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When solving a problem by appending cuts the dimension of the corresponding simplex tableau 

and the basic inverse oscillates, which makes it difficult to implement a cutting plane algorithm 

based on a standard LP code. Moreover, it is complicated to express a cut in the original vari- 

ables. In this paper we show that by formulating the dual to the problem and adding activities, 

these adverse effects can be circumvented. It is shown that the set of activities which can be added 

is the same as the set of cuts which can be appended and that it is easy to exhibit an activity in 

the original primal variables. As a consequence of this a new formulation of a cut in the original 

primal variables is given. 

1. Introduction 

We will in this paper study some of the adverse properties which are inherent to 

a solution procedure when a problem is solved by appending cuts, and show how 

a dual formulation can circumvent these problems. 

Consider the primal problem 

P max cx 

s.t. Axsb, 

XL 0, 

XEX 

where A is m x n and c, x and b are of appropriate dimensions. P without the condi- 

tion XE X is called the corresponding LP. Here XE X confines the solutions for the 

corresponding LP to be any class of problems which can be solved by appending 

cuts, such as all-integer, mixed integer or cardinality constrained problems, to name 

just a few. 

Let us assume that we have reached a stage where there are k cuts appended: 

pk max cx 

s.t. Axsb, 

AkX% bk, 
x 2 0, 

XEX 

and assume, without loss of generality, that a cut is discarded when its slack 

becomes basic, i.e., when the cut becomes nonbinding. Apart from the fact that 
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cutting plane algorithms have not shown themselves to be consistently successful 

(Crowder, Johnson & Padberg [I]), the solution procedure has the following ad- 

verse properties: 

(i) When we solve the corresponding LP to Pk., then the dimension of the sim- 

plex tableau, excluding the r.h.s., oscillates between m x (n + m) and (m + n + 1) x 

(n + m + n + 1). Consequently, the sizes of a basis B and its inverse BP’ vary between 

m x n and (m + n + 1) x (m + n + 1). These dimensions follow from the fact that if at 

any instance the solution to the corresponding LP to Pk is an interior point of P, 

then all the original variables x, and the slack variables associated with P will be 

basic, so when a further cut is appended to Pk at least one slack variable correspon- 

ding to an appended cut, will be basic (Carfinkel & Nemhauser [2]). If we had not 

discarded cuts the oscillation would have been even greater. 

(ii) In order to strengthen a cut it is necessary to express it in the original x vari- 

ables. However, this is often a very involved operation. E.g., for the all-integer 

problem the (k-t I)-st cut is 

where [. ] and { . ) are the integer and fractional part operators, respectively, and 

B;’ is the basic inverse of the source row i on which the cut is generated (Holm & 

Klein [3]). 

(iii) It would be advantageous to be able to make use of a commercial LP code, 

such as IBM’s MPSX or SPERRY’s FMPS, as the basis for a cutting plane algor- 

ithm, since these codes are very fast, precise, robust, and have a host of inbuilt 

facilities. However, it is virtually impossible for the normal user of these codes to 

append a cut to a current solution, mainly since it requires an update of the current 

BP’, in addition to access to internal files, so the user has to refrain from utilizing 

these codes. 

We will in the following sections show that if we formulate the dual to the prob- 

lem and solve it by a modified cutting plane algorithm, then all of the adverse proper- 

ties can be circumvented. Moreover, as a result of the dual formulation it turns out 

that there exists, for the primal formulation, an alternative way of expressing a cut 

in the original variables x, which is extremely easy to exhibit. 

2. Dual formulations 

Consider Pk written in standard form 

max cx + OS + OS, 

s.t. Ax+Is =6, 

A/G + IS, = bk, 

x,s,s, 2 0, 

XEX. 
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Consider also the dual formulation of the corresponding LP of Pk written in stan- 

dard form 

0; min OY, + by + bkYc 

s.t. -1y, + AY + A,y,. = c, 

YS, Y, Yc 2 0 

where the transpose sign has been omitted. 

If B is an optimal basis for the corresponding LP of Pi and F= (c,O,O), then 

from duality theory we have the following relationships: 

where (y:, y*, y‘?) is an optimal solution to 0;. 

Conversely, if we solved 0; to optimality with basis B, we would have the fol- 

lowing relationships: 

6&-Z) = -x*, 
JB~-t~ - b = -s*, 

b#A, - bk = -ST < 

where 6= (0, b, bk) and (x*, s*, s:) is an optimal dual solution of the corresponding 

LP of P;. 

Thus, instead of solving a sequence of primal problems Pl, where at each itera- 

tion a cut is appended, we could solve a sequence of dual problems 0;. At each 

iteration we would solve 0; and check whether x* = 6BBp’ EX. If this would be 

the case, then x* is an optimal solution to the primal problem. If x*$X, then we 

would add an activity which would exclude the current solution but not any solution 

for which x E X. 

3. Properties of the dual formulation 

We know from duality theory that if B is an optimal basis to the corresponding 

LP for Pi, then there exists a corresponding optimal basis B to its dual DL, such 

that if ie B, then iE N and for iE N we have i E B, where N and N are the sets of 

nonbasic variables for the two problems. When we make a cut from the current 

tableau in the primal formulation 

B-‘(B N)(;;) = B-l(;k) 
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where 2 = (x, s, s,), we look for a basic variable x,, which does not fulfill the condi- 

tion x, E X, and then we perform some operation f( . ) over the nonbasic variables 

and the r.h.s. So the (k+ l)-st cut to be appended to the current tableau has the form 

f(Bi.‘N)& If (B;I(;k)). 
E.g., in the case of an integer problem we look at a basic variable ZB, which is not 

integer: 

8~, = B,’ 
b 

0 bk 
- B,‘N& 

with {K~,} >O, and we append the cut (1) to the current tableau and reoptimize. If 

we use Gomory’s fractional cut, then f (. ) = {. } and the appended cut becomes 

-{B,T’N}&,/+s,~+, = -p(;k)j. 
We have now described how a cut is made and how it is appended to the current 

solution. This holds true of any cut. What is important to notice is the fact that a 

cut in the current tableau is a function of the nonbasic variables and the r.h.s. only. 

Conversely, when we make an activity from the current tableau in the dual formu- 

lation 

with corresponding set of dual variables 

(&&‘(-I), &&‘A -b, &Bphk- bk), (2) 

then we seek to fulfill x= gBBp’ EX, so we look for a nonbasic variable y,, which 

does not fulfill this condition and then we perform some operation g(. ) over the 

corresponding transformed vector and the entry in the (z, - 6) row (2). So the (k + I)-st 

activity, Yc, + , , to be added to the current tableau has the form g(B.;‘(-I)) and for 

the entry in the (z- 6) row g(6BB;‘(-Z)). E.g., in the case of an integer problem 

we look for a nonbasic variable ys, for which its corresponding dual variable xj = 

KBB.;’ is not integer. 

If, moreover, we use Gomory’s fractional cut, then g( . ) = { -. } and the added 

activity in the current tableau becomes (B.;‘} and the entry in the (z- b) row 

becomes {LBB,‘}. 
Let us compare the two constructions. From duality theory we have BP’N = 

-(B-IN)‘, which together with the observation that 

shows the following equivalence. 
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Proposition 1. Let B be the optimal basis to the corresponding LP for PL and let 
B be the corresponding optimal basis for 0;. Then the set of all cuts which can be 

appended to the primal problem and the set of all activities which can be added to 
the dual problem are the same. 

This shows that the information contained in the transformed nonbasic vectors 

for the primal problem, and which is the information needed to make any cut, is 

the same information which is present in the dual formulation, and the cuts and 

activities which therefore can be made are exactly the same. 

However, the two formulations have different properties. With respect to the 

adverse properties (i)-(iii) for the primal formulation we observe the following for 

the dual formulation (we discard an added activity when it becomes nonbasic): 

(i’) When we solve DL, then the dimension of the simplex tableau, excluding the 

r.h.s., oscillates between n x (m + n) and n x (m + n + n + 1). Consequently, B and 

BP’ always have the dimension n x n. 
(ii’) The activity expressed in the original primal variables is 

x’Bg(B.-;I) I &g(B.;‘) -g&B,‘). (3) 

This follows from the fact that g(B.;‘), which is added to the current tableau, must 

be the transformed activity; so Bg(B>‘) is the activity in the original dual formula- 

tion and by premultiplying this by x’ we obtain the primal formulation. 

With respect to the r.h.s., the entry in the (2 - 6) row in the current dual tableau 

is by definition 

g(&B,‘) = &(B,‘) - &+, 

_ 
where bk+, is the cost coefficient for the new activity, so the inequality (3) follows. 

Observe, that this formulation only requires inner products. 

(iii’) It is possible to implement the dual formulation on IBM’s MPSX or 

SPERRY’s FMPS, since at each iteration BP’ remains constant, when one or more 

activities are added. 

Remark. Although the dual formulation does not have any of the adverse proper- 

ties the primal formulation exhibits there are cases where the primal formulation 

may still be the preferred one, namely where the expected number of cuts needed 

to solve the problem is much less than n-m. This is true for many combinatorial 

problems, such as the travelling salesman problem, the matching problem, etc. 

These problems are characterized by the fact that n + m and that an optimal solution 

is an extreme point of P, rather than an interior point. For these types of problems 

the primal formulation may be the preferred one in spite of its adverse properties. 

However, from our study of the dual formulation it follows that there is one of 
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the adverse properties which can be alleviated for the primal problem. The dual to 

0; is 

max cx 

s.t. -Ix 5 0, 

Axlb, 
A,x I b,, 

xro 

which we will write as 

max cx 

s.t. AXSli, 

X? 0. 

From Proposition 1 we have that BP’N=-(B-‘IV)‘. 
Let the source row be x, and therefore the source column is yj. This implies that 

B,‘N = -(B,‘(-I))’ = (B,‘)’ 

Moreover, g’(B;‘)= -f(B.;‘N), B’=A,, , 6^,=b-,. Therefore, from the dual cut 

(3) expressed in the original variables it follows that 

x’Bg(B,‘) 5 &g(B,‘) -g(6;B,‘) 
so 

g’(B,‘) B’x I g’(Z3.J’) & - g’(6#3,‘) 

now, since JAB.,’ =x, = Bj:‘6 we have proven: 

Proposition 2. Letf(B,Y’N).f,,, rf(E$r’(,“,)) be the (k + 1)-st cut made on the source 
row xi in the current primal tableau with basis B. Then this cut, expressed in the 
original primal variables x, is 

-f(B,y’N)& x I -f(B;‘N)& +f(B,%). 

Observe, that in contrast to the hitherto known formulation as given in (ii), this 

formulation does not involve any other operation than inner products. 

The results in this paper have been given for the case where XEX and can easily 

be extended to the case where 2 E X. Moreover, we have also for expository reasons 

only cut on a single variable xi. Again the results can easily be extended to the case 

where we cut on more variables, as is the case for cardinality cuts (Holm [4]). 

4. A numerical example 

We will in this section compare the primal and dual approaches by going through 

the first iteration of a small example in detail. 
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Consider the primal problem Ph written in standard form 

P; max 2x, + x2 + 0x3 + 0x4 + 0x5 

s.t. x1+ x2+ x3 = 5, 

-x, + x2 +x, =o, 

6x, + 2x2 + x5 = 21, 

x 2 0; x, , x2 integer. 

The dual formulation 0; is 

G min Oy, + Oy, + 5y3 + Oy4 + 21y5 

s.t. -Y1 + Y, - Y, + 6~5 = 2, 
_ Y2f Y3f Y4f 2y,=1, 

y20. 

Solving the corresponding LP to Pi gives the following simplex tableau 

xl x2 x3 x4 x5 

x1 1 0-t 0 ’ y 

x2 0 1 + 0 -1 $ 

x4 0 o-2 1 +m + 

z-c 0 0 + 0 + y 

Yl Y2 Y3 Y4 Y5 

Neither x, nor x2 are integer. We now make Gomory’s fractional cut with xl as 

source row: 

f(B1.‘N)a, 2 f(B,‘b) 

or, since f( . ) = { . } 

4-t $>(Z:> I -{J+}, 

so we append the cut 

-+x3-+x5+X6 = -+ 

to the current tableau with x.5 = s,, . 

This cut, expressed in the original variables x, and x2, can be derived in two 

ways: 
[{B;.‘}x~ [{B;.‘}bI or -f(B,‘N)A,. x I -f(B[.W)& +f(B,%) 

For the first formulation (Holm & Klein [3]) we get 

or 2x, +x2 5 7 and the second formulation gives 
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I- 

or 2x, +x217. 

I I 

1 4 -1 (2;) - i:: 

Observe that the second formulation is by far the simplest, since 

require any other operations than inner products when f(. ) is given. 

When we solve 06 to optimality we get 

Yl Y2 Y3 Y4 Ys 

Y, +-+ 1 2 0 + 
Ys -$ {_ o-+ 1 + 

z-b -2 -4 0-t 0 4 x 

-x, -x, -x3 -x4 -xg 

S. Helm 

it does not 

We observe that neither x1 nor x2 are integer and we make a cut on y,, correspon- 

ding to x,. 

which is to be added to the current tableau as the transformed activity y,, =Y6. 

This new activity is the dual formulation of the cut appended to the primal prob- 

lem since 

x%g(B,‘) I @Jg(B.-,‘) - g(&B;‘) 

SO 2X, +x,17. 

The activity which is added to the dual formulation has 6, = 7, so the new dual 

problem becomes 

min Oy, + Oy, + 5y3 + Oy4 + 21y5 + 7y6 

s.t. -Y1 + Y, - y4+ 6Y, + 2~6 =2, 

- YZ+ y3+ Y4+ 2Y5+ Y6= 1, 
yzo. 

The two formulations are now reoptimized and cuts and activities are appended as 

needed to obtain the optimal integer solution. 
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