires, beside the original image f(x,y), a
marker image fi,(x,y) defined as:

1-f(x,y) if x=0vx=N-1vy=0vy=M-1
fnx,y) = .
0 if xe[I,N-2]Aye[1,N-2]
(A.5)

The operator is defined by means of a iterative procedure which
uses an auxiliary succession of images W; as follows:

. initialize W, to F,,

. calculate Wy, = Wy )N F*

. if W1 #W, repeat step 2

. the image with filled holes is Wy,

AW N =

A.3. Identification of regions

In a binary image, a foreground pixel is has value 1 while a
background pixel has value 0. The set N4(p) containing the four
neighboring pixels of a foreground pixel p with coordinates (x,y)
is defined as:

N4(p) = {(X+ 1ay)>(x_ 17y)7 (va"" 1)7(X7y_ 1)}

two foreground pixels p and q are said to be adjacent if g € N4(p)
(obviously in this case is also p € N4(q)). A path between pixels p,
and p, is a sequence of pixels p;,p,,...,p, such that p, is adjacent
to py,1. Two pixels are connected if there exists a path between
them. A region is a set of pixels which are connected (Gonzalez
et al., 2004).

(A6)

References

Anthoine, A., 1995. Derivation of the in-plane elastic characteristics of masonry
through homogenization theory. International Journal of Solids and Structures
32 (2), 137-163.

Cavalagli, N., Cluni, F., Gusella, V., 2011. Strength domain of non-periodic masonry
by homogenization in generalized plane state. European Journal of Mechanics
A-Solids 30 (2), 113-126.

Cecchi, A., Sab, K., 2009. Discrete and continuous models for in plane loaded random
elastic brickwork. European Journal of Mechanics A-Solids 28, 610-625.

Cluni, F., Gusella, V., 2004. Homogenization of non-periodic masonry structures.
International Journal of Solids and Structures 41, 1911-1923.

Gonzalez, R.C., Woods, R.E., 2002. Digital Image Processing, second ed. Pearson
Prentice Hall, Upper Saddle River NJ.

Gonzalez, R.C., Woods, R.E., Eddins, S.L, 2004. Digital Image Processing Using
MATLAB. Pearson Prentice Hall, Upper Saddle River NJ.

Gusella, V., Cluni, F., 2006. Random field and homogenization for masonry with
nonperiodic microstructure. Journal of Mechanics of Materials and Structures 1
(2), 357-386.

Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles.
Journal of the Mechanics and Physics of Solids 11, 357-372.

Lombardo, M., Zeman, J., Sejnoha, M., Falsone, G., 2009. Stochastic modeling of
chaotic masonry via mesostructural characterization. International Journal for
Multiscale Computational Engineering 7 (2), 171-185 <http://arxiv.org/abs/
0811.0972>.

Miller, S.L., Childers, D.G., 2004. Probability and Random Processes: With
Applications to Signal Processing and Communications, second ed. Elsevier
Academic Press, Burlington, MA, USA.

Mistler, M., Anthoine, A. Butenweg, C. 2007. In-plane and out-of-plane
homogenisation of masonry. Computers and Structures 85, 1321-1330.

Pande, G.N., Liang, J.X., Middleton, ]J., 1989. Equivalent elastic moduli for brick
masonry. Computers and Geotechnics 8, 243-265.

Sab, K., 1992. On the homogenization and the simulation of random fields.
European Journal of Mechanics, A/Solids 11 (5), 585-607.

Sab, K., 1994. Homogenization of non-linear random media by a duality method.
Application to Plasticity, Asymptotic Analysis 9, 311-336.

Sab, K., Nedjar, B., 2005. Periodization of random media and representative volume
element size for linear composites. Comptes Rendus Mecanique 333, 187-195.

Sejnoha, J., Sejnoha, M., Zeman, J., Sykora, J., Vorel, J., 2008. Mesoscopic study on
historic masonry. Structural Engineering and Mechanics 30 (1), 99-117.


http://refhub.elsevier.com/S0020-7683(13)00343-0/h0005
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0005
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0005
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0010
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0010
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0010
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0015
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0015
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0020
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0020
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0025
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0025
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0030
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0030
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0035
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0035
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0035
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0040
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0040
http://arxiv.org/abs/0811.0972
http://arxiv.org/abs/0811.0972
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0055
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0055
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0055
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0060
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0060
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0065
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0065
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0070
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0070
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0075
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0075
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0080
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0080
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0085
http://refhub.elsevier.com/S0020-7683(13)00343-0/h0085

	Evaluation of a Statistically Equivalent Periodic Unit Cell for a  quasi-periodic masonry
	1 Introduction
	2 Digital image processing for the separation of phases
	3 Statistical analysis of the masonry texture
	4 Estimation of the Statistically Equivalent Periodic Unit Cell (SEPUC)
	4.1 Parametric description of the periodic cell
	4.2 Generation of periodic unit cell samples
	4.3 Identification of SEPUC

	5 Numerical analysis
	5.1 Definition of the periodic boundary conditions
	5.2 Results and discussion

	6 Conclusions
	Acknowledgments
	Appendix A Morphological operations using set definition for images
	A.1 Set operations
	A.2 Hole filling operator
	A.3 Identification of regions

	References


