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Abstract

The vibration of fast trains is governed by a quadratic palindromic eigenvalue problem (�2AT
1 + �A0 + A1)x = 0, where

A0, A1 ∈ Cn×n and AT
0 = A0. Accurate and efficient solution can only be obtained using algorithms which preserve the structure

of the eigenvalue problem. This paper reports on the successful application of the structure-preserving doubling algorithms.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Railway travel was the first form of mass transport. After World War II, improvements in automobiles, highways
and aircrafts made them practical for a greater portion of the population, especially in the US. However, in the densely
populated areas of Europe and Japan, emphasis was given to rebuilding the railways. Due to the rise of the price of
petroleum and environmental concerns, railway travel is back in favour. All over the world, railways are being upgraded
or built for modern trains running on higher speed.

Consequently, there is tremendous interest in vibration analysis of fast trains, as indicated by the amount of publicity
for the associated palindromic eigenvalue problem [14]. The problem was first raised in a study in Germany [10,11],
associated with the company SFE GmbH in Berlin. Existing fast train systems, like the Japanese Shinkansen, the
French TGV and the German ICE, are being modernized and expanded. Based on these systems, new networks are
being planned or built in Europe, the US and Asia.

Vibration is produced from the interaction between the wheels of trains and the rails underneath. Due to the ever
increasing speed (currently up to 300 km/h) of modern trains, it is important to study this vibration. This research
does not only contribute to the increased comfort of passengers, in terms of lower noise and vibration levels. More
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importantly, the safety in the operation of the trains will be improved and the operational and construction costs
optimized [11,14,16,17]. In addition, innovative designs of railway bridges, embedded rail structures (ERS) and train
suspension systems require accurate resolution of the vibration.

From the finite element model of the rail sections (see details in Section 2), we need to solve the palindromic
eigenvalue problem

P(�)x = 0, x �= 0, (1)

with the matrix quadratic

P(�) ≡ �2A1 + �A0 + AT
1 , (2)

where Ai ∈ Cn×n (i = 0, 1) and AT
0 = A0. Here A0 and A1 are dependent on some parameter � associated with

the speed of the train, the eigenvalues � are related to the vibration frequencies and the corresponding eigenvectors x
reflect the shape of the vibration. The problem is described as palindromic1 as A1 appears at both ends of (2) and A0 is
symmetric. Consequently, transposition of (1) shows that the set of eigenvalues demonstrates a “symplectic” behaviour
(i.e., a symmetry with respect to the unit circle), containing both an eigenvalue � and its reciprocal.

For the finite element model to work reasonably accurately, n (proportional to the number of elements) has to be
large, up to several hundred thousand. To optimize the design of the rail and the train, we need to calculate all 2n

eigenvalues and their corresponding eigenvectors, for a wide range of speeds (or �). In addition, (1) is badly scaled,
with A1 being singular in general and � spreading out evenly. All these conspire to make our problem very difficult
and computing-intensive, even for modest values of n.

Previously, the problem (for small values of n up to several thousand) was tackled by existing finite element packages,
producing useless answers with very poor accuracy. The only available approach was to convert (or linearize) (1) to
a problem twice as large. Available algorithms typically transform the larger linearized problem to simpler forms.
However, the symplectic structure in (1) is not preserved by these transformations, producing large numerical errors
(and no significant digits in the answers; see [11,14] for details).

Recently, a linearization in the form �Z ± ZT, which preserves symplecticity to some extent, was discovered
[11,16,17]. This linearization, coupled with standard software, leads to better but still very low accuracy. This represents
a vast improvement over previous attempts but the results are still not accurate enough for the optimization of design
parameters [14].

Note that we can transform �Z − ZT back to the form �(−Z) + (−Z)T with � = −�. Similarly, �2AT
1 + �A0 + A1

and �2AT
1 − �A0 + A1 define the same palindromic eigenvalue problem.

A great foundation for the solution of palindromic eigenvalue problems has been laid in [11,16,17]. There has been
much recent interest in quadratic eigenvalue problems [20]. For the vibration analysis of fast trains, see [11,14] for
general introductions and [10] for details. For general perturbation of eigenvalues for polynomial eigenvalue problems,
see [1]. Some perturbation of palindromic eigenvalue problems can be found in [5]. On results for general matrix
polynomials, see the masterpiece [6].

This paper is organized as follows. A finite element model for the vibration analysis of fast trains will be described
in Section 2. The deflation of zero and infinite eigenvalues is discussed in Section 3. The structure-preserving doubling
algorithms (SDAs) are developed and analysed in Sections 4 and 5. The associated numerical examples will be presented
in Section 6 and the paper is concluded in Section 7.

This paper is a preliminary report on the successful application of the SDAs on the quadratic palindromic eigenvalue
problem. The problem is difficult, far from being solved (see the concluding comments in Section 7). Our numerical
results show much promise but there are theoretical gaps we are aiming to fill. Nevertheless, we feel this report is
warranted, in view of the tremendous interest shown to date.

2. Finite element model for vibration of fast trains

We shall study the resonance phenomena of the track under high frequent excitation forces. Research in this area
not only contributes to the safety of the operations of high-speed trains but also new designs of train bridges, ERS

1 Literally “running back again” in Greek, with “palin” meaning “again” and “drom” meaning “run”; as in the palindromes “madam” or “nurses
run”.
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Fig. 1. A 3D rail model.

and train suspension systems. Recently, the dynamic response of the vehicle–rails–bridge interaction system under
different train speeds has been studied in [21] and a procedure for designing an optimal ERS is proposed in [18]. An
accurate numerical estimation to the resonance frequencies of the rail plays an important role in both works. However,
as mentioned in [14], the classic finite element packages fail to deliver correct resonance frequencies for such problems
[14]. Here, we would like to compare the method proposed in [16], with the generalized SDA methods proposed in
[3,15], in solving the palindromic eigenvalue problems arising from spectral modal analysis of the resonance of the
rail under a periodic excitation force.

We assume that the rail sections between consecutive sleeper bays are identical, distances between consecutive
wheels are the same and the wheel loads are equal. Fig. 1 shows an example of the rail section we consider here.

Based on our assumptions, we model the rail under cargo wheel loads by a section of rail between two sleepers. The
external force is assumed to be periodic and the displacements of two boundary cross sections of the modelled rail are
assumed to have a ratio �, which is dependent on the excitation frequency of the external force. In the following, we
consider the rail as a 3D isotropic elastic solid and a 3D finite element model of the solid with linear isoparametric
tetrahedron elements is introduced.

From the element virtual work principle, the equilibrium state of the solid element e under external body forces
satisfies the following equation:∫

e

(��T)C� dV +
∫

e

(�qT)�q̈ dV =
∫

e

(�qT)f dV . (3)

Here, � is the mass density, f is the time-dependent body force, q = [u, v, w] is the displacement vector, � =
[ �u

�x
,

�v

�y
,

�w

�z
,

�u

�y
+ �v

�x
,

�w

�x
+ �u

�z
,

�v

�z
+ �w

�y
], and �qT and ��T are the virtual displacement and the corresponding virtual

strain vectors, and

C = E

(1 + 	)(1 − 2	)
diag(C1, C2)

is the well-known strain–stress relationship, where E is the Young’s modulus, 	 is the Poisson ratio and

C1 =
[1 − 	 	 	

	 1 − 	 	
	 	 1 − 	

]
, C2 =

(
1 − 2	

2

)
I3.

Let 
i and [ui, vi, wi]T (i = 1, . . . , 4) be the linear nodal basis function and the nodal displacement vector associ-
ated with the ith node of the element e, respectively, and let Xe = [XT

1 , XT
2 , XT

3 , XT
4 ]T, Be = [B1, B2, B3, B4] and
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Ne = [N1, N2, N3, N4], where

Xi =
[

ui

vi

wi

]
, Ni =

[
i 0 0
0 
i 0
0 0 
i

]
, Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
i

�x
0 0

0
�
i

�y
0

0 0
�
i

�z
�
i

�y

�
i

�x
0

�
i

�z
0

�
i

�x

0
�
i

�z

�
i

�y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Eq. (3) can now be discretized into the following linear equations:∑
e

(∫
e

BT
e CBe dV

)
Xe + �

(∫
e

NT
e Ne dV

)
Ẍe =

∑
e

(∫
e

NT
e Ne dV

)
Fe, (4)

where Fe =[F T
1 , F T

2 , F T
3 , F T

4 ]T and Fi (i =1, . . . , 4) is the ith nodal force vector acting on element e. In the following,
we denote K = ∑

e

∫
e
BT

e CBe dV , and M = ∑
e�

∫
e
NT

e Ne dV . Eq. (4) can now be written as

KX + MẌ = �−1MF. (5)

When considering the dynamic response of the solid, dissipative forces such as the force due to frictions have to be
considered. Their effect is introduced in the form of the so-called viscous damping DẊ where D is the damping matrix.
In this paper, proportional damping proposed in [19] is employed where D is a linear combination of K and M. The
equation of motion involving viscous damping can now be written as

KX + DẊ + MẌ = �−1MF.

Due to the given boundary conditions on a uniform mesh, K, D and M have the following form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G11 G12 0 · · · 0
1

�
GT

m,m+1

GT
12 G22 G23 0 0

0
. . .

. . .
. . .

. . .
...

... 0
. . .

. . .
. . . 0

0
. . . GT

m−2,m−1 Gm−1,m−1 Gm−1,m

�Gm,m+1 0 · · · 0 GT
m−1,m Gm,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with Gii ∈ Cni×ni for i = 1, . . . , m. Furthermore, from the spectral modal analysis, one considers X = X̂ei�t where
� is the frequency of the external excitation force and X̂ is the corresponding eigenmode. Consequently, we arrive to
a palindromic eigenvalue problem

(�A1 + A0 + �−1AT
1 )X̂ = 0,

where A0, A1 ∈ Cn×n with n = n1 + · · · + nm and

[A1]ij =
{

Km,m+1 + i�Dm,m+1 − �2Mm,m+1 (if i = m and j = 1),

0 (otherwise),
(6)

[A0]ij =
{

Ki,j + i�Di,j − �2Mi,j (if i − 1�j � i + 1),

0 (otherwise).
(7)
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3. Deflation

We shall consider the deflation of zero and infinite eigenvalues in this section. For the deflation of � = ±1,
consult [16].

From their definitions in (6), A1 and A0 can be partitioned as

A1 =
[ 0 0 0

0 0 0
L 0 0

]
∈ Cn×n, A0 =

⎡⎣C11 C12 0
CT

12 C22 C23

0 CT
23 C33

⎤⎦ ∈ Cn×n,

where L ∈ Cnm×n1 , C11 =CT
11 ∈ Cn1×n1 , C33 =CT

33 ∈ Cnm×nm and C22 =CT
22 ∈ C�×� with �= n− n1 − nm. Assume

that C22 is nonsingular. We have observed that this assumption is generically valid from the numerical examples we
have encountered. Otherwise, the preprocessing procedure in [11,16] should be applied.

Let

� =
⎡⎢⎣In1 −C12C

−1
22 0

0 I� 0

0 −CT
23C

−1
22 Inm

⎤⎥⎦ , � =
⎡⎢⎣In1 0 0

0 0 Inm

0 I� 0

⎤⎥⎦ .

Then, using a similarity transformation, P(�) can be transferred to the following form:

��P(�)�T�T =
⎡⎢⎣�(C11 − C12C

−1
22 CT

12) LT − �C12C
−1
22 C23 0

�(�L − CT
23C

−1
22 CT

12) �(C33 − CT
23C

−1
22 C23) 0

0 0 �C22

⎤⎥⎦
= diag(In1 , �Inm, I�)

[
S(�) 0

0 �C22

]
, (8)

where

S(�) =
[

�C̃11 LT − �C̃12

�L − C̃T
12 C̃22

]
with C̃11 ≡ C11 − C12C

−1
22 CT

12, C̃12 ≡ C12C
−1
22 C23 and C̃22 ≡ C33 − CT

23C
−1
22 C23.

Lemma 3.1. Let Ai,i+1 = [A0]i,i+1 for i = 1, . . . , m − 1 defined in (7) and L has full row rank. Then all of the
eigenvalues of S(�) are nonzero.

Proof. Let u1 and u2 be vectors so that

0 = S(0)

[
u1

u2

]
=

[
LTu2

−CT
23C

−1
22 CT

12u1 + (C33 − CT
23C

−1
22 C23)u2

]
.

Since L has full row rank, it implies that u2 = 0 and then

CT
23C

−1
22 CT

12u1 = 0. (9)

Let ⎡⎢⎣
v1

...

vm−2

⎤⎥⎦ ≡ C−1
22 CT

12u1. (10)
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Substituting CT
23 = [0 · · · 0 AT

m−1,m] and (10) into (9), we get AT
m−1,mvm−2 = 0. Since Am−1,m has full row rank, it

implies that vm−2 = 0. From (10),⎡⎢⎢⎢⎢⎣
AT

12u1

0
...

0

⎤⎥⎥⎥⎥⎦ = CT
12u1 = C22

⎡⎢⎢⎢⎢⎣
v1

...

vm−3

0

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A22v1 + A23v2

AT
23v1 + A33v2 + A34v3

...

AT
m−4,m−3vm−5 + Am−3,m−3vm−4 + Am−3,m−2vm−3

AT
m−3,m−2vm−4 + Am−2,m−2vm−3

AT
m−2,m−1vm−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Aii = [A0]ii for i = 1, . . . , m. Comparing the coefficients of above vectors, we have

0 = AT
m−2,m−1vm−3, (11a)

0 = AT
m−3,m−2vm−4 + Am−2,m−2vm−3, (11b)

0 = AT
m−4,m−3vm−5 + Am−3,m−3vm−4 + Am−3,m−2vm−3, (11c)

...

0 = AT
23v1 + A33v2 + A34v3, (11d)

AT
12u1 = A22v1 + A23v2. (11e)

By the assumption that Ai,i+1 for i=2, . . . , m−2 has full row rank and from (11a)–(11d), we have vm−3 =· · ·=v1 =0.
Substituting v1 = v2 = 0 into (11e) and using the assumption that A12 has full row rank, u1 = 0 which implies that
S(0) is nonsingular without zero eigenvalue. �

From (8), we have the following result for the relationship between eigenpairs of S(�) and those of P(�).

Lemma 3.2. Let [xT, yT]T be an eigenvector of S(�). Then

�T
1 �T

2

⎡⎢⎣x

y

0

⎤⎥⎦ =
⎡⎢⎣ x

−C−1
22 (CT

12x + C23y)

y

⎤⎥⎦
is an eigenvector of P(�). Furthermore, (P(�)) = (S(�)) ∪ {0, ∞}.

4. Structure-preservation algorithms

4.1. SDA1

After swapping the row-blocks, the pencil S(�) is equivalent to

�

[
L 0

C̃11 −C̃12

]
+

[−C̃T
12 C̃22

0 LT

]
,
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which is in a generalized standard symplectic form (GSSF) [12]. The structure-preserving doubling algorithm (SDA1) in
[12] can then be applied to solve the corresponding eigenvalue problem. During the iteration, some matrices are required
to be well-conditioned. When this does not hold, Cayley transforms can be applied to transform the corresponding
symplectic matrix pair to an associated Hamiltonian matrix and then back, introducing free two parameters against
which this condition can be optimized. For details, see [2].

In terms of accuracy and speed of convergence, SDA1 behaves similarly as SDA2 below. However, the operation
count for SDA1 doubles that of SDA2. As a result, we shall not discuss SDA1 further. However, SDA1 is a weapon in
reserve against difficult palindromic eigenvalue problems, when some assumptions for SDA2 are not satisfied.

4.2. Palindromic linearization and QZ

Assume that C̃22 is invertible. Define a new �-matrix S̃(�) as follows:

S̃(�) ≡
[
In1 −LTC̃−1

22

0 In3

]
S(�)

[
In1 0

C̃−1
22 C̃T

12 In3

]

=
[�(C̃11 − LTC̃−1

22 L − C̃12C̃
−1
22 C̃T

12) + LTC̃−1
22 C̃T

12 −�C̃12

�L C̃22

]
(12)

and let [x̃T, ỹT]T be an eigenvector of S̃(�); i.e.,

�[(C̃11 − LTC̃−1
22 L − C̃12C̃

−1
22 C̃T

12)x̃ − C̃12ỹ] + LTC̃−1
22 C̃T

12x̃ = 0, (13a)

�Lx̃ + C̃22ỹ = 0. (13b)

Since C̃22 is invertible, from (13b) ỹ can be represented as

ỹ = −�C̃−1
22 Lx̃. (14)

Substituting (14) into (13a), we get the following new small size palindromic quadratic eigenvalue problem:

Pd(�)x̃ ≡ (�2Ad1 + �Ad0 + AT
d1)x̃ = 0, (15)

where

Ad1 = C̃12C̃
−1
22 L ∈ Cn1×n1 , (16)

Ad0 = C̃11 − LTC̃−1
22 L − C̃12C̃

−1
22 C̃T

12 ∈ Cn1×n1 . (17)

Assume that � �= −1 (or the eigenvalue can be deflated as in [16]). From (15), we get[
AT

d1 Ad0

0 AT
d1

] [
x̃

�x̃

]
= �

[
0 −Ad1

AT
d1 0

] [
x̃

�x̃

]
, (18)

[
Ad1 0

Ad0 Ad1

] [
x̃

�x̃

]
= −1

�

[
0 −Ad1

AT
d1 0

] [
x̃

�x̃

]
. (19)

Adding (18) and subtracting (19) with the following equation:[
0 −Ad1

AT
d1 0

] [
x̃

�x̃

]
=

[
0 −Ad1

AT
d1 0

] [
x̃

�x̃

]
,

we get[
AT

d1 Ad0 − Ad1

AT
d1 AT

d1

] [
x̃

�x̃

]
= (� + 1)

[
0 −Ad1

AT
d1 0

] [
x̃

�x̃

]
, (20)

[
Ad1 Ad1

Ad0 − AT
d1 Ad1

] [
x̃

�x̃

]
= −� + 1

�

[
0 −Ad1

AT
d1 0

] [
x̃

�x̃

]
. (21)
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Substituting (20) into (21), then the palindromic quadratic eigenvalue problem in (15) can be linearized as the following
generalized palindromic eigenvalue problem:[

AT
d1 Ad0 − Ad1

AT
d1 AT

d1

] [
x̃

�x̃

]
+ �

[
Ad1 Ad1

Ad0 − AT
d1 Ad1

] [
x̃

�x̃

]
= 0. (22)

The standard QZ algorithm [7] can then be applied to the above palindromic linearization.
Substituting x̃ into (14), eigenvector [x̃T, ỹT]T of S̃(�) can be obtained. From (12), the following result is easily

obtained.

Lemma 4.1. Let [x̃T, ỹT]T be an eigenvector of S̃(�). Then[
x

y

]
≡

[
In1 0

C̃−1
22 C̃T

12 Inm

] [
x̃

ỹ

]
=

[
x̃

C̃−1
22 C̃T

12x̃ + ỹ

]
is an eigenvector of S(�).

Now, we summary above precesses with Lemmas 3.2 and 4.1 in the following algorithm.

Algorithm 4.1 (QZ for palindromic QEP).

Input: C11, C22, C33, C12, C23, L; � (a small tolerance);
Output: an eigenpair (�, [xT, zT, yT]T) of Palindromic QEP.

Compute C̃11 = C11 − C12C
−1
22 CT

12,
C̃12 = C12C

−1
22 C23,

C̃22 = C33 − CT
23C

−1
22 C23,

Ad1 = C̃12C̃
−1
22 L,

Ad0 = C̃11 − LTC̃−1
22 L − C̃12C̃

−1
22 C̃T

12;

Set Z =
[

AT
d1

AT
d1

Ad0−Ad1
AT

d1

]
;

Compute the eigenpair (�, x̂) of Zx̂ + �ZTx̂ = 0;
Set x̃ = x̂(1 : n); Solve C̃22ỹ = −�Lx̃;
Set x = x̃; Compute y = C̃−1

22 C̃T
12x̃ + ỹ, z = −C−1

22 (CT
12x + C23y);

4.3. SDA2

Suppose that X is nonsingular. Rewrite Pd(�) in (15) as

Pd(�) = (�Ad1 − X)X−1(�X − AT
d1) + �(Ad1X

−1AT
d1 + X + Ad0).

It follows that Pd(�) can be factorized (or square-rooted) as

Pd(�) = (�Ad1 − X)X−1(�X − AT
d1)

for some nonsingular X if and only if X is satisfied the following nonlinear matrix equation with the plus sign (NME):

Ad1X
−1AT

d1 + X + Ad0 = 0. (23)

We can easily prove the following lemma on the existence of the solutions of the NME:

Lemma 4.2. Let (�1 ⊕ �2, [Y1, Y2]) be an eigenpair of Pd(�) in the sense that

Ad1Yi�
2
i + Ad0Yi�i + AT

d1Yi = 0 (i = 1, 2),

where Yi ∈ Cn1×n1 for i = 1, 2. Suppose that Ad1 and Yi (i = 1, 2) are invertible. Then the corresponding NME (23)
has the solutions X = AT

d1Yi�
−1
i Y−1

i (i = 1, 2).
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Evidently, there are many solutions to the NME, each will facilitate the factorization of Pd(�) we aim for. Assume
that there are no eigenvalues on the unit circle. Consequently, we can partition the spectrum into �s ⊕ �−1

s , with �s
containing the stable eigenvalues (inside the unit circle). The SDA will seek a stable solution Xs ≡ AT

d1Ys�−1
s Y−1

s ,
where Ys contains the eigenvectors corresponding to �s. Note that Xs is unique as it is independent of the order of the
eigenvalues in �s.

The structure-preserving doubling algorithm (SDA2) in [15] can then be applied to solve the NME, and subsequently
the palindromic eigenvalue problem.

Algorithm 4.2 (SDA for palindromic QEP).

Input: C11, C22, C33, C12, C23, L; � (a small tolerance);
Output: an eigenpair (�, [xT, zT, yT]T) of Palindromic QEP.

Compute C̃11 = C11 − C12C
−1
22 CT

12,
C̃12 = C12C

−1
22 C23,

C̃22 = C33 − CT
23C

−1
22 C23,

Ad1 = C̃12C̃
−1
22 L,

Ad0 = C̃11 − LTC̃−1
22 L − C̃12C̃

−1
22 C̃T

12;
Set k = 0, Rk = AT

d1, Qk = −Ad0 and Pk = 0;
Do until convergence:

Compute Rk+1 = Rk(Qk − Pk)
−1Rk ,

Qk+1 = Qk − RT
k (Qk − Pk)

−1Rk ,
Pk+1 = Pk + Rk(Qk − Pk)

−1RT
k , k = k + 1;

If ‖Qk − Qk−1‖��‖Qk‖, Stop;
End;
Compute the left/right eigenpairs (�u, x̃s), (�u, x̂r ) of Qkx̂ = �Ad1x̂;
Solve (�uQk − AT

d1)x̃u = Qkx̂r ; Set �s = �−1
u ;

Solve C̃22ỹ = −�Lx̃ with (�, x̃) = (�s, x̃s) or (�, x̃) = (�u, x̃u);
Set x = x̃; Compute y = C̃−1

22 C̃T
12x̃ + ỹ, z = −C−1

22 (CT
12x + C23y);

In the above algorithm, we require the invertibility of the matrices Qk − Pk . This is the case for large values of k, as
indicated by Corollary 1. We have so far encountered no difficulties in our numerical experiments.

We would also like to point out that the SDA can be shown to be equivalent to applying cyclic reduction [8] to the
resolvent equation Ad1X

2 + Ad0X + AT
d1 = 0.

Finally, equations similar to (23), for real matrices or with the transpose replaced by Hermitian, have been studied
and existing results do not apply. The lack of positivity of matrices or an associated inner product make our NME
difficult to study.

5. Convergence of algorithms

The behaviour of the SDAs is well-documented in [2,3,9,12,13,15]. However, these results are mostly written for
real problem with real variables and have to be modified for our situation. Following the development in [15], let
M − �L ∈ C2n×2n be a T-symplectic pencil, in the sense that

MJMT = LJLT, J =
[

0 I

−I 0

]
. (24)

Define the nonempty null set

N(M,L) ≡
{
[M∗,L∗] : M∗,L∗ ∈ C2n×2n, rank[M∗,L∗] = 2n, [M∗,L∗]

[
L

−M

]
= 0

}
.

For any given [M∗,L∗] ∈ N(M,L), define

M̂ = M∗M, L̂ = L∗L.
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The transformation M− �L → M̂− �L̂ is a doubling transformation. Below is an adaptation of [15, Theorem 2.1]:

Theorem 5.1. Let M̂ − �L̂ be a doubling transformation of a T-symplectic pencil M − �L. Then we have:

(a) The pencil M̂ − �L̂ is still T-symplectic.

(b) If M
[

U
V

]
= L

[
U
V

]
S, where U, V ∈ Cn×m and S ∈ Cm×m, then

M̂

[
U

V

]
= L̂

[
U

V

]
S2.

(c) If the pencil M − �L has the Kronecker canonical form

WMZ =
[
Jr 0

0 I2n−r

]
, WLZ =

[
Ir 0

0 N2n−r

]
, (25)

where W, Z are nonsingular, Jr a Jordan matrix corresponding to the finite eigenvalues of M − �L and N2n−r

a nilpotent Jordan matrix corresponding to the infinite eigenvalues of M − �L, then there exists a nonsingular
matrix Ŵ such that

ŴM̂Z =
[
J 2

r 0

0 I2n−r

]
, ŴL̂Z =

[
Ir 0

0 N2
2n−r

]
. (26)

Proof. (a) Since [M∗,L∗] ∈ N(M,L) implies that M∗L = L∗M, it follows from (24) that

M̂JM̂
T = M∗MJMTMT∗ = M∗LJLTMT∗

= (L∗M)J (MTLT∗ ) = L∗LJLTLT∗ = L̂JL̂
T

implying that M̂ − �L̂ is T-symplectic.
(b) Again using M∗L = L∗M, we have

M∗L
[
U

V

]
= L∗M

[
U

V

]
S,

and hence

M̂

[
U

V

]
= M∗M

[
U

V

]
= M∗L

[
U

V

]
S

=L∗M
[
U

V

]
S = L∗L

[
U

V

]
S2 = L̂

[
U

V

]
S2.

(c) Let

M̃∗ =
[
Jr 0

0 I2n−r

]
W, L̃∗ =

[
Ir 0

0 N2n−r

]
W .

We then have

M̃∗LZ =
[
Jr 0

0 I2n−r

]
WLZ =

[
Jr 0

0 I2n−r

] [
Ir 0

0 N2n−r

]
=

[
Jr 0

0 N2n−r

]
,

L̃∗MZ =
[
Ir 0

0 N2n−r

]
WMZ =

[
Ir 0

0 N2n−r

] [
Jr 0

0 I2n−r

]
=

[
Jr 0

0 N2n−r

]
.

As Z is nonsingular, this implies that [M̃∗, L̃∗] ∈ N(M,L). Notice that (25) implies that M − �L is regular

and rank
[
M
L

]
= 2n. Thus [M∗,L∗] and [M̃∗, L̃∗] form two different bases of the null set N(M,L). Conse-

quently, there exists a nonsingular matrix W̃ such that [M̃∗, L̃∗] = W̃ [M∗,L∗]. It can be verified easily that W̃

satisfies (26). �
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It is easy to verify that NME (23) has a symmetric nonsingular solution X if and only if X satisfies

M

[
I

X

]
= L

[
I

X

]
S

for some S ∈ Cn×n, where

M ≡
[

AT
d1 0

−Ad0 −I

]
, L ≡

[
0 I

Ad1 0

]
.

Note that M − �L is in the second standard symplectic form (SSF-2) [15].
For the convergence of the SDA, we have the following adaptation of [15, Theorem 4.1]:

Theorem 5.2. Let X be a symmetric invertible solution of (23) and let S = X−1Ad1. Then the matrix sequences {Rk},
{Qk} and {Pk} generated by Algorithm 4.2 satisfy

(a) Rk = (X − Pk)S
2k

;
(b) Qk − Pk = (X − Pk) + RT

k (X − Pk)
−1Rk;

(c) Qk − X = (ST)2k
(X − Pk)S

2k
;

provided that all the required inverses of Qk − Pk exist.

Proof. We shall apply mathematical induction. Denote

Mk ≡
[

Rk 0

Qk −I

]
, Lk ≡

[−Pk I

RT
k 0

]
,

with R0 = AT
d1, Q0 = −Ad0 and P0 = 0.

For k = 1, the NME in (23) implies the invertibility of[
X R0

RT
0 Q0

]
=

[
I 0

RT
0 X−1 I

] [
X 0

0 X

] [
I X−1R0

0 I

]
.

Further computation yields[
I −R0Q

−1
0

0 I

] [
X R0

RT
0 Q0

] [
I 0

−Q−1
0 RT

0 I

]
=

[
X − R0Q

−1
0 RT

0 0

0 Q0

]
.

Consequently,

X − P1 = X − R0Q
−1
0 RT

0 (27)

is invertible, as required in (b).
From (23), it is easy to verify that X satisfies

M0

[
I

X

]
= L0

[
I

X

]
S

with S = X−1R0. Since M1 − �L1 is a doubling transformation of M0 − �L0. Part (b) in Theorem 5.1 implies

M1

[
I

X

]
= L1

[
I

X

]
S2.

The blocks in the above equation yield

R1 = (X − P1)S
2, Q1 − X = RT

1 S2.
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Together with (27), these imply the invertibility of

Q1 − P1 = (X − P1) + RT
1 (X − P1)

−1R1, Q1 − X = (ST)2(X − P1)S
2. (28)

We have proved the theorem for k = 1.
With the theorem holding for all positive integers up to k, we shall prove the case for k+1. Since Qk −Pk is assumed

to be invertible, it follows that Rk+1, Pk+1 and Qk+1 are well defined. Similar to the proof of (27), the equality in (b)
implies the invertibility of

X − Pk+1 = (X − Pk) − Rk(Qk − Pk)
−1RT

k .

On the other hand, since Mj+1 − �Lj+1 is a doubling transformation of Mj − �Lj for j = 0, 1, . . . , k, repeat
application of Part (b) in Theorem 5.1 implies

Mk+1

[
I

X

]
= Lk+1

[
I

X

]
S2k+1

.

This, following the same argument leading to (28), implies the invertibility of

Qk+1 − Pk+1 = (X − Pk+1) + RT
k+1(X − Pk+1)

−1Rk+1,

Qk+1 − X = (ST)2k+1
(X − Pk+1)S

2k+1
.

This completes the proof for the k + 1 case, and the induction argument. �

Note that Theorem 5.2 provides only the algebraic expressions for Rk , Qk − Pk and Qk − X. Convergence to the
unique symmetric stable solution Xs, which the SDA seeks, is summarized in the following corollary.

Corollary 1. When S is stable, Rk → 0 and Qk → X quadratically as k → ∞.

6. Numerical results

In this section, we test a numerical example to illustrate the convergence behaviours of Algorithms 4.1 and 4.2.
All computations were performed in MATLAB R2006b using IEEE double-precision floating-point arithmetic (eps ≈
2.22 × 10−16) on a linux system.

To measure accuracy of an approximate eigenpair (�, x) for (1), we use the residual

Res ≡
{‖�2A1x + �A0x + AT

1 x‖F if |�| < 1,

‖A1x + �−1A0x + �−2AT
1 x‖F if |�|�1

(29)

and the relative residual

RRes ≡ ‖�2A1x + �A0x + AT
1 x‖F

(|�2|‖A1‖F + |�|‖A0‖F + ‖A1‖F )‖x‖F

. (30)

In our numerical results, the Poisson ratio � is 0.3, the Young’s modulus E is 2.068 × 1011 and the material density �
is 7.9 × 103. The frequency � = 1180 and the damping matrix D is taken as the following linear combination of K and
M:

D = 0.2K + 0.8M .

Using the finite element discretization with an uniform mesh, we obtain L, C11, C33 ∈ C303×303 and C22 ∈ C5151×5151.
In the corresponding palindromic quadratic eigenvalue problem, there are 11,514 eigenvalues before deflation. After
deflation, there were 138 finite (nonzero) eigenvalues with absolute values in [10−14, 1014]. A distribution of these
eigenvalues is shown in Fig. 2. Here we compare the results produced by Algorithm 4.1 with those by Algorithm 4.2 for
computing these eigenvalues. The results produced by Algorithms 4.1 and 4.2 are marked by “×” and “◦”, respectively,
in Figs. 4 and 5.
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Fig. 2. Eigenvalue distribution.
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Fig. 3. The norms of Qk+1 − Qk and Rk for each iteration of SDA in Algorithm 4.2.

In [11], Hilliges et al. suggested a structured-preserving method to solve the linearized palindromic eigenvalue
problem (22), but the method was still under development. Therefore, we use a classical non-structure-preserving
method to solve (22). In our implementation, all the eigenvalue sub-problems in Algorithms 4.1 and 4.2 are computed
by MATLAB command “eig”. Algorithm 4.2 requires seven iterations to compute approximate solutions of NME
(23) by using the SDA. The convergent behaviour of the SDA in Algorithm 4.2, which is matched by the result of
Theorem 5.2, is shown in Fig. 3.

In order to compare the accuracy of eigenpairs produced by Algorithms 4.1 and 4.2, the residual “Res” and relative
residual “RRes” defined in (29) and (30), respectively, are reported in Fig. 4. From this figure, we see that the eigenpairs
produced by Algorithm 4.2 is obviously more accurate than those by Algorithm 4.1 except for the eigenvalues near the
unit circle (with similar accuracies). The important reciprocal property of the eigenvalues is reported in Fig. 5. For a
computed stable eigenvalue �i with 10−14 � |�i |�1, we select a computed unstable eigenvalue �(i) with 1� |�(i)|�1014

so that ri ≡ |�i�(i) − 1| is minimal. In Fig. 5, {|�i |, ri} are plotted for approximate eigenvalues from both Algorithms
4.1 and 4.2. Because of the structure-preserving nature of the SDA and Algorithm 4.2, the corresponding {ri} are
practically zero as expected.
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Fig. 4. Residual and relative residual of approximate eigenpair (�, x).
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From Fig. 4, the eigenpairs produced by Algorithm 4.2 are of higher accuracy. Furthermore, in Algorithm 4.1,
the stable and unstable eigenvalues �i and �(i) are computed from the enlarged generalized palindromic eigenvalue
problem using the non-structured QZ method [7], whilst Algorithm 4.2 is structure-preserving. Fig. 5 indicates that
the reciprocal property is lost in Algorithm 4.1 but preserved in Algorithm 4.2. As shown in Fig. 5, the minimal value
ri ≡ |�i�(i) − 1| is increasing when |�i | is decreasing. This means that the eigenvalues are less accurate when they are
further away from the unit circle.

In the numerical simulations we reported above, the assumptions that X, C22, L and Qk − Pk are invertible are
satisfied. The condition number of L is in the order of 1020, leading to many eigenvalues away from the unit circle, but
somehow the SDA copes rather well. The preprocessing procedure in [11,16] was not applied but may be unavoidable
for larger values of n or problems with worse condition.

7. Conclusions

In this paper, we have proposed a structure-preserving doubling algorithm (SDA) for the palindromic eigenvalue
problem and vibration analysis of fast trains. For small finite element models (up to several thousands elements), the
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numerical results show much promise. Fast quadratic convergence has been achieved in the accurate resolution of the
spectrum of the palindromic eigenvalue problems for given parameters �. The accuracy of the SDA compares well
with that of the QZ method (the only other possible method at the moment) for eigenvalue nears the unit circle. Away
from the unit circle, the SDA is far superior. The assumptions that the stable symmetric invertible solution X exists and
that L and C22 (in the deflation process) and Qk − Pk (in the SDA) are invertible hold in our numerical simulations.
Ultimately, we need to solve the palindromic eigenvalue problems for a full spectrum of values in �. We may be able
to avoid a troublesome value of �0, solve the problem for a neighbouring values of � (possibly with the techniques in
[12]) and interpolate to produce the spectrum required for �0. Similarly, the restriction on the absence of eigenvalues
on the unit circle can also be relaxed, using the techniques in [4]. If all else fails, the SDA1 in Section 4.1 (with the
double-Cayley transform trick) may be called upon.

Recall the lack of positivity of matrices (in the space of complex matrices), a definite inner product (because of
the transpose rather than the Hermitian) or the associated canonical forms. These lead to the absence of basic tools
and theory, making our task a difficult one. Nevertheless, we have proved some theoretical results for palindromic
eigenvalue problems and T-symplectic pencils.

Much work still awaits, and a sample of future tasks is listed below.

(a) Additional properties from the finite element models and more theory and basic tools for palindromic eigenvalue
problems and T-symplectic pencils.

(b) Problems with more finite elements and larger values of n.
(c) Efficient implementation of SDA1 with the double-Cayley transform, when some Qk − Pk are singular.
(d) Efficient preprocessing of problems when L or C22 are ill-conditioned.
(e) Alternative methods when the NME has no symmetric invertible solution X.
(f) Correction of solutions, incorporating discretization errors in the finite element model.
(g) Implementation of algorithms to benefit from the continuous nature of �, sparseness and other structure of various

matrices, possibly on parallel computers.
(h) Higher order palindromic eigenvalue problems.

The vibration analysis of fast trains and palindromic eigenvalue problems are far from being conquered.
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