
>

ELS&ER Discrete Applied Mathematics 64 (1996) 31-55

DISCRETE
APPLIED
MATHEMATICS

Robust universal complete codes for transmission
and compression

Aviezri S. FraenkeP, Shmuel T. Kleinb* *

“Department ofApplied Mathematics and Computer Science, The Weizmann Institute of Science, Rehorot 76100.
Israel

‘Department of Mathematics and Computer Science, Bar Ilan Universit)? Ramat Gan 52900, Israel

Received 15 June 1992; revised 7 June 1994

Abstract

Several measures are defined and investigated, which allow the comparison of codes as to
their robustness against errors. Then new universal and complete sequences of variable-length
codewords are proposed, based on representing the integers in a binary Fibonacci numeration
system. Each sequence is constant and needs not be generated for every probability distribu-
tion. These codes can be used as alternatives to Huffman codes when the optimal compression
of the latter is not required, and simplicity, faster processing and robustness are preferred. The
codes are compared on several “real-life” examples.

1. Motivation and introduction

Let A = {A,, AZ, . . , A,) be a finite set of elements, called clear-text elements, to be

encoded by a static uniquely decipherable (UD) code. For notational ease, we use the
term “code” as abbreviation for “set of codewords”; the corresponding encoding and

decoding algorithms are always either given or clear from the context. A code is static

if the mapping from the set of cleartext elements to the code is fixed during the

encoding of the text [23]. In this paper we restrict attention to static codes, thus
excluding adaptive methods [26], and in particular the popular LZ techniques

[28,29]. Let pi be the probability of occurrence of the element Ai. The elements can be

single characters, pairs, triplets or any m-gram of characters, they can represent words

of a natural language, they can finally form a set of items of a completely different

nature, provided that there is an unambiguous way to decompose a file into a se-
quence of these items, in such a way that the file can be reconstructed from this

sequence (see, for example, [12]). We thus think also of applications where n, the size

*Corresponding author.

0166-218X/96/%09.50 0 1996Elsevier Science B.V. All rights reserved
SSDI 0166-218X(93)00116-2

32 AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55

of A, can be large relative to the size of a standard alphabet. Several criteria may
govern the choice of a code. We shall concentrate on the following: (i) robustness
against errors, (ii) simplicity of the encoding and decoding process, and (iii) compres-
sion efficiency.

If li is the length in bits of the binary codeword chosen to represent Ai, it is well
known that the weighted average length of a codeword, CpiZi, is minimized using
Huffman’s [18] procedure. However, Huffman codes are extremely error sensitive:
a single wrong bit may render the tail of the encoded message following the error
useless. As to (ii), a new set of codewords must be generated for each probability
distribution, and the encoding and decoding algorithms are rather involved.

One approach to limit the possible damage of errors is to add some redundant bits
which can be used for error detection or even correction. This obviously diminishes
compression efficiency and complicates further the coding procedures.

The simplest possible codes are fixed-length codes, which can be considered as
robust, since an error inverting a single bit causes the loss of only one codeword. But
from the compression point of view, static fixed-length codes (both fixed-to-fixed and
variable-to-fixed length codes) are optimal only if the probability distribution of the
cleartext elements is uniform or almost uniform, and can be very wasteful for other
probability distributions. Moreover, if a bit is lost or an extraneous bit is picked up,
this causes a shift of the remaining tail, which is thus lost.

The compression capabilities of codes are compared by means of their weighted
average codeword lengths, and the simplicity of the coding and decoding procedures
can be measured by the time and space complexity of their algorithms. In the next
section, we define a sensitivity factor, which enables a quantitative comparison of
codes regarding their robustness against errors. We then review some codes appearing
in the literature and evaluate their sensitivity factor. Some classes of infinite codes are
considered in Section 3 as to the simplicity of their coding algorithms and to their
compression efficiency. In Section 4, a new family of variable-length codes is introduc-
ed, which can be considered as a compromise between Huffman and fixed-length
codes with respect to the three above-mentioned criteria. The new family of codes
depends only on the number of items to be encoded and the ordering of their
frequencies, not on their exact distribution, and is based on the binary Fibonacci
numeration system (see [27]). The corresponding coding algorithms are very simple.
Our paper is related to [l], where various representations of the integers, based on
Fibonacci numbers of order m 2 2, are investigated, with an application to the
transmission of unbounded strings. In the present work we assume an underlying
probability distribution and explore the properties of Fibonacci representations for
variable-length codeword sets, in particular the trade-off between their robustness and
their compression efficiency. In Section 5, the codes are compared numerically on
various probability distributions of “real-life” alphabets.

The broad area of data compression has been ably reviewed in [25,23], and more
recently in [26,2]; thus we refrain from giving a review here, and cite only those works
connected to the present investigation.

AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55 33

Throughout we restrict ourselves to binary codes, though all the ideas can be
generalized to arbitrary base 2 2. In particular, the binary codes based on the binary
Fibonacci numeration system may be generalized to codes based on the sequence of
integers {aim’, aim’, . . . }, defined by ai”’ = a\“” = 1 and the recurrence relation ay) =
rn~~‘?~ + a{‘!2 for i > 1, for any fixed positive integer m (m = 1 is the Fibonacci case).
The resulting codes are (m + 1)-ary codes, and their properties have been investigated
by Fraenkel [10,111.

2. Robustness

When reliable transmission of a message is needed, error-correcting codes may be
used. Often, however, we do not care about single (e.g., transmission or typing) errors,
as long as their influence remains locally restricted. We need a measure which enables
us to compare codes according to their error-sensitivity.

2. I. The sensitivity factor

Let % be a family of errors that may occur in an encoded string, e.g., deletion or
complementation of a bit, etc. Intuitively, we would consider a code C more robust
than another code D, if, given any error from % in S(C) (the string encoded by C) and
any error from % in S(D), the number of misinterpreted codewords for C is smaller
than for D. Henceforth, we restrict % to contain substitution, as well as deletion and
insertion errors. That is, “an error occurring at position x” has to be understood as
either x changing its value u to 1 - v, or x being lost, or that a 0 or 1 bit was inserted
just to the right of x.

We propose as measure the “expected maximum” number of codewords which may
be lost when a single error occurs; the expected maximum is obtained by calculating
the maximum for all the possible locations of the error and then averaging appro-
priately. More formally, let C be a code with codewords ci of length li which appear
with probability pi, 1 < i < n; let qi be the probability that a bit at a randomly chosen
location of a long encoded string belongs to ci. Note that qi is proportional to both pi
and li, that is, qi = pili/C~= IpjZj; in particular, for fixed length codes, qi = pi. Let
M(ci,j) be the maximal number of codewords which may be lost if an error occurs in
the jth bit of ci, 1 < j < li. Assuming that any bit in ci has equal chance to be
erroneous, let M(ci) = (l/li)C~= 1 M(ci, j) be the expected maximum number of code-
words which may be lost if an error occurs in ci. The sensitivityfactor of C is defined as

Y%(C) tZf i qiM(Ci) = +_ .i pi 5 M(Ci,j),
i=l 1-l j= 1

(1)

where L = CJ= 1 pjlj is the average codeword length.

34 AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55

The reason for preferring the “expected maximum” over the “expected average” in
the definition of 5V is a technical one: the average number of codewords lost by an
error in a given bit depends on the entire set of codewords and their distribution, and
is thus often much harder to evaluate than the maximum, which is independent of the
distribution. We now evaluate the sensitivity of several known codes, which we
consider in order of increasing 9.9.

An absolutely robust code T would be, e.g., a code with a representation of each
codeword by a triple replication of itself: transmit every bit three times and retain the
value which occurred at least twice. Under our assumption of a single error, no
codeword would be misunderstood, thus 99(T) = 0. But there are more economical
error correcting codes if such low sensitivity is required.

In order to get better compression, variable-length codes should be used. These are
on the one hand more vulnerable than fixed-length codes, because even a substitution
error can change a codeword into one of different length, and the error can thus
propagate. On the other hand, an insertion or deletion error will cause more damage
to a fixed-length code F, for which synchronization will be lost “forever”, i.e., 99(F)
is unbounded, whereas certain variable-length codes might resynchronize sooner or
later. For a finite set of cleartext elements, optimum compression is obtained by
Huffman codes, but as was already mentioned, they have to be generated for each
probability distribution. We first consider some fixed infinite sets of variable-length
codewords, which yield inferior compression but are much easier to use, as any set of
n elements is now encoded by the following simple procedure:

1. Sort the probabilities into non-increasing order: p1 3 ... 2 p,,.
2. Assign the ith codeword (which were sorted by non-decreasing length) to the

element whose probability is pi.
The encoding and decoding algorithms are then simply based on table lookups.

The simplest variable-length code is a unary code %! = { 1, 01,001,0001, . . . }, i.e., the
ith codeword consists of a 1 preceded by i - 1 zeros, i = 1,2, Such a code should
be used only for distributions which are close to pi = 2-‘. If an error deletes the 1 at
the right end of any codeword or changes it into a zero, then two adjacent codewords
fuse together, so there are two misinterpretations. An insertion of 0 at the last bit only
affects the following codeword, while an insertion of 1 at the last bit just adds a new
codeword. If an error occurs elsewhere (in one of the zeros), the current codeword will
be decoded as if there were two codewords (in case of substitution or insertion of l),
but only one codeword is lost. For en, the first n codewords of a, the average
codeword length is L = Cl= 1 ipi, thus we get from (l),

YP(%&) = k ,i pi((i - 1) + 2) = 1 + h.
r-l

In [13], the following method for generating block-codes of length N is proposed.
These are also called pre3x-synchronized codes [14], which are special cases of comma
free codes (see, e.g., [20]): fix any binary pattern rc of k < N bits and consider the set of
all strings of the form y = rcx, where x is a binary string of length N - k such that the

AS. Fraenkel, XT. Klein / Discrete Applied Mathematics 64 (1996) 31-55 3s

pattern n occurs in 7~x71 only as prefix and suffix. This allows the receiver of an
encoded message to resynchronize (e.g., after a transmission error) by looking for the
next appearance of the pattern rr.

Another variant appears in [22], who studied variable-length codes. As he did not
consider the above synchronization problem, but was interested mainly in UD codes,
he defined the set of strings of the form y = XX (now 71 occurs as sufJix in every
codeword), where 71 is as above and x is a binary string of length at least 1 bit, but the
restriction on x being only that 7t occurs in y exactly once and as suffix. Hence one
obtains a prefix-code. The set of all binary strings of length > k in which 71 occurs
only as suffix is called the set generated by X, and will be denoted 9(n). Note that we
have adjoined 7~ itself to the code defined by Lakshmanan, in order to get better
compression. In [3], _Y(x) is called a semaphore code.

Various choices of II are investigated in [13]. Gilbert conjectured that the number
G(N) of possible codewords of length N can be maximized by choosing a prefix of the
form n: = 1 . . . 10 of suitable length k. This conjecture was proved by Guibas and
Odlyzko [14] for large N, who showed, more generally, that G(N) is maximized by the
choice of a prefix JI with autocorrelation 10 . . . 0 (k - 1 zeros) and with length k such
that 1 k - log, N) G 1. A binary string x has autocorrelation 10 . . . 0 if and only if no
proper prefix of x is identical to any suffix of x. For example, x = 1 . . . 10 has
autocorrelation 10 . . . 0.

Suppose n has autocorrelation 10 . . . 0. If an error occurs in a codeword x of length
e in one of its e - k leftmost bits (not in rt), then only x is lost. Indeed, inserting,
deleting or changing a bit can either cause the prefix to be altered, or it can create
a new occurrence of the pattern 7t. However, in the latter case, the new occurrence of
n: cannot have overlapping bits with the suffix rc of x, because rc has autocorrelation
10 . . . 0. Thus the altered codeword x will possibly be decoded as two codewords, but
the following codewords are not affected.

If an error occurs in one of the bits of the suffix rr of x, then a new occurrence of
7t can be created which has overlapping bits with the suffix 7~ of x, even if rc has
autocorrelation 10 . . . 0. An example of such a pattern is n: = 1110110; if the codeword
is x = 111 lOn, it would be decoded after a substitution error in the third bit from the
left in rc as lrcO110; if the codeword following x is y = OllOOq then a substitution error
in the rightmost bit of x would yield the decoding 1111011107c0~. If there is no
occurrence of 71 in the concatenation of the altered form of x with the prefix of y, then
only x and y are lost, and if there is a new occurrence of X, it cannot be partly
overlapping with the suffix rc of y; hence in any case, only two codewords are lost.
Therefore we get from (1)

YF(~!T”(z)) = k ,$ pi((li - k) + 2k) = 1 + gy
r-l

where P,(Z) is the set of the n first elements of 9(rc), ordered by non-decreasing
codeword length. The above unary code is the special case rr = 1.

36 AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55

Suppose now that rc has autocorrelation other than 10 . . . 0. Then 99 is not
necessarily bounded. Consider for example the pattern rc = 11100111, and the follow-
ing encoded message, in which occurrences of n are overlined:

. . . 11111100111001110011111001110011110011100111 . . . ;

a substitution error in the leftmost bit of the leftmost occurrence of 7~ would yield the
decoding:

. . . 11101100111001110011111001110011110011100111 . . .)

and this example can be extended arbitrarily. Thus .9’9(9’~(~)) is not bounded, when
the number of codewords tends to infinity.

In [6], a code W = {I~, rz, . . . } is proposed which encodes the clear-text element Ai
by a logarithmic ramp representation of the integer i. The first element rl is 0. Let B(x)
denote the standard binary representation (with leading 1) of the integer x. Then for
i > 1, Ti is obtained in the following way: B(i) is prefixed by B(Llog, i]), and the
process of recursively placing the length of a string (minus 1) in front of that string is
repeated until a string of length 2 is obtained. Since all the strings B(x) have a leading
l-bit, the bit 0 is used to mark the end of the logarithmic ramp. For example, 116 is
10-100-10000-0 and rj5 is 10-101-100011-0, where dashes have been added for clarity.
A substitution error in one of the [log, il + 1 rightmost bits of ri (except for the
appended zero) does not change its length, so it is the only codeword to be lost.
However, an insertion or deletion error, as well as any error in one of the other bits
may change the codeword into one of different length, so that decoding of the
following codeword does not start where it should, and such an error can propagate
indefinitely, so that 99((w) is not bounded. The same result holds for a similar
logarithmic ramp code discussed in [7].

Finally, for a Huffman code H, an error may be self-correcting after a few code-
words, even if it is not a fixed-length code (see [4]). Nevertheless, it is easy to construct
arbitrarily long sequences of codewords which are scrambled by a single error, so that
99(H) is not bounded, when the number of encoded cleartext elements grows
indefinitely.

2.2. Sensitivity of synchronous codes

For the last examples, where 99 is not bounded, a more delicate definition of 99
might be used to respond to our intuitive notion of robustness, since even among
those error-sensitive codes, there are some which are more robust than others. For
instance, in [8], a method is proposed for certain classes of probability distributions,
yielding Huffman codes which are self-synchronizing in a probabilistic sense: each
code contains a so-called synchronizing codeword c, such that if c appears in the
encoded string, the codewords following it are recognized, regardless of possible

AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55 37

errors preceding c. More formally, a codeword s = s1 . . . s, is defined in [8] to be
synchronizing if it satisfies the following conditions:

1. for any other codeword x, s does not appear as substring in x, except possibly as
suffix;

2. if a proper prefix s1 . . . Sj of s is a suffix of some codeword, the corresponding
Suffix Sj+l ... s, of s is a string of codewords.
Hence the existence of a synchronizing codeword bounds the expected length of the
propagation of an error without increasing the redundancy of the code, but the
authors show that there are distributions for which no such synchronous Huffman
code can be constructed. In our definition of sensitivity, the existence, for certain
codes, of synchronizing codewords should be taken into account.

Define for any code C = {ci, . . . ,c,}, the sensitivity factor Yg’(C) similarly to
X%-, as

Here S(ci, j) is defined as the expected number of codewords between ci and the
following synchronizing codeword s (including s, but not ci), in case the error in the jth
bit changed ci into a codeword of different length; otherwise, if the error in the jth bit
changed ci into another codeword of the same length, only ci is lost, SO define
S(ci, j) = 1. Note that S(ci, j) is not the expected number of codewords lost, E(ci, j),
since there are possibly codewords which recover from certain errors in some ci, but
the definition of a synchronizing codeword requires it to resynchronize after every
possible error, hence S(ci, j) 2 E(ci, j). On the other hand, S(ci, j) d M(ci, j) SO that
9.9’(C) < 99(C); therefore 99’(C) > 99(D) shows that D is more robust than
C for both definitions of the sensitivity factor.

The evaluation of 99’(C) is easy: if 4 is the sum of the probabilities of the
synchronizing codewords in C, then S(ci,j) is either 1 or l/q, so that
CT= 1 S(ci, j) = ti + (li - ti)/q, where ti is the number of possibilities to transform ci
into a codeword of the same length by changing a single bit. It should be noted that
there are codes which have no synchronizing codeword, but still have synchronizing
sequences. We preferred however not to take this into account for the definition of the
Y9’.

For Z.(n), where rc is of length k bits, at least any codeword x = x1 . . . xe with
length e 2 2k - 1 is synchronizing. Condition 1 above is obviously satisfied for every
codeword in _P(rc). As to condition 2, all the suffixes of length > k are themselves
codewords. The suffixes of length < k of x need not to be checked: the corresponding
prefixes of x have length $ k, so if any such prefix is the suffix of a codeword, its
rightmost bits are rr, but this contradicts the fact that x E Y(n). In particular, every
codeword of the unary code 43 is synchronizing. Thus LXP’(LZ’~(rr)) Q

l/clj:lj 3 2k _ 1) Pj, and yF’(eJ = 1.
If we consider Elias’ infinite code 9, it is certainly not synchronous. The codeword

ri, for i > 1, can be regarded as the standard binary representation of some integer

38 AS. Fraenkel, S.T. Klein 1 Discrete Applied Mathematics 64 (1996) 31-55

j > i, thus ri appears as substring in rj, where it is followed by 0, violating the first
condition. However, for finite codes B, = {ri , . . . , r,}, synchronizing codewords can
be found in certain cases. For example, if 16 < n < 32, then r16 is synchronizing: it is of
maximal length, so the first condition is trivially satisfied, and every suffix of r16 is
a sequence of codewords.

Since it is not always possible to construct a synchronous Huffman code, there are
certain cases for which even 99’(H) will not be bounded. For all the examples in
Section 5, synchronous Huffman codes are chosen, and their sensitivity factor 99’ is
compared with 9’9 of the other codes.

2.3. A robustness vs. compression trade-oflfor Huflman codes

The high error-sensitivity of Huffman codes suggests that for certain applications it
may be profitable to improve 99 at the cost of a reduced compression efficiency.
When only substitution errors are possible, this can be achieved by grouping the
codewords in blocks of fixed size m; if the last bit of the block is not the last bit of
a codeword, i.e. there is a codeword w, the tail of which does not fit into the block, then
w in its entirety is moved to the beginning of the next block. In order to avoid
incorrect interpretations, the last bits of the first block remain unchanged, i.e. they
contain a prefix of w. As a consequence, the average length of a codeword will
increase.

A Huffman coded message is deciphered by repeated traversals of the correspond-
ing Huffman tree. Starting at the root, one passes from one level to the next lower one
following the left (resp. right) pointer, if the next bit of the input string is 0 (resp. l),
until a leaf is reached; this leaf corresponds to a codeword, which is output, and the
algorithm proceeds again from the root. Using m-bit blocks, the decoding procedure
has to be modified as follows: every time the pointer P which points to the current
place in the Huffman tree is updated, i.e. when passing to a left or right son or - when
a leaf was reached - resetting the pointer to the root, a counter CN is incremented.
When CN = m, this indicates that we have completed the processing of an m-bit
block, so P is set to point to the root, regardless of whether a leaf was reached or not,
and the counter is zeroed. Therefore, a possible substitution error cannot affect
neighboring m-bit blocks. Insertion and deletion errors however have the same
devastating effect as for fixed-length codes.

We thus consider in this subsection only substitution errors, as is done for example
in [15], and define a new sensitivity factor 99” similar to 99, but with this
restricted interpretation of the word “error”. Clearly, 99”(C) < %9(C) for any code

The parameter m can often be chosen so as to obtain a predetermined 99” or
average codeword length, but obviously must not be smaller than the maximal
codeword length. One can always choose the block size m to be relatively prime to the
greatest common divisor of all the codeword lengths, and then one can assume that
the probability of codeword Ci being the last in an m-bit block is proportional to pilip

AS. Fraenkel, XT. Klein / Discrete Applied Mathematics 64 (1996) 31-55 39

and that for a given codeword, each bit position has the same chance to be the last in
the block. Hence R, the average number of “redundant” bits per block, i.e., the average
length of the prefix of the last codeword in the block if it was truncated, is given by

where L = Cpili is the original average codeword length.
The new average number of codewords per block is N’ = (m - R)/L and the new

average codeword length is

from which a bound for m can be derived, when a desired upper bound for a new
average codeword length L’ > L is given: the new average codeword length will not
exceed L’ if

R-L’
mQl_L.

Once the block size is fixed, we proceed to calculate 9%“. Given that an error has
occurred, the probability that this error is in the first codeword of an m-bit block is
L/m. In this case, at most the entire block (N’ codewords) is lost. If the error is in the
second codeword of the block, at most N’ - 1 codewords are lost, again with
probability L/m, etc. Assuming that N’ is an integer, we get

Y%“=;(N’+(N’-1)+ . . . +1)=
L(N’ + l)N

2m ’

The resulting formula 9%” = L(N’ + l)N’/2m is approximately true also for non-
integral N’.

It is not always possible to achieve a predetermined ~7%” because m cannot be
smaller than the maximal codeword length. For some distributions, one can obtain
the same 9%” as for some constant code 9”(n), but with larger average codeword
length. For other distributions a block size can be found which gives both better 9%”
and better compression than Z,(n); in these cases the advantage of the latter reduces
to their simplicity, their faster decoding and their robustness against insertion and
deletion errors (see examples in Section 5). Nevertheless it should be noted that while
9%” (and even 9%) for the Y”(E) codes is bounded, 9%” for the “robustified”
Huffman codes depends on the ratio of the maximum to the average codeword length,
which in turn is a function of the number of elements of the set and their distribution.
This ratio is minimized for the uniform distribution, but this is the worst case from the
compression point of view.

An alternative way to protect Huffman codes against noise is proposed in [15,
Section 4.143: break the Huffman encoded message into blocks and use Hamming

40 A.S. Fraenkel, ST. Klein f Discrete Applied Mathematics 64 (1996) 31-H

error-correcting codes to protect each block. If m is the size of the Huffman code
blocks, the output blocks are of size m + r log, m 1. This can therefore be an attractive
alternative, since for large enough m, compression is only slightly deteriorated, but
9’9” = 0. On the other hand, the coding algorithms are much more complicated and
time consuming.

3. Universality and completeness

The previous section has dealt with criterion (i) mentioned in the introduction. We
now turn to the other two criteria. As was pointed out earlier, a simple way to encode
an alphabet of IZ elements is to use the first IZ codewords of a fixed infinite code. In [6],
Elias has shown that it is possible to construct infinite codeword sets which he calls
universal: an infinite set of codewords of lengths Zi, with Er < I2 < a.- , is universal if for
any finite probability distribution P = (pr , . . . , p,), with p1 > pz 2 +.. , the following
inequality holds: Cl= IpiZi/max(l, E(P)) < K, where E(P) = - Cl= IpilOg,pi is the
entropy of the distribution P, and K is a constant independent of P. Thus given any
arbitrary probability distribution of an alphabet, a universal code can be used to
encode it such that the resulting average codeword length is at most a constant times
the optimal possible for that distribution.

The universality of the logarithmic ramp code 9%’ has been shown in [6]. The unary
code %! is not universal. The codes -Y(K) are universal if and only if 71 has at least 3 bits
or 7c = 11 or 7r = 00 (see [22]).

Although we consider also the codes yielding suboptimal compression, we shall
restrict ourselves to complete infinite codes. As defined in [6], a code C is complete if
adding any binary string c, c#C, gives a set Cu {c> which is not UD. Other authors
call such a code succint [25]. Note that an infinite code which is not complete can be
extended by adjoining more codewords, thus forming a sequence with better compres-
sion capabilities.

Every UD code C with codeword lengths li satisfies the McMillan [24] inequality:
Ci2-li < 1. Thus a sufficient condition for the completeness of C is Ci2-” = 1. In [22],
recurrence relations are developed, giving for every fixed rt the number b,(n) of
elements of length r in s(rc), for r > k. These relations can be used to show that for all
such codes, Cl”_,b,(n)2-* = 1, which implies the completeness of the sets. An algebraic
proof for the completeness of _.Y(rc) can be found in [3, Ch. II, Section 5-J. We give here
a direct, “string-theoretic” proof.

Theorem 1. The codeword set 9((n), generated by anyjixed pattern 7~ of k 2 1 bits, is
complete.

Proof. Let c = c1 . . . c, be any binary string #5Z’((n). In order to show that _Y(rr) is
complete, we construct a binary string which has more than one possible decomposi-
tion in the set 9’ = ._Y(rr)u {c}.

AS. Fraenkel, ST. Klein 1 Discrete Applied Mathematics 64 (1996) 31-55 41

Letn=x, . . . 71,‘ and define the String J? = CT’C = e, . . . e, +k. Define a sequence of
indices t(i) for i 2 0 by t(O) = 0 and for i > 0, t(i) is such that
E(i) dzffetci-lj+l . . . e,(i) E Z(x). In other words, scanning the string E from left to
right, we try to decompose it into elements of Y(n), denoting by t(i), for i 3 1, the
index of the last bit in E which belongs to the ith codeword detected in this way of
scanning. Although rr occurs as suffix in E, it is not always true that E can be
decomposed in its entirety in this way. As example, take rt = 101 and
E = 00101110101, then t(l) = 5 and t(2) = 9 and we are left with a suffix 01 in E.

As can be seen in the example, the problem arises when there is an occurrence of
x which has overlapping bits with the suffix rt of E. Hence in this way, we parse E into

(E(l), . . . , E(m), R) for some m > 1, where E(i) E Y(n) for 1 < i 6 m and R is a (pos-
sibly empty) proper suffix of 71.

Case 1: R is empty. Then we have two decompositions of E in 3”:
E = (c, n) = (E(l), . . . ,E(m)).

Case 2: R is not empty. Let 71i denote the binary complement of x1 and let
b=bl . . . bk_ 1 be the string defined by bi = ~7, for 1 < i < k. Consider the string
B = Ebn, one possible decomposition of which in Y’ is (c, rc, bn). A proper prefix of
E can be parsed into (E(l), . . . , E(m)) with E(i) E -49(n), so it remains to show that the
suffix S = Rbz can be decomposed into elements of 9’. If rc occurs in S only as a suffix
then S E _Y(rc). If rc occurs twice in S, the two occurrences cannot be overlapping
because of the choice of b; this yields a decomposition of S into two elements of Z’(n).

The proof is completed by showing that the pattern n cannot occur more than twice
in S. Since R is a proper suffix of rc, it has less than k bits, hence any occurrence of
rc which starts in R must extend into b. On the other hand, no occurrence of rt can start
in one of the bits of b. So if there are h > 2 appearances of rc in S, one of the
occurrences is as the suffix of S, and the h - 1 remaining occurrences of rc must start at
different positions in R, thus having suffixes of different lengths in b. However, this
implies that all the bits of n are equal to bi = cl, a contradiction. 0

We saw already that as far as robustness is concerned, the pattern rt for the code
_Y(rc) should be chosen with autocorrelation 10 . . . 0. Theorem 1 suggests that sets
based on such patterns are preferable also in another sense. Extend Gilbert’s block
codes into a variable-length code in the following way (for technical reasons, we shall
consider the codewords with fixed suffix rather than fixed prejx): for a fixed pattern
rc of length k 2 1 bits, %(rc) will denote the set of all the codewords of the form y = xrc,
where x is any binary string of length Z 0, such that the pattern n: occurs in rcxz only
as prefix and suffix. Thus 3(n) is the union for N > k of all the block codes of length
N as defined by Gilbert, except that we also permit the case N = k.

The code 3(n) obtained in this way, which is comma free, is not the same as the code
_Y(rc), which is only UD; an example showing the difference, is the string 01000101
which is in _Y(OlOl) but not in %(OlOl). As the condition on the elements of Y(rc) is
less restrictive than the condition on the elements of Y(n), it follows that for any 7c,
4e(7r) c_ Z(7c).

42 AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55

Theorem 2. The following assertions are equivalent:
1. The autocorrelation of rc is of the form 10 . . . 0.
2. Y(7c) = Y(z).
3. The code ‘S(x) is complete.

Proof. (1 =z= 2) We know already that 59(n) E dp(rc) holds for every n; for the opposite
inclusion, let y = xlt be a codeword in 9’(n), so that rr appears in y only as suffix. If no
proper prefix of 7~ is also a suffix of rc, then rc occurs in rcy = rtxz only as prefix and
suffix, so that y E Y(rc). Hence 59(n) = Y(n).

(2 3 3) This is Theorem 1. (For any rc with autocorrelation 10 . . . 0, the proof of
Theorem 1 is even much simpler, since Case 2 cannot occur.)

(3 * 1) We show that if the autocorrelation of rc is not 10 . . . 0, then ‘9(z) c 9(z)
holds with strict inclusion, so that %(rc) cannot possibly be complete since Z(z) is.
Thus we look for a codeword B which is generated by rc, but does not belong to ‘9(z).
Let n = 7r1 . . . rck and suppose that 7tl . . . zh = Q-h+1 . . . zk for Some h <k. Let ?Ti

denote the binary complement of Zi and define the strings b = bI .,. bk_ 1 and
(d=dI . . . dk-1 by bi = El and di = %k for 1 < i < k. Consider the string
B=z,,+~ . . . Rkdb7’C which is not in %(rc).

It remains to show that B is generated by n, or in other words that rc occurs in
B only as suffix. Because of the choice of b, 71 can occur in bx only as suffix, and
because of the choice of d, K cannot occur at all in zh+1 . . . nkd. As to the string db,
assume first rrl = zk. Then db is a string of identical bits in which z can neither start
nor end. Hence suppose z1 # zk. Then if 71 appears in db, it must be of the form
n = dj ... dk-lbl ... bj for some 1 < j < k - 1, but in all these cases, the autocorrela-
tion of 72 is 10 . . . 0, contradicting our assumption. 0

4. Fibonacci codes

As was pointed out earlier, the first n elements of the code Z(z), for certain patterns
rc, can be an attractive alternative to Huffman codes when optimal compression is not
critical. The encoding process is simpler, since the code need not be generated for
every probability distribution. However, except for the fact that a message encoded by
Y(n) is easily parsed by locating the separators 71, the actual decoding algorithms are
very similar for Huffman codes and _Y(rc). For both, there is generally no simple
relation between a codeword and its index, such as, e.g., for fixed-length codes or for
the unary code ?f?. Therefore, one needs a “translation table”, which consists of two
columns: one column containing the codewords, and the other containing the corres-
ponding cleartext elements. For decoding, after having detected a codeword c, the
algorithm searches for c in the column of codewords and retrieves then the corres-
ponding element from the cleartext column. The existence of an easily computable
one-to-one mapping between the code and the integers would make the column of
codewords (and the search in it) superfluous. This means that the space requirements

AS. Fraenkel, XT. Klein 1 Discrete Applied Mathematics 64 (1996) 31-55 43

of the Huffman codes could be cut by f. It should however be noted that we refer here
only to the straightforward approach to the decoding of Huffman codes. In certain
cases, more sophisticated data structures may be used, which yield more efficient
algorithms, as in [17, 51.

In this section, we study the code _Y(rc) for the special case rc = 11 and show that
such a mapping exists, because the code is related to the binary Fibonacci numeration
system. This relation has not been noted in [22], but has already been investigated in

VI.

4.1. The Fibonacci code C’

One can use a binary encoding of the integer i as encoding for the element A,; if we
are to use a fixed-length code, the length of the codewords will be Llog, n J + 1 for the
standard binary numeration system. As we want a uniquely decipherable code, it is
not possible to pass to a variable-length code by just omitting the leading zeros in
every codeword, because of the resulting ambiguities. We propose to exploit a prop-
erty of the binary Fibonacci numeration system: let Fj be the jth Fibonacci number,

F,, = 0, F1 = 1, Fj=Fj_1 +Fj_2 forj> 1.

Then any integer i can be represented by the binary string I = I,IZ . . . I,, with Zj = 0
or 1, where i 7 Es= 1 IjFj+ 1. Note that the indexing in the string I increases from left
to right, contrary to the usual notation; the reason for this will become clear in the
sequel. One can uniquely express any integer in this form so that

Zj= 1 2 Ij_l=O forj=2 ,..., r,

in other words, there are no adjacent l’s in 1. Although the number of bits needed to
represent integers between 1 and n by fixed-length codes increases to

Y = L log+(&) + 11, where 4 = (1 + fi)/2 is the golden ratio, we are now able to
use a variable-length representation, replacing the trailing zeros in I by an additional
1 which will act as a “comma”, separating consecutive codewords. We denote this
infinite sequence of codewords by C’ = {C:, C:,...} = {11,011,0011,1011,00011,
10011,01011,000011, . . . }, and the length of C! by 1:. The sequence C’ is one of the
possible orderings of _Y(ll).

The properties of (generalized) Fibonacci numeration systems were used by Kautz
[21] for synchronization control; someflxed-length codes were devised which satisfy
the condition that every codeword contains no string of m or more consecutive l’s, for
some fixed m 2 2. The code C’ extends this idea to variable-length codes, choosing
m = 2 so that only one additional bit per codeword is needed to allow unique
decipherability.

Remark. For the sake of completeness, we give direct proofs for the following
propositions, some of which can be derived as special cases of the corresponding
general proofs in [l].

44 A.S. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55

Proposition 1. There are F, codewords of length r + 1 in C’, r 2 1.

Proof. In the proposed representation, an integer j satisfying F, + i < j < F, + 2 needs
r bits for its encoding, r 2 1, thus the claim follows if we add the “separating” 1 and
note that F1+* - F,+l = F,. 0

Proposition 2. The code C’ is uniquely decipherable, universal and complete.

Proof. After adding the “comma’‘-bit, every codeword terminates in two consecutive
l’s, which cannot appear anywhere else in a codeword. Thus C’ is a prefix code.

From Proposition 1 we get that the number of codewords of length up to and
including r is Cl: i Fi, which by induction can be shown to equal F, + 1 - 1. Thus if the
length li = 1: of Ci is r + 1, the index i is at least F,+, = Fli so that

i > Fli > (l/$)$li - 1. Therefore, li < log@($(i + 1)) < 3 + 21og, i. But since the
pi are arranged as a non-increasing sequence and sum to unity, we have ipi < xi = 1 pj
< 1, thus pi < l/i, SO that logzpi < - log, i. Hence

Thus K = 5 can be chosen as constant in the definition of universality.
As to completeness, let us denote cjm_ 1 2 -I: by S. Using the Fibonacci recurrence

relation, we get

s= f 2-(‘+‘fFi= f 2-(‘+‘)(Fi+l
- Fi-1)

i=l i=l

= 2 f 2-“+“Fi -4 f 2-(‘+‘)Fi

i=2 i=O

thus S = 1, in other words, C’ is complete. 0

Note that if the conventional notation I = 1J,_ I . . . Ii is used to represent an
integer in the Fibonacci numeration system, and then the leading zeros are replaced
by a 1 in the leftmost position, the resulting code is a suffix code, but not prefix. Hence
the decoding procedure would be somewhat complicated as for each string of ones, we
must know the parity of its length before we can interpret the codeword preceding the
string.

To evaluate Yfl(Ci), we first remark that rc = 11 does not have autocorrelation 10.
Nevertheless, 9.9 is bounded. The last three bits of every codeword (except C:) are
“011”. If the error occurs elsewhere, only one codeword is lost (possibly one codeword
will be interpreted as two), hence using the notations of Section 2.1, M(C!, j) = 1 for
i > 1, 1 <j < li - 3. A problem may arise in case of an error in one of the three

AS. Fraenkel. ST. Klein 1 Discrete Applied Mathematics 64 (1996) 31-55 45

rightmost bits, if the codeword, the error occurs in, is followed by j > 0 consecutive
C i’s Suppose this string of j C i’s is followed by C,’ for h > 1, then the parsing of the
encoded string up to and including C,’ could change. For example, 0011-11-11-011
would become 0011-11-11-1011 in case of insertion of 1 after one of the three
rightmost bits; or it would become 00011-11-1011 by a substitution error in the
penultimate bit; or it would become 011-11-11-1011 by a substitution error in the
third bit from the right. However, our choice rc = 11 differs from the example for
rc = 11100111 of Section 2.1, in that at least j - 1 of the codewords obtained by the
incorrect parsing are C :, so in the worst case, only the first codeword, at most one of
the C :, and C,’ are lost.

More precisely, an error in the rightmost bit of a codeword causes at most two
codewords to be lost, hence M(C:, li) = 2 for i 2 1. An error in the penultimate bit
may cause up to three false interpretations, i.e., M(C!, Ii - 1) = 3 for i > 1. In case of
an error in the third bit from the right, it may be possible to “decode” j + 1C i’s
instead ofj, as for example in 0011-11-1011 which becomesOll-11-11-011 by a substi-
tution error, but only the first and last codewords are lost, i.e., M(C,‘, Ii - 2) = 2 for
i > 1.

Denote by Li = Cpil! the average length of a codeword. Then we get from (1)

YP(C’) = $ p1(2 + 3) + f pi(2 + 3 + 2 + (1: - 3))
1 (i=2 >

= + (5p, + 4(1 - pr) + (L, - 2pr)) = 1 + F.
1 1

Numerical examples of 9Y(C1) for various distributions are given in Section 5.
The decoding process of a message encoded by C’ consists of two phases. First, the

input string is parsed into codewords just by locating the separator “11”. The index of
each codeword is then evaluated and a table is accessed to translate the index to the
corresponding cleartext element. The dominant part of the processing time is taken by
this table access, which is much slower than the scanning of the first phase. On the
other hand, for Huffman codes, even the first phase involves table or tree accesses for
every bit, until a codeword is detected. Although for the same input S, the string C’(S)
encoded by C’ will be longer than the string H(S) encoded by Huffman’s algorithm,
the number of codewords in C’(S), which is the number of times we have to access
a table for the decoding of C’ (S), will be much smaller than the number of bits in H(S),
which is the number of times we have to access a table or tree for the decoding of H(S).
We thus expect a faster decoding for C’ than for Huffman codes. The relative savings
will increase with the average codeword length for C’ and with n, the size of the set of
cleartext elements.

In the following algorithm, the encoded message is given in a bit vector M, the
elements of which are denoted by Mi, i = 1,2, The algorithms for both encoding
and decoding use a translation table in which the cleartext element Aj is stored at

46 AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55

entry j, 1 < j < n. Given a codeword c, we compute its index in C’ using the Fibonacci
numeration system, and can then directly access the translation table at the appropri-
ate entry. The computation can be speeded up by the use of a table of Fibonacci
numbers Fk.

Decoding procedure for C’
i c 0 [pointer in Ml
while i < length(M) do

kt2
index t 0
i c i + 1 [i points to the leftmost bit of a codewordjl
repeat [evaluate index of the codewords]

index t index + (Mi x Fk)
kck+l
i+i+l

until Mi_1Mi = 11 [look for pattern “11’1
access translation table at index

end

4.2. Higher-order Fibonacci codes

The idea of the previous subsection is easily generalized to higher-order Fibonacci
codes. Fibonacci numbers of order m 2 2 are defined by the recurrence

F!“’ = Fy”_‘, + FyJ2 + . . . + F!“_’ J J m forj>l,

where Fim’ = 1 and FF’ = 0 for j < 0. In particular, Fj = Fy’ are the standard
Fibonacci numbers. As before, any integer i can be represented as a binary string
I=11 . . . I, such that i = Es= 1 ZjFpl and there is no run of m or more consecutive l’s
in I. This fact is used in [l] to devise variable-length codes in which an m-bit run of l’s
is used as a separator. Proofs that these “m-ary Fibonacci codes” are UD, universal
and complete are also given in [l].

Using higher-order Fibonacci codes might at a first glance seem inefficient, parti-
cularly for the first codewords (corresponding to higher probabilities), because more
bits are used as delimiters, so less bits carry actual information. On the other hand,
with increasing m, the number of possible codewords of any fixed length increases.
Hence for a large enough language to be encoded and for certain (near to uniform)
distributions, it is possible to obtain an average codeword length, L(m) = CPili(m),
which is smaller for m > 2 than for m = 2. Here ii(m) denotes the length of the ith
codeword of the m-ary Fibonacci code. The first line of Table 1 gives for a few m > 2
the minimal size N(m) of the language for which the m-ary Fibonacci code yields an
average codeword length not larger than that of code C’, supposing uniform distri-
butions, that is N(m) = min{tlx:= 1 l,(2) 2 I:= 1 l,(m)}. For other distributions, the
transition points, if they exist at all, would be higher.

AS. Fraenkel, XT. Klein J Discrete Applied Mathematics 64 (1996) 31-55 41

Table 1

Comparison of C’ with m-ary Fibonacci codes

m 3 4 5 6 I

N(m) 158 687 2912 12821 51626

.YS(C’) for 1.412 1.315 1.254 1.213 1.183

n = N(m)

YF(m-ary) for 1.618 1.630 1.636 1.639 1.639

n = N(m)

By similar arguments as for C’, one gets for the m-ary Fibonacci codes,

YF= &
(

Pi(2 + 3(m - 1)) + i$Z Pit2 + 3(m - l) + 2 + litm) - trn + l))

>

= &

(
(2 + 3(m - 1))Pl + 2m(l - PI) + Mm) - mpd

)

= 1 +2m-pl
L(m) ’

The second line of Table 1 depicts the 99 of the standard code C’ for a uniform
distribution on a language of size N(m), whereas the last line gives the ,575 of the
m-ary Fibonacci code for the same distributions.

The table shows that compression is improved for higher-order codes only for fairly
large sizes of the language.

4.3. Variants based on Fibonacci codes of order 2

In C’, a l-bit playing the role of a comma was added at the end of every codeword.
This additional bit can be avoided if every codeword has a 1 not only in its rightmost
position, but also in its leftmost. A new code C2 is generated from C’ by:

1. deleting the rightmost (1-)bit of every codeword;
2. dropping the codewords in C’ which start with 0.

Another way to obtain the same set from C’ is by:
1. deleting the rightmost (1-)bit of every codeword;
2. prefixing every codeword by 10;
3. adding 1 as the first codeword.

The equivalence of these two definitions is established by noting that the function
f(al . . . a,) = lOal . . a,_ 1 defines for both definitions of Cz a one-to-one mapping
from C’ onto C2 - (1). Hence C2 is the set of codewords {1,101,1001,10001,10101,
100001,101001, . . . >. Their respective lengths are denoted I’. We therefore have as
immediate consequence of Proposition 1 the following proposition.

48 AS. Fraenkel, S.i? Klein / Discrete Applied Mathematics 64 (1996) 31-55

Proposition 3. In C2, there is one codeword of length 1 and there are F,_ 2 codewords of
length n for n 2 3.

If a substitution error occurs in C:, which consists of a single bit, the preceding and
following codewords join up, in which case three codewords are lost; deletion and
insertion affect only one codeword, so M(C:, 1) = 3. For other codewords, a substitu-
tion or deletion error in the first or last bit causes the loss of two codewords, thus
M(Cf, 1) = M(C?, 1:) = 2 for i > 1; in the other cases, a single codeword is lost,
M(C?,j) = 1 for i > 1 and 1 <j < I”. Denoting now the average codeword length by
L2, we get

yR(c2) = & (3pl + i pi(2 + (IF - 2) + 2)
i=2 >

= &(3p1 + 2(1 - p1) + (Lz - p1)) = 1 + ;.
2

Thus for distributions for which L1/L2 < 2 - p1/2, and in particular when L1 = L2,
C2 is more robust. Note that C2 is not a prefix code; nevertheless decoding is simple
since the end of any codeword is easily detected.

Proposition 4. The code C2 is uniquely decipherable, universal and complete.

Proof. Let M be an ambiguous encoding of a message, M = clc2 . . . = c;c; . . . ,
where ci, c; E C2, and Mr, M2, . . . are the bits the encoded message consists of. Let
j be the smallest index for which cj # c>. Then necessarily lcj[# [cJI, suppose
lcjl < lcJ1. Let a be the index of the rightmost bit in cj. Then M,+ 1 = 1 since this is the
first bit of cj+ 1. But M, is the last bit of Cj, hence M, = 1 so that c> contains adjacent
l’s, a contradiction. Hence C2 is UD. The construction of C2 implies that the lengths
of the elements of C’ and C2 are related by 1? = li_ 1 + 1 for i > 1. Therefore,

i PiZF =pl + “il pi+l(Z! + 1) < 1 + i pilf
i=l i=l i=l

so that the universality of C2 follows from that of C?. As to completeness,

f 2-l%;+ ,t 2-1’+2)Fi2+;.f 2-(i+‘)Fi= 1,

i=l l-1 1-l

the last sum being the quantity S of Proposition 2. 0

The decoding algorithm again searches for the occurrence of the pattern “ll”,
which is formed by juxtaposing any two codewords. A special treatment of the last
codeword is avoided by suffixing an additional “1” at the end of the input string. The

A.S. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55 49

function which maps a codeword (except the first) into its index simply ignores the
first two bits (“10”) and proceeds then as for C’.

Decoding procedure for C2
N t length(M)
M N+ I c 1 [suffixing 1 at the end of the input stringj
it1
while i < N do [i points to the leftmost bit of a codeword]

if MiMi+l = 11 then [codeword “1’7
access translation table at first entry
ici+l

else
index +- 1
i t i + 2 [skip 101
kc2
repeat [evaluate index of the codewords]

index + index + (Mi x Fk)

kck+l
ici+l

until Mi_ 1Mi = 11 [look for pattern “1 l”J
access translation table at index

end

Generalizations of the code C2 to higher-order Fibonacci codes are given in [l].
Another attempt to avoid the comma-bit in C’ is to construct a new sequence C3 of

codewords, which is obtained from C’ by:
1. deleting the rightmost (1-)bit of every codeword;
2. duplicating the set of codewords of length Y, for every Y 2 1; now we have for

each r two identical blocks of codewords;
3. prefixing in the first block every codeword by “10” and in the second by “11”.

This yields the set of codewords C3 = (101, 111, 1001, 1101, 10001, 10101, 11001,
11101, 100001, 101001, 100101, 110001, . . . >, their lengths are denoted 1:. Note that
every codeword of C” has a leftmost l-bit, no codeword has more than 3 consecutive
l-bits and these appear as prefix, and every codeword, except Cz, terminates in “01”.
From the construction of C3 and Proposition 1 we get the following proposition.

Proposition 5. In C3, there are 2F,_2 codewords of length r for r Z 3.

A substitution error in the first bit of C$ affects also the preceding and the following
codeword, so there are three codewords lost. Any other error in this bit, as well as any
error in the other bits of Cg, causes the loss of up to two codewords. In the other
codewords (including C:), an error in the first, last and penultimate bit causes up to

50 AS. Fraenkel, ST. Klein / Discrete Applied Mathematics 64 (1996) 31-55

two incorrect interpretations, elsewhere one. Setting L3 = CpiZf, we get

Y9(C3) = &
(

p2(3 + 2 + 2) + i pi(2 + (I: - 3) + 2 + 2)
i=l,i#2 >

= d (7~2 + (3 - 3~2) + (~53 - 3~2))

Thus for distributions for which L3 = LI, C3 is more robust than C’, but for
distributions for which L3 = Lz, C2 is more robust than C3. The set C3 too is not
prefix, but we do have the following result.

Proposition 6. The code C3 is uniquely decipherable, universal and complete.

Proof. We use the same notations as in Proposition 4. The codeword cj cannot be
C: = 111 since if it is, then there are four consecutive l’s in M (the three of cj and the
first of cj+r), thus C; must also be Ci, butj was chosen such that cj # cs. Any other
codeword has a 0 in the penultimate position. Thus c; contains the pattern “Oil”,
which is impossible, hence C3 is UD. Universality follows from the fact that 1” < 1; for
i > 1. By Proposition 5, completeness follows from

f 2-Ic:I =2 f 2-(i+2)Fi= f 2-(i+l)Fi= 1,
i=l i=l i=l

as was shown in the proof of Proposition 2. 0

For decoding, after having checked that the codeword is not 111, we search for the
pattern “011”. As before, we add a “1” at the end of the input to allow identical
processing of all the codewords. The index of a codeword of length r of the form

YlY2 *.. y, (recall that y, = 1) is computed by adding together the following three
quantities: (a) The number of codewords of length < r, which is Cjl:2F,_2 =
2F,_, - 2; (b) Y~F,._~, since depending on the value of y2 a codeword belongs to one
of the two blocks, each of size F,_ 2, which are defined in step 2 of the construction of
C3; (c) the relative index within the block. This relative index is obtained by consider-
ing the r - 2 rightmost bits of the codeword as the representation of an integer in the
Fibonacci numeration system, and subtracting F,- 1 - 1 since the r - 2 rightmost bits
represent integers in the range [F,_ 1, F, - 11. Summarizing,

index=2F,_l -2+y,F,-2+ i yiFi-1 -F,_l +l
i=3

r+1

= ig3 YP- I + (~2 - l)F,-2 - 1,

AS. Fraenkel, XT. Klein / Discrete Applied Mathematics 64 (1996) 31-55 51

where y,, 1 = 1 is the first bit of the following codeword.

Decoding procedure for C3
N c length(M)
M IV+ 1 c 1 [suffixing “1” at the end of the input string]
it2

while i < N do [i points to the 2nd bit from the left of a codeword]
if MimIMiMi+ = 111 then [codeword 1114

access translation table at second entry
ici+3

else
index +- - 1

~2 + Mi [second bit]
kc1
repeat [evaluate index of the codewordn

ici+l
kck+l
index + index + (Mi x Fk)

until Mi_2Mi_1Mi = 011 [look for pattern “Oll”4
access translation table at index + (y2 - l)Fk _ 2
i+i+l

end

5. Examples

Three “real-life” examples were chosen, each showing the optimality of another
variant for the given distribution. The first example is the distribution of the 26
characters in an English text of 100 000 words chosen from many different sources, as
given by Heaps [16]. In Table 2, the letters are listed in decreasing probability of
occurrence, together with their Huffman code, C’, C2 and C3 codes. For the Huffman
code, the codewords for the letters L and K are synchronizing. This is the example in
[8] of the Huffman code for English which maximizes the sum of the probabilities of
the synchronizing codewords; finding the best possible Huffman code in this sense is
still an open problem.

The second example is the distribution of 30 Hebrew letters (including two kinds of
apostrophes and blank) as computed from the data base of the Responsa Retrieval
Project [9] of about 40 million Hebrew and Aramaic words. Using the method
presented in [S], we constructed a Huffman code for this alphabet with one syn-
chronizing codeword, which appeared with probability 0.0035.

The third example is of a different kind. A large sparse bit-vector may be com-
pressed in the following way (see, for example, [19]): the vector is partitioned into

52 AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55

Table 2
Distribution of letters in English text

Letter Probability Huffman C’ c2 C3

E
T
A

0
I

N

S
R

H
L

D

U

C
F

M

W
Y

G
P
B

V

K
X

h
Z

0.1265

0.0978
0.0789
0.0776

0.0707
0.0706

0.0631

0.0595
0.0574

0.0394
0.0389

0.0280

0.0268
0.0256

0.0244

0.0214
0.0202
0.0187

0.0186
0.0156

0.0102

0.0060
0.0016

0.0010

0.0009
0.0006

011
111

0001
0011

0100
0101

1010
1011

1100
11011
11010
10011

10010

00101

00100

00001

OOOC01

100001
100010

100011

1OOOOOl
1OOOOOOl

100000001

1000000001
1ooooooooO

11

011
0011

1011

00011
10011

01011

000011
100011
010011

001011
101011

0000011
1000011

0100011

0010011
1010011

0001011
1001011

0101011

OOOwOll
1OOOOO11

01000011

00100011
10100011

00010011

1

101
1001

10001
10101

100001

101001
100101

1OOOOOl

1010001
1001001

1000101
1010101

1OOOOOOl

10100001

10010001
10001001

10101001

10000101
10100101

10010101

lOOOOOO01
101OOOOO1
100100001

100010001

101010001

101
111

1001
1101

10001
10101

11001
11101

100001
101001
100101
110001

111001
110101

1000001

1010001
1001001
1000101
1010101

1100001
1110001

1101001

1100101
1110101

10000001

10100001

Weighted average 4.185 4.895 5.298 4.891

k-bit blocks, then the 2k possible block patterns are assigned Huffman (or other) codes
according to their probability or occurrence. The statistics were collected from 15 378
bit-vectors of 42 272 bits each, which were constructed at the Responsa Project: each
vector serves as an “occurrence map” for a different word, the bit position referring to
the number of the document, where the value at position i is 1 if and only if the given
word appears in the ith document. We chose k = 8, thus the alphabet consisted of 256
“characters”. As the vectors are extremely sparse - the proportion of l-bits is only
1.7% - the probability of a block consisting only of zeros is high (0.925), hence there is
much waste in using a code such as C’ or C3, for which the first codeword is longer
than one bit. By [8, Theorem 51, the Huffman code corresponding to this distribution
is synchronous, the only synchronizing codeword we found had probability 0.000048.
(Actually, using the notion of generalized numeration systems, one can achieve much
better compression of sparse bit-vectors than the Huffman compression approach of
[19]! See [12].)

AS. Fraenkel, S.T. Klein J Discrete Applied Mathematics 64 (1996) 31-55 53

Table 3

Average values for loo0 coded characters

English

26 letters

Hebrew

30 letters

Bit-vectors

256 letters

Huffman length 4185 4285 1415

Y%’ 14.84 166.5 18259

C’ length 4895 4824 2326

Y% 1.849 1.874 2.436

C2 length 5298 5127 1450

9% 1.551 1.653 2.876

C3 length 4891 4884 3235

Y% 1.633 1.632 1.929

Table 4

Average values using m-bit blocks

English Hebrew Bit-vectors

m

length Y%” length 9%” length 9%”

9

10

11

12

13

14

15

16

17

18

19

20

50

100
to

5041

4949

4815

4814

4763

4720

4682

4650

4621

4596

4514

4332

4258

4185

- 5408 1.056

1.238 5270 1.178

1.362 5162 1.300

1.486 5075 1.420

1.608 5004 1.540

1.731 4945 1.660

1.853 4895 1.779

1.974 4852 1.898

2.095 4814 2.017

2.217 4781 2.135

2.338 4152 2.253

2.458 4127 2.371

6.058 4451 5.888

12.036 4367 11.727

14.843 4285 166.5

1559 3.945

1547 4.299

1537 4.653

1528 5.007

1520 5.361

1514 5.715

1508 6.069

1503 6.422

1498 6.176

1447 17.383

1431 35.056

1415 18259

Table 3 summarizes the results. The lines headed “length” give the expected length
in bits of a file of 1000 coded characters. The sensitivity factors were computed using
the given probability distributions. For the Huffman codes, the table gives the
sensitivity factor 9’F’ and their values are italicized to differentiate them from the
YF-values. If fixed-length codes were used, 5000 bits would be necessary for the
English or Hebrew alphabet and 8000 bits for the bit-vector.

Table 4 gives the new values for the length and 9’9” when m-bit blocks are used to
improve the robustness of Huffman codes. These values were computed using the
formulae of Section 2.3. The line for m = co corresponds to the original Huffman
algorithm, again with 9’9’.

54 AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55

As can be seen, for the English alphabet with m E { 12,131, both the Y’%” and the
average length are better than for C3, which was the best of the C’ codes for this
example. For the Hebrew alphabet the code C’ always gives either better compression
or better robustness and for m = 16 both values are better. The bit-vectors are an
example of a case where a value of 9%” as good as the 9% for the C’ codes cannot be
reached, since m must not be smaller than 12 which was the length of the longest
codeword. Moreover, for small values of m, both 9%” and length are worse than for
Cz and only for m 2 47 the average length is shorter than for C2, but with 9%” as
high as 15.34.

6. Concluding remarks

New sequences of variable-length codes were proposed, for applications where
Huffman codes cannot be applied, e.g., when the probability distribution is not exactly
known or changes in time, and for situations where the optimal compression of
Huffman codes is not critical, and simplicity, faster processing and robustness against
errors are preferred. If we restrict ourselves to a model allowing only substitution
errors (as in [15] and in Section 2.3), then the simplest way to obtain the above
properties is to use fixed-length codes, which however are independent of the prob-
ability distribution and may thus be very inefficient. The C’ codes proposed here,
which can be encoded and decoded very efficiently, both in time and space, should
then be regarded as a compromise between fixed-length and Huffman codes.

However, since our definition of an error allows also the number of transmitted bits
to be changed, a fixed-length code F becomes even more vulnerable than some
Huffman codes. An additional bit or a lost bit cause a shift of the encoded string,
which will therefore be incorrectly interpreted, so that Y%(F) will not be bounded
when the number of encoded cleartext elements grows indefinitely. Although a single
bit error may be self-correcting after a few codewords for certain codes, there are many
others (e.g., when all the codewords have even length) for which this is not possible
when the number of transmitted bits changes. On the other hand, the C’ codes are
immune also to such errors, the number of false interpretations being still at most 3.

References

[l] A. Apostolico and A.S. Fraenkel, Robust transmission of unbounded strings using Fibonacci repres-
entations, IEEE Trans. Inform. Theory 33 (1987) 238-245.

[2] T. Bell, J.G. Cleary and LH. Witten, Text Compression (Prentice-Hall, Englewood Cliffs, NJ, 1990).
[3] J. Berstel and D. Perrin, Theory of Codes (Academic Press, Orlando, FL, 1985).
[4] A. Bookstein and ST. Klein, Is Huffman coding dead?, Computing 50 (1993) 279-296.
[S] Y. Choueka, S.T. Klein and Y. Perl, Efficient variants of Huffman codes in high level languages, in:

Proceedings of the 8th ACM-SIGIR Conference, Montreal (1985) 122-130.
[6] P. Elias, Universal codeword sets and representation of the integers, IEEE Trans. Inform. Theory 12

(1975) 194-203.

AS. Fraenkel, S.T. Klein / Discrete Applied Mathematics 64 (1996) 31-55 55

[7] S. Even and M. Rodeh, Economical encoding of commas between strings, Comm. ACM 21 (1978)

315-317.

[8] T.J. Ferguson and J.H. Rabinowitz, Self-synchronizing Huffman codes, IEEE Trans. Inform. Theory

30 (1984) 687-693.

[9] A.S. Fraenkel, All about the responsa retrieval project you always wanted to know but were afraid to

ask, expanded summary, Jurimetrics J. 16 (1976) 149-156.

[lo] AS. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985) 105-114.

[11] AS. Fraenkel, The use and usefulness of numeration systems, Inform. and Comput. 81 (1989) 46-61.

[12] A.S. Fraenkel and S.T. Klein, Novel compression of sparse bit-strings - preliminary report, Combina-

torial Algorithms on Words, NATO ASI Series F12 (Springer, Berlin, 1985) 169-183.

[13] E.N. Gilbert, Synchronization of binary messages, IRE Trans. Inform. Theory 6 (1960) 470-477.

[14] L.J. Guibas and A.M. Odlyzko, Maximal prefix-synchronized codes, SIAM J. Appl. Math. 35 (1978)

401-418.

[151 R.W. Hamming, Coding and Information Theory (Prentice-Hall, Englewood Cliffs, NJ, 2nd ed., 1986).

[16] H.S. Heaps, Information Retrieval, Computational and Theoretical Aspects (Academic Press, New

York, 1978).

[17] D.S. Hirschberg, and D.A. Lelewer, Efficient decoding of prefix codes, Comm. ACM 33 (1990)

449-459.

[18] D. Huffman, A method for the construction of minimum redundancy codes, Proc. IRE 40 (1952)

1098-1101.

[19] M. Jakobsson, Huffman coding in bit-vector compression, Inform. Process. Lett. 7 (1978) 304-307.

[20] B.H. Jiggs, Recent results in comma-free codes, Canad. J. Math. 15 (1963) 178-187.

1211 W.H. Kautz, Fibonacci codes for synchronization control, IEEE Trans. Inform Theory 11 (1965)

284-292.

[22] K.B. Lakshmanan, On universal codeword sets, IEEE Trans. Inform. Theory 27 (1981) 659-662.

[23] D.A. Lelewer and D.S. Hirschberg, Data compression, ACM Comput. Surveys 19 (1987) 261-296.

[24] B. McMillan, Two inequalities implied by unique decipherability, IRE Trans. Inform. Theory 2 (1956)

115-116.

[25] J.A. Storer, Data Compression: Methods and Theory (Computer Science Press, Rockville, MD, 1988).

[26] R.N. Williams, Adaptive Data Compression (Kluwer Academic Publishers, Dordrecht, 1990).

[27] E. Zeckendorf, Representation des nombres naturels par une somme de nombres de Fibonacci ou de

nombres de Lucas, Bull. Sot. Roy. Sci. Liege 41 (1972) 179-182.

[28] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform.

Theory 23 (1977) 337-343.

[29] J. Ziv and A. Lempel, Compression of individual sequences via variable-rate coding, IEEE Trans.

Inform. Theory. 24 (1978) 530-536.

