
Chinese Journal of Aeronautics, (2014),27(6): 1477–1487

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Chinese Society of Aeronautics and Astronautics
& Beihang University

Chinese Journal of Aeronautics

cja@buaa.edu.cn
www.sciencedirect.com
Uncertain multiobjective redundancy allocation

problem of repairable systems based on artificial

bee colony algorithm
* Corresponding author. Tel.: +86 15289351366.

E-mail addresses: amisc@163.com (J. Guo), mingfazheng@126.com

(M. Zheng).
1 Tel.: +86 29 84786546.

Peer review under responsibility of Editorial Committee of CJA.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.cja.2014.10.014
1000-9361 ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.Open access under CC BY-NC-ND license.
Guo Jiansheng a,1, Wang Zutong a, Zheng Mingfa b,*, Wang Ying a
a Materiel Management and Safety Engineering College, Air Force Engineering University, Xi’an 710051, China
b School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710021, China
Received 18 November 2013; revised 4 August 2014; accepted 20 August 2014
Available online 20 October 2014
KEYWORDS

Artificial bee colony

algorithm;

Multiobjective optimization;

Redundancy allocation

problem;

Repairable systems;

Uncertainty theory
Abstract Based on the uncertainty theory, this paper is devoted to the redundancy allocation

problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair

rate and other relative coefficients involved are considered as uncertain variables. The availability

of the system and the corresponding designing cost are considered as two optimization objectives. A

crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to

solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial

bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value

and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure

in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that

the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy

allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Many real system design problems require the use of redun-
dancy to meet high reliability specifications. A redundancy allo-
cation problem (RAP) basically involves the determination of
the number of redundancies to be allocated in each subsystem
with the purpose of maximizing system reliability, which is a
fundamental reliability optimization model and can be formu-

lated as a difficult combinatorial optimization problem. The
RAP with single objective has been extensively studied.1,2 With
the development of system design, it has been increasingly rec-

ognized that many practical design situations we encounter
often involve multiple and conflicting objectives, which should
be considered and optimized at the same time. For instance, it is

often required to minimize the total system cost while maximiz-
ing the system reliability simultaneously. Considering that the
decision-makers always require a full consideration of possible

trade-offs and an availability-cost report in materiel solution
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analysis, researchers investigating RAP in such kind of complex
situations often look for the determination of an entire Pareto
optimal solution set.3–5 These studies mentioned are all per-

formed in deterministic environment, in which the reliability
values of the components are assumed to be deterministic and
known with certainty.

Unfortunately, in many practical situations, it is impossible
to determine a fixed number that shows reliability of a compo-
nent under all conditions. Furthermore, it is often difficult to

accurately assess system failure rate and repair rate until the
system is deployed or fielded. Thus, the RAP is always indeter-
ministic with vague or imprecise statements, which can be
boiled down to problems of observing the parameters them-

selves, deficiency in history and statistical data, insufficient the-
ory, incomplete knowledge and the subjectivity and preference
of human judgment, etc. With the wide application of fuzzy set

theory6 in engineering practice, many scholars consider this
kind of indeterminacy as fuzziness and study RAP as a fuzzy
programming problem.7–9 In these literatures the parameters

(coefficients) involved are treated as fuzzy variables, and the
possibility measure10 is applied to describing or formulate
RAP as an imprecise model.

However, since the possibility measure has no self-duality,
one event with possibility measure of 1 may be an impossible
event, while one event with possibility measure of 0 may be
a certain event.11 That is to say, it is not reasonable to use

the possibility measure to characterize the performance of
redundancy system and optimize RAP in such kind of environ-
ment. Actually, these types of indeterminacy in RAP men-

tioned above should be called uncertainty, rather than
fuzziness. A lot of surveys have shown that human beings usu-
ally overweight unlikely events, and the personal belief degree

may have much larger variance than the real frequency.12 Liu13

declared that it is inappropriate to apply both probability the-
ory and fuzzy set theory to uncertainty, because both theories

may lead to counterintuitive results in this case. In order to
deal with such kind of uncertainty problem, Liu14 founded
the uncertainty theory, which is a branch of mathematics
based on normality, duality, subadditivity, and product axi-

oms, as a means of handling uncertainty that is due to impre-
cision rather than randomness. So far, there has been little
research on RAP using uncertainty theory, which is indeed

one of the most important areas in decision analysis because
many real world decision problems involve uncertainty. The
RAP with multiple optimization objectives in uncertain envi-

ronment is called uncertain multiobjective RAP (UMRAP),
and the optimization problem under consideration becomes
an uncertain multiobjective programming problem.

In this paper, a UMRAP in repairable series-parallel sys-

tems is studied, with the aim of maximizing the system avail-
ability As while minimizing the total cost Cs simultaneously,
where the failure rate, repair rate and coefficients in objective

functions are considered as uncertain variables. As a conse-
quence, the objectives are also uncertain variables. Since the
uncertain variables cannot be compared directly, the equivalent

deterministic models should be proposed to remove the uncer-
tain ambiguity first. Different real-life RAPs call for different
meanings of deterministic models to satisfy their needs in prac-

tical application. Given the fact that the expected value of
uncertain variable is widely used in real-life problem, in this
paper expected value of availability and cost are considered.
Moreover, when the designer is risk averse, the obtained design
has to be done with high confidence levels, and the designs with
large deviation are not desirable. Therefore, the associated var-
iance of availability and cost are also considered. Thus, the

uncertain biobjective RAP presented in this paper can be con-
verted into a deterministic RAP with four objectives. However,
for a programming problem with four objectives, the Pareto

optimal set obtained always contains hundreds or even thou-
sands of Pareto efficient solutions. It is difficult for designers
to find satisfactory and meaningful trade-offs, and to select a

preferred final design solution. To reduce the Pareto optimal
set and to achieve a smaller practical set that can be easily ana-
lyzed by the designers, a new method, which involves breaking
the original RAP with four objectives into two biobjective

RAPs, is proposed in this paper. That is, optimize the expected
value and associated variance of availability and cost respec-
tively, then obtain two Pareto optimal sets in these two biobjec-

tive RAPs. It is proved that the intersection of these two Pareto
optimal sets is Pareto efficient to the original RAP with four
objectives. The solutions in the intersection will guarantee that

both the expected value and associated variance are desirable.
Considering the uncertain and NP-hard nature in UMRAP,
where the size of the problem and thus the computational effort

increases exponentially, meta-heuristics and evolutionary algo-
rithms should be widely applied to UMRAP for successful gen-
eration of optimal solutions.

The artificial bee colony (ABC) algorithm, a meta-heuristic

bionic algorithm based on the intelligent foraging behavior of
honey bees proposed by Karaboga in 2005,15 is a relatively
new member of swarm intelligence. ABC algorithm is one of

the adaptive meta-heuristic optimization methods inspired by
nature, which is distinctly different from its siblings, such as
genetic algorithms and ant colony optimization, in that it is

a constructive, rather than an improvement, algorithm. It is
inspired by the behavior of real honey bees foraging behavior,
where the self-organization and division of labor features can

be seen clearly. Especially, in ABC algorithm, the possible solu-
tions are represented by the positions of food source, rather than
the individuals. The ABC algorithm provides a new idea for the
research of meta-heuristic algorithm and becomes one of the

important research directions of solving complex optimization
problem gradually. So far, due to its simplicity and ease of imple-
mentation, the ABC algorithm has been adopted by researchers

in a variety of fields, including machines scheduling problem,16

flexible job-shop scheduling problem,17 hybrid intelligent prob-
lem,18 etc. And it has been experimentally validated that its effec-

tiveness and efficiency on algorithm performance are competitive
to other optimization algorithms.19–21

To solve the uncertain, NP-hard and multiobjective charac-
teristic of UMRAP, in this paper, a modified multiobjective

ABC (MOABC) algorithm is designed for obtaining Pareto
optimal set in UMRAP, which inserts the fast non-dominated
sort procedure from the well-known fast non-dominated sort-

ing genetic algorithm (NSGA-II)22 into basic ABC algorithm.
To the best of our knowledge, this paper is the first application
of ABC algorithm in reliability design with multiple objectives.

In order to test the performance of the proposedMOABC algo-
rithm in multiobjective optimization problem, three well-
known test problems are presented to compare its performance

with NSGA-II, the result of which shows that theMOABC out-
performs NSGA-II greatly. Moreover, a multiobjective RAP
from Ref. 23 is presented and solved by MOABC, and it shows
that the obtained result in Ref. 23 is not on the Pareto front
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found by MOABC. This indicates that the application of
MOABC in UMRAP is more meaningful and practical.

The paper is organized in the following manner. In

Section 2, some useful definitions and properties about uncer-
tainty theory with application to UMRAP are introduced. In
Section 3, the UMRAP in repairable series-parallel systems

is described and its corresponding mathematical model is pre-
sented; the approach generating Pareto optimal set is proposed
and its validity is proved. In Section 4, the classic ABC algo-

rithm is introduced briefly, and a modified ABC algorithm
for solving multiobjective optimization is proposed. In
Section 5, an application case study is provided to illustrate
the solution of UMRAP and demonstrate the efficacy and effi-

ciency of MOABC for complicated reliability optimization prob-
lems. Finally, the major results of the research are presented.

2. Preliminaries

In this section, some foundational concepts and properties of

uncertainty theory are introduced, which will be used through-
out this paper.

Let C be a nonempty set, and L a r -algebra over C. Each
element K in L is called an event. A set functionM from L to
[0, 1] is called an uncertain measure if it satisfies the following
axioms.24

Axiom 1 (Normality axiom). MfCg ¼ 1 for the universal set

C.

Axiom 2 (Duality axiom). MfKgþMfKcg ¼ 1 for any event
K.

Axiom 3 (Subadditivity axiom). For every countable sequence

of events K1, K2, � � �, we have

M[
1

i¼1
Ki 6

X1
i¼1
MfKig ð1Þ

In 2009, Liu proposed the fourth axiom of uncertainty the-

ory called product measure axiom.25

Axiom 4 (Product axiom). Let ðCk;Lk;MkÞ be uncertainty
spaces for k= 1, 2, � � �. The product uncertain measureM is
an uncertain measure satisfying:

M
Y1
k¼1

Kk

( )
¼ ^

1

k¼1
MkfKkg ð2Þ

where Kk are arbitrarily chosen events from Lk for k=1, 2, ...,
respectively. The triplet ðC;L;MÞ is referred to as an uncertainty
space,24 in which an uncertain variable is defined as follows.

Definition 1 (Ref. 24). An uncertain variable is a measurable

function n from an uncertainty space ðC;L;MÞ to the set of
real numbers, i.e., for any Borel set B of real numbers, the set

fn 2 Bg ¼ fc 2 CjnðcÞ 2 Bg ð3Þ
is an event.

Definition 2 (Ref. 25). The uncertain variables n1, n1, � � �, nn
are said to be independent if

Mf\
n

i¼1
ðni 2 BiÞg ¼ ^

n

i¼1
Mfni 2 Big ð4Þ
for any Borel sets B1, B2, � � �, Bn of real numbers.

Definition 3 (Ref. 14). The uncertainty distribution U of an

uncertain variable n is defined by

UðxÞ ¼ Mfn 6 xg ð5Þ
for any real number x.

Definition 4 (Ref. 26). Let n be an uncertain variable with

regular uncertainty distribution U. Then the inverse function
U-1 is called the inverse uncertainty distribution of n.

Definition 5 (Ref. 24). Let n be an uncertain variable. Then
the expected value of n is defined by

E½n� ¼
Z 1

0

Mfn P xgdr�
Z 0

�1
Mfn 6 xgdr ð6Þ

provided that at least one of the two integrals is finite.

Definition 6 (Ref. 24). Let n be an uncertain variable with

finite expected value e. Then the variance of n is:

VðnÞ ¼ E½ðn� eÞ2� ð7Þ
For calculation convenience, we stipulate that the variance

of n is

VðnÞ ¼ 2

Z þ1

0

xð1� Uðeþ xÞ þ Uðe� xÞÞdx ð8Þ
Definition 7 (Ref. 12). An uncertain variable n is called linear
if it has a linear uncertainty distribution:

UðxÞ ¼
0 if x 6 a

ðx� aÞ=ðb� aÞ if a 6 x 6 b

1 if x P b

8><
>: ð9Þ

denoted by L(a, b) where a and b are real numbers with a< b.

Definition 8 (Ref. 12). An uncertain variable n is called zigzag
if it has a zigzag uncertainty distribution:

UðxÞ ¼

0 if x 6 a
x� a

2ðb� aÞ if a 6 x 6 b

xþ c� 2b

2ðc� bÞ if b 6 x 6 c

1 if x P c

8>>>>>><
>>>>>>:

ð10Þ

denoted by Z(a, b, c) where a, b, c are real numbers with

a< b < c.

Definition 9 (Ref. 12). A lognormal uncertain variable has an
uncertainty distribution:

UðxÞ ¼ 1þ exp
pðe� lnxÞffiffiffi

3
p

r

� �� ��1
; x P 0 ð11Þ

denoted by LOGN(e, r), where e and r are real numbers with
r > 0.

Definition 10 (Ref. 27). For a multiobjective programming
problem minðf1ðxÞ; f2ðxÞ; � � � ; fmðxÞÞ; s:t:; x 2 X, a solution
x e X is called efficient with respect to objectives f1, f2, � � �, fm
if it is not dominated by any feasible y 2 X; y – x, that is to
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say if there is no y e X such that: (A) fjðyÞ 6 fjðxÞ for all j = 1,

2, � � �, m, and (B) fj(y) < fj(x) for at least one j. The set of
efficient solutions is called the efficient set. The image point
(f1(x), f2(x), � � �, fm(x)) of an efficient solution x is called

Pareto-optimal, and the set of Pareto-optimal points, i.e., the
image of the efficient set in the objective space Rm under
f= (f1, f2, � � �, fm), is called the Pareto frontier.

Theorem 1 (Ref. 14). Let n1, n2, � � �, nn be uncertain variables,

and f a real-valued measurable function. Then f(n1, n2, � � �, nn) is
an uncertain variable.

Theorem 2 (Ref. 26). Let n be an uncertain variable with regu-
lar uncertainty distribution U. If the expected value exists, then

EðnÞ ¼
Z 1

0

U�1ðaÞda ð12Þ
Theorem 3 (Ref. 26). Let n1, n2, � � �, nn be independent

uncertain variables with regular uncertainty distributions U1,
U2, � � �, Un, respectively. If the function f(x1, x2, � � �, xn) is
strictly increasing with respect to x1, x2, � � �, xm and strictly

decreasing with respect to xm+1, xm+2, � � �, xn, then n = f(n1,
n2, � � �, nn) is an uncertain variable with inverse uncertainty
distribution:

W�1ðaÞ ¼ fðU�11 ðaÞ;U�12 ðaÞ; � � � ;
U�1m ðaÞ;U�1mþ1ð1� aÞ;U�1mþ2ð1� aÞ ; � � � ; U�1n ð1� aÞÞ

ð13Þ
3. UMRAP in repairable systems

3.1. Problem description

A commonly used definition of a repairable system indicates
that a system can be repaired to operate normally in the event

of any failure, and system availability is the main measure of
interest which needs to be maximized to achieve the optimal
performance. For repairable system, availability is a very
meaningful measure, and achieving a high or required level

of availability is an essential requisite. The most common
approach to guarantee the availability level is to employ
redundancy, which can be referred to as a series-parallel sys-

tem. A series-parallel system is a system made of parallel sub-
systems put in serial, which can be shown in Fig. 1. A parallel
subsystem works when at least one of its components works

while a series system fails when at least one of its components
fails. The problem of redundancy allocation in repairable sys-
tem design can be formulated as a multiobjective optimization

problem, i.e., minimize the cost while maximize the availability
of the global system simultaneously. Uncertainty has always
been an important consideration when designing and
analyzing repairable systems. It assumes that the failure rate
Fig. 1 General structure of
and repair rate of components are uncertain variables in uncer-
tain environment, and its uncertainty distribution can be avail-
able through expert knowledge before system design or with

incomplete data. In this paper, we suppose that the subsystems
are parallel, and that in each subsystem all components are
identical. Here, the term ‘identical’ means that the failure rate

and repair rate of components have the same uncertainty dis-
tribution in uncertain environment. Then the decision vari-
ables of this problem are the number of components ki in

each subsystem (i= 1, 2, . . ., s), and the UMRAP is to find
the optimal values of ki to minimize the cost and maximize
the system availability in uncertain environment.

3.2. Mathematical formulation

The formulation of the mathematical model taking into

account all the influential factors is very important for the suc-
cess of optimization. Let ki, As, Cs be the number of compo-
nents in each subsystem, the availability of the system and

the system cost, respectively. Then the UMRAP can be pre-
sented as follows:

max
k

AsðkÞ ¼
Ys
i¼1

1� ki

ki þ li

� �ki
" #

min
k
CsðkÞ ¼

Xs
i¼1

kiðaikpi
i þ bil

qi
i Þ

s:t: lki 6 ki 6 uki; ki 2 Nþ

8>>>>>><
>>>>>>:

ð14Þ

The variables in the UMRAP model above are illustrated in
Table 1.

Since maximizing the availability As is equivalent to mini-

mizing the unavailability (1 � As), the mathematical formula-
tion can be transformed as follows:

min
k
UsðkÞ ¼ 1� Asðk; l; kÞ

min
k
CsðkÞ

s:t: lki 6 ki 6 uki; ki 2 Nþ; i ¼ 1; 2; . . . ; s

8>><
>>: ð15Þ

Since the unavailability Us(k) and system cost Cs(k) are

uncertain variables, which cannot be compared and optimized
directly, the equivalent deterministic models should be pro-
posed to remove the uncertain ambiguity. In this paper, the

expected value and variance of uncertain variables are adopted
to convert the original UMRAP into a deterministic multiob-
jective RAP as follows:

min
k
ðE½UsðkÞ�; E½CsðkÞ�;V½UsðkÞ�;V½CsðkÞ�Þ

s:t: lki 6 ki 6 uki; ki 2 Nþ; i ¼ 1; 2; . . . ; s

(

ð16Þ

It can be obtained that Us(k) is strictly increasing with

respect to ki and strictly decreasing with respect to li; Cs(k)
is strictly increasing with respect to li, ai, bi and strictly
a parallel-series system.



Table 1 Nomenclature used in Eq. (14).

Variable Signification

s Number of subsystems

i Index of a subsystem

ki Positive uncertain variable of the failure rate of components in subsystem i defined on the uncertainty space ðC;L;MÞ, with
uncertainty distribution Ui(x)

k k ¼ fk1; k2; . . . ; ksg
li Positive uncertain variable of the repair rate of components in subsystem i defined on the uncertainty space ðC;L;MÞ, with

uncertainty distribution Wi(x)

a a = {a1, a2, . . ., as}

b b = {b1, b2, . . ., bs}
l l = {l1, l2, . . ., ls}
ki Number of components in subsystem i

k k = {k1, k2, . . ., ks}

lk, uk Vector of minimum and maximum number of components allowable in each subsystem

ai Positive uncertain variable defined on the uncertainty space ðC;L;MÞ, with uncertainty distribution � ai(x)

bi Positive uncertain variable defined on the uncertainty space ðC;L;MÞ, with uncertainty distribution � bi(x)

pi, qi Constants of the cost function where pi < 0, qi > 0
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decreasing with respect to ki. Then according to Definitions 5,
6 and Theorems 2, 3, the closed forms of E[Us(k)], E[Cs(k)],

V[Us(k)], V[Cs(k)] are presented as follows:

E½UsðkÞ� ¼
Z 1

0

1

�
Ys
i¼1

1� U�1i ðaÞ
U�1i ðaÞ þW�1i ð1� aÞ

� �ki
" #

da ð17Þ

E½CsðkÞ� ¼
Z 1

0

Xs
i¼1

kið��1ai ðaÞU�1i ð1� aÞpi

þ ��1bi ðaÞW�1i ðaÞ
qiÞda ð18Þ

Let eu, ec, Uu and Uc be the E[Us(k)], the E[Cs(k)], the uncer-

tainty distribution of uncertain objective Us and the uncer-
tainty distribution of uncertain objective Cs(k) respectively,
then

V½UsðkÞ� ¼ 2

Z þ1

0

xð1� Uuðeu þ xÞ þ Uuðeu � xÞÞdx ð19Þ

V½CsðkÞ� ¼ 2

Z þ1

0

xð1� Ucðec þ xÞ þ Ucðec � xÞÞdx ð20Þ

In this paper, the calculation of expected value and variance
is on the basis of MATLAB Uncertainty Toolbox28 directly.
3.3. Solution approach

There are two main ways to solve the multiobjective program-

ming problem. The first way is to aggregate the multiple objec-
tives into a single objective, which is then solved for an optimal
solution, while the second way is to obtain a list of Pareto opti-
mal solutions (i.e., efficient set) first, and then apply the deci-

sion maker preferences to find solution(s) of his/her choice.
The second way can be preferable if the decision maker wants
to consider different preferences, and compare solutions giving

different priorities to the objectives in order to observe how the
solutions change. However, in the solution of quadruple-
objective programming problem Eq. (16), its Pareto efficient

set consists of thousands of solutions, in which many are
undesirable. For instance, one solution with small variance
but huge expected value of unavailability and cost is a Pareto

efficient solution in Eq. (16), but it maybe undesirable in practi-
cal application. To pick a single solution that best reflects one’s
preferences in such an efficient set is a daunting task. To

alleviate this problem, a new solution approach is proposed to
obtain a pruned efficient set, which involves breaking the qua-
druple-objective programming Eq. (16) into two biobjective pro-

gramming problems as follows. The pruned efficient set in Eq.
(16) is the intersection of efficient sets in Eqs. (21) and (22).

max
k
ðE½UsðkÞ�; E½CsðkÞ�Þ

s:t: lki 6 ki 6 uki; ki 2 Nþ; i ¼ 1; 2; . . . ; s

(

ð21Þ

max
k
ðV½UsðkÞ�; V½CsðkÞ�Þ

s:t: lki 6 ki 6 uki; ki 2 Nþ; i ¼ 1; 2; . . . ; s

(

ð22Þ
Proposition 1. Let A be the Pareto efficient set of quadruple-
objective programming problem P : minx2Dðf1ðxÞ; f2ðxÞ; f3ðxÞ;
f4ðxÞÞ, A1 and A2 be the Pareto efficient set of biobjective
programming problem P1 : minx2Dðf1ðxÞ; f2ðxÞÞ and
P2 minx2Dðf3ðxÞ; f4ðxÞÞ respectively, then A1 \ A2 � A.

Proof. If x* belongs to A1, by the Definition 10, there does not
exist x e D such that fiðxÞ 6 fiðx�Þ, at lest one i0 such that
fi0ðxÞ < fi0ðx�Þ; i ¼ 1; 2.

Similarly, if x* belongs to A2, we can obtain that there does
not exist x e D such that fjðxÞ 6 fjðx�Þ; at least one j0 such that
fj0ðxÞ < fj0ðx�Þ; j ¼ 1; 2.

Since x* e A1 \ A2, it is evident that there does not exist
x e D such that fkðxÞ 6 fkðx�Þ; at least one k0 such that
fk0ðxÞ < fk0ðx�Þ; k ¼ 1; 2; 3; 4; which means that x* is Pareto

efficient solution to problem P, that is, A1 \ A2 � A. The the-
orem is proved.

According to Proposition 1, the solution of Eq. (16) is con-

verted into solution of its two Eqs. (21) and (22). In order to
solve UMRAP efficiently, a new multiobjective ABC algo-
rithm is proposed in the next section.
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4. A modified ABC algorithm

Considering the uncertain, multiobjective and combinatorial
nature in UMRAP, in order to improve the quality and spread

of the solutions, a variant of basic ABC algorithm combined
with NSGA-II is proposed for multiobjective optimization
problem in this section.

4.1. Basic ABC algorithm

In the basic ABC algorithm, there are three essential compo-

nents, that is, food source positions, nectar-amount, and three
kinds of foraging bees (employed bees, onlookers, and scouts).
Each food source position represents a feasible solution to the

optimization problem considered and the nectar-amount of a
food source corresponds to the quality (fitness) of the solution
represented by that food source. Each kind of foraging bee
performs one particular operation for generating new candi-

date food source positions. Employed bees are those bees
which are searching the food around the food source in their
memory currently; they are responsible for sharing the infor-

mation about food sources with onlooker bees. Onlooker bees
are those bees which are waiting in the hive for the information
from the employed bees; they tend to choose good food source

with more nectar-amount shared by the employed bees, and
then further tap the foods around the selected food source.
Scout bees are those bees which are carrying out random
searches for discovering new food sources if the employed bees

and onlookers cannot find a better neighboring food source.
Thus, the ABC algorithm visualizes the employed and onloo-
ker bees as performing the job of local search (exploitation),

whereas the onlookers and scouts bees as performing the job
of global search (exploration).

4.2. Framework of MOABC

(1) Population initialization

In our proposed algorithm, the solutions (food positions) of
UMRAP k= {k1, � � �, ki, � � �, ks} is represented as the variable
x = {x1, � � �, xi, � � �, xs}, and the integer decision variables ki
are treated as real variables. While in the evaluation of objec-
tive functions, the real values xi are transformed to the nearest
integer values. Based on the food position representation, we
can initialize the population with S real variables in the bound

of decision variables randomly, where S is the number of food
sources, that is:

xj
i ¼ lki þ r and ð0; 1Þðuki � lkiÞ ð23Þ

where i e {1, 2, � � �, s}, and j e {1, 2, � � �, S}.

(2) Exploitation search

Usually employed bees and onlooker bees use the same

search operator to perform exploitation search. Since the food
positions are represented as real variable vectors, the exploita-
tion search in basic ABC algorithm is applied here. The exploi-

tation search for food position xj
i is as follows:

vji ¼ xj
i þ rjiðxj

i � xk
i Þ ð24Þ

where k e {1, 2, � � �, s} is generated randomly, and k „ j, rji is
random number in [�1, 1].
(3) Greedy selection strategy

In the employed and onlooker bee phase, the greedy
selection strategy should be applied to selecting the better

foods after exploitation search. In the basic ABC algorithm,
the greedy selection is to select a better solution based on
the fitness of food source. However, in the MOABC, the

goal is to obtain an efficient set, rather than a single effi-
cient solution. Thus, the rank and crowding distance of
solution in NSGA-II are adopted here to select better solu-
tions and maintain the Pareto optimality and diversity in the

efficient set.
Rank is used to divide the solutions into several levels

according to the dominance degree. The first front contains

all the nondominated solutions in current population, and
the second front contains all the solutions that are dominated
by the individuals in the first front only, and so on. Individuals

in the first front are given a rank value of 1, and individuals in
second front are assigned a rank value of 2.

For the individuals in the same rank, large crowding dis-
tance will result in better diversity in the population. After

the solutions are divided in respective fronts, the members of
the same rank sequence is in an ascent order according to each
objective, and then the crowding of each solution is defined as

the sum of the normalized distance between its right and left
neighbors in the sequence. For the first and last solutions in
every front, their crowding distances are defined as infinity.

In this paper, the crowding distance di by considering two
objectives is defined as follows:

di ¼
1 if i ¼ 1 or i ¼ LastP2

j¼1
objjðsiþ1Þ � objjðsi�1Þ

objmax
j � objmin

j

otherwise

8<
: ð25Þ

where objj(si) is the value of the jth objective of si, and objmax
j

and objmin
j are the maximal and minimal values of the jth

objective known so far. Based on the rank value and crowding
distance, solution a is better than b if ra < rb or (ra = rb and
da > db).

(4) Employed bee phase

In the employed bee phase, the exploitation search
procedure is applied to generate new neighboring food
sources, and the new greedy selection strategy is adopted
to compare the new generated solution with the original

solution. When the generated solution is better than origi-
nal solution, it will replace the original solution and update
the population.

(5) Onlooker bee phase

In the onlooker bee phase, since it is difficult to determine
the fitness value in multiobjective optimization problem, it is
hard to choose food source according to the probability

value which is proportional to its fitness value. Therefore,
the tournament selection with size 4 is applied in this paper.
Specifically, randomly select four employed bee solutions from
the population, and then determine the best employed bee

solution as the food source of the onlooker bee according to
its distance. Then use the exploitation search procedure to
generate new neighboring solution and greedy selection

strategy to update the population.



Fig. 2 Framework of MOABC for multiobjective optimization problem.
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(6) Scout bee phase

In the scout bee phase, the solution is generated randomly
to replace the worst solution in the population according to
rank and crowding distance. Since the solution is generated
randomly, global exploration is stressed in scout bee phase

and it also may help enhance population diversity to some
extent.

Straightforwardly, the framework of the proposed MOA-

BC for multiobjective optimization problem is illustrated in
Fig. 2. It can be seen that the proposed ABC algorithm not
only applies rank value to generate new neighboring food

sources at different levels, but also applies crowding distance
to maintain the solution diversity. It stresses the balance of
the global exploration and local exploitation; at the same time,
it also stresses the diversity of population during the searching

process, which will assure that a desirable Pareto efficient set is
available.

4.3. Performance test

(1) Test on real-value functions

There are many test functions for multiobjective optimiza-
tion. To test the performance of MOABC proposed in this
paper, three biobjective test problems with convex, non-convex
and discontinuous Pareto fronts respectively are selected as

follows.29

Test problem ZDT1 (convex Pareto-optimal front).

f1ðxÞ ¼ x1

f2ðxÞ ¼ gð1�
ffiffiffiffiffiffiffiffiffi
f1=g

p
Þ

g ¼ 1þ ð9
Pd

i¼2xiÞ=ðd� 1Þ
xi 2 ½0; 1�; i ¼ 1; 2; � � � ; 30

8>>><
>>>:

ð26Þ

where d is the number of dimensions. The Pareto-optimality is
reached when g= 1.

Test problem ZDT2 (non-convex Pareto-optimal front).

f1ðxÞ ¼ x1

f2ðxÞ ¼ gð1� ðf1=gÞ
2Þ

�
ð27Þ

Test problem ZDT3 (discontinuous Pareto-optimal front).

f1ðxÞ ¼ x1

f2ðxÞ ¼ g½1�
ffiffiffiffiffiffiffiffiffi
f1=g

p
� f1

g
sinð10pf1Þ�

8<
: ð28Þ

where g in functions ZDT2 and ZDT3 is the same as in func-
tion ZDT1. In the ZDT3 function, f1 varies from 0 to 0.852
and f2 from �0.773 to 1.

After generating 100 Pareto points by MOABC, the Pareto

front generated by MOABC is compared with the true front of
three test problems. In all the rest of the figures, the vertical
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axis is for f2 while the horizontal axis is for f1. The perfor-
mance measure is defined as the mean square error (MSE)
Table 2 Control parameters adopted in the ABC algorithm.

Parameter Value

Colony size 200

Limit 100

Number of onlookers Half of the colony size

Number of employed bees Half of the colony size

Number of scouts 1

Fig. 3 Test performance of MOABC and
between the estimate Pareto front PFe to its correspond true
front PFt as

Mf ¼
1

N

XN
j¼1
ðPFe

j � PFt
jÞ

2 ð29Þ

where N is the number of points.
To compare the performance of MOABC, the NSGA-II is

chosen as the comparison algorithm. In the MOABC algo-

rithm, the maximum number of cycles was taken as 500. The
percentage of onlooker bees and employed bees were the half
of the colony and the number of scout bees was selected to

be one. Parameters set for the ABC algorithm are given in
NSGA-II on ZDT1, ZDT2, and ZDT3.



Table 4 Input data of UMRAP.

Input data Detailed information

ki Lð10�4ð2þ 0:8ði� 1Þ; 3:5þ 0:8ði� 1ÞÞÞ; i ¼ 1; 2; . . . ; 6

li
Zð0:1þ 0:25ði� 1Þ; 0:2þ 0:25ði� 1Þ;
0:25þ 0:25ði� 1ÞÞ; i ¼ 1; 2; . . . ; 6

ai LOGNð0:01ði� 4Þ2 þ 0:02; 0:03Þ; i ¼ 1; 2; . . . ; 6
bi LOGNð0:02ði� 3Þ2 þ 0:03; 0:02Þ; i ¼ 1; 2; . . . ; 6

lk 1 · {1, 1, 1, 1, 1, 1}

uk 6 · {1, 1, 1, 1, 1, 1}

p �0.8 · {0.4, 0.2, 0.8, 1, 1.2, 0.8}

q 0.85 · {0.4, 0.2, 0.8, 1, 1.2, 0.8}

Uncertain multiobjective redundancy allocation problem of repairable systems based on artificial bee colony algorithm 1485
Table 2. In the NSGA-II, the population size is set as 100 and
the maximum generation is set as 500.

Fig. 3 show the test performance of MOABC and NSGA-II

on ZDT1, ZDT2, and ZDT3 respectively. It is clear that the
estimated front obtained by MOABC is better distributed on
the true front than that obtained by NSGA-II. Especially,

the MOABC can obtain the two ends of Pareto front, that is
to say, it will guarantee that the decision solutions are never
neglected or outside the Pareto efficient set. In addition, the

estimated front obtained by MOABC is much closer to the
true front than that obtained by NSGA-II. The MSE of
MOABC achieves zero within 200 cycles, while the MSE of
NSGA-II is still much higher after 500 cycles. Undoubtedly,

the proposed MOABC outperforms NSGA-II greatly, thus,
it is reasonable to expect good performance of MOABC in
the solution of UMRAP.

(2) Test on engineering problem

In order to further verify the applicability of MOABC in the
solution of UMRAP, a multiobjective RAP problem from
Ref.23 is presented here and solved by MOABC. In Ref. 23,

the optimal result is Us = 0.0007 (As = 0.9993), Cs = 546.43.
The obtained result in Ref.23 and that using MOABC are
shown in Fig. 4.

It is clear that the optimization result in Ref. 23 is not on

the Pareto front, that is, the corresponding solution is not Par-
eto efficient. While using MOABC, all possible trade-offs can
be presented and considered. Table 3 shows one solution from

the Pareto front. It can be seen that the andof this solution are
both smaller than the results in Ref. 23.

5. Case study

In this section, a case study is presented to illustrate the solu-
tion of UMRAP based on MOABC. The parameters set for
Fig. 4 Result comparison between Ref. 23 and MOABC.

Table 3 One solution from the Pareto front (Us=4.1642 · 10�11;

Cs=289.40).

ki kið10�3h�1Þ li (h
�1)

9 0.00198 0.2021

7 0.00200 0.3604

4 0.00193 0.7650

5 0.00198 0.4588

5 0.00200 0.5947
MOABC are the same as shown in Table 2. The system consid-
ered is assumed to consist of six parallel subsystems in serial,
that is to say, s= 6. The input data assumed are shown in

Table 4.
Firstly, the Eq. (21) is solved by MOABC and NSGA-II

adopted in Section 4.3, and the estimated fronts obtained with

100 efficient solutions are shown in Fig. 5. It is shown that the
estimated front obtained using NSGA-II does not include the
solution with the highest availability, and several solutions in

the front are not Pareto efficient. By comparison, the solutions
obtained using MOABC is better and of more diversity.

Furthermore, as can be seen in the estimated front obtained
using MOABC, the expected value of cost increases exponen-

tially when the expected value of unavailability decreases,
which is basically consistent with real circumstance.

Secondly, the variance Eq. (22) is solved using MOABC,

and the estimated front with 100 efficient solutions is shown
in Fig. 6.

Finally, we take the intersection of the efficient sets

obtained by MOABC in Eqs. (21) and (22). The result is shown
in Table 5.
Fig. 5 Estimated front of Eq. (21) using MOABC and NSGA-II.

Fig. 6 Estimated front of Eq. (22) using MOABC.



Table 5 Obtained results for UMRAP.

No. Solution E[Us] E[Cs] (unit) V[Us] V[Cs] (unit)

1 6 6 5 4 3 6 1.31 · 10�7 1120 1.47 · 10�7 181

2 6 6 4 3 3 4 3.07 · 10�7 960 3.82 · 10�7 156

3 6 5 4 4 3 5 1.33 · 10�7 1060 1.51 · 10�7 172

4 6 5 5 5 5 5 2.03 · 10�10 1450 1.35 · 10�9 240

5 6 5 5 4 3 5 1.31 · 10�7 1090 1.47 · 10�7 177

6 6 6 3 3 2 3 2.59 · 10�5 754 1.08 · 10�5 122

7 3 6 3 1 1 2 1.05 · 10�2 4182 2.20 · 10�3 66

8 6 5 5 5 4 5 8.73 · 10�10 1300 2.34 · 10�9 214

9 6 6 4 3 2 5 2.55 · 10�5 844 1.05 · 10�5 135

10 6 5 3 2 2 2 7.85 · 10�5 653 3.11 · 10�5 106

11 4 2 2 2 1 2 5.17 · 10�3 448 1.04 · 10�3 72

12 4 3 3 2 2 2 7.93 · 10�5 629 3.22 · 10�5 103

13 6 6 3 2 2 3 5.64 · 10�5 684 2.26 · 10�5 110

14 6 6 4 4 4 3 1.09 · 10�7 1150 1.09 · 10�7 190

15 2 2 1 1 1 1 2.17 · 10�2 299 5.15 · 10�3 49

16 6 6 6 6 5 6 1.22 · 10�10 1580 1.07 · 10�9 261

17 6 6 6 6 6 6 1.19 · 10�10 1730 1.07 · 10�9 286

18 6 6 5 5 5 5 1.44 · 10�10 1450 1.12 · 10�9 240

19 6 6 5 4 3 5 1.31 · 10�7 1090 1.47 · 10�7 178

20 6 6 6 5 5 6 1.28 · 10�10 1510 1.08 · 10�9 249

21 1 1 1 1 1 1 4.49 · 10�2 287 1.88 · 10�2 47

22 6 6 6 6 6 5 1.21 · 10�10 1700 1.07 · 10�9 283

23 6 6 5 4 3 4 1.31 · 10�7 1070 1.48 · 10�7 174

24 6 6 5 5 4 5 8.13 · 10�10 1310 2.11 · 10�9 215

25 6 6 6 5 5 5 1.31 · 10�10 1490 1.09 · 10�9 246

The bold values denote the both ends of Pareto front, which can be considered as the best solution of two conflicting objectives separately.

1486 J. Guo et al.
From Table 5 we can see that the results obtained include
the solution for the highest availability {6, 6, 6, 6, 6, 6}, and

the solution for the lowest cost {1, 1, 1, 1, 1, 1}, and the solu-
tions obtained are all nondominated for both expected value
and variance of objectives. The decision maker can select a
design solution from the results according to his/her preference

and the design requirements of system. For instance, if the sys-
tem availability is required greater than 0.993, considering the
trade-off between availability and cost, then the solution 11

may be selected; while if the system availability is required
greater than 0.9993, the solutions 6, 9,10,12, 13 may be
selected. In addition, if the design cost of system is under con-

straint, for example, if the maximum design cost is set as 1500
units, then the solutions 16, 17, 20, 22 should be eliminated.
6. Conclusions

In this paper, the UMRAP is studied based on uncertainty the-
ory originally, and a solution approach is provided to obtain a

desirable Pareto efficient set. Furthermore, an efficient multi-
objective optimization algorithm based on combining some
aspects of NSGA-II and ABC algorithm is proposed to solve
UMRAP, called MOABC. The proposed MOABC has been

tested on three well-known test problems and a multiobjective
RAP in literature, the results of which show that MOABC out-
performs NSGA-II greatly. Its convergence rate is fast and the

estimated front it obtained can be very close to the true front.
Finally, an application study is presented and solved by MOA-
BC. Results suggest that UMRAP is much closer to real life,

and the MOABC is an efficient multiobjective optimizer.
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