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A variation of the original 2006 radiative seesaw model of neutrino mass through dark matter is shown 
to realize the notion of inverse seesaw naturally. The dark-matter candidate here is the lightest of three 
real singlet scalars which may also carry flavor.
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In 1998, the simplest realizations of the dimension-five op-
erator [1] for Majorana neutrino mass, i.e. (νiφ

0)(ν jφ
0), were 

discussed systematically [2] for the first time. Not only was 
the nomenclature for the three and only three tree-level see-
saw mechanisms established: (I) heavy singlet neutral Majorana 
fermion N [3], (II) heavy triplet Higgs scalar (ξ++, ξ+, ξ0) [4], 
and (III) heavy triplet Majorana fermion (Σ+, Σ0, Σ−) [5], the 
three generic one-loop irreducible radiative mechanisms involving 
fermions and scalars were also written down for the first time. 
Whereas one such radiative mechanism was already well-known 
since 1980, i.e. the Zee model [6], a second was not popular-
ized until eight years later in 2006, when it was used [7] to link 
neutrino mass with dark matter, called scotogenic from the Greek 
scotos meaning darkness. The third remaining unused mechanism 
is the subject of this paper. It will be shown how it is a natu-
ral framework for a scotogenic inverse seesaw model of neutrino 
mass, as shown in Fig. 1. The new particles are three real sin-
glet scalars s1,2,3, and one set of doublet fermions (E0, E−)L,R , and 
one Majorana singlet fermion NL , all of which are odd under an 
exactly conserved discrete symmetry Z2. This specific realization 
was designated T1-3-A with α = 0 in the compilation of Ref. [8]. 
Note however that whereas (E0, E−)L is not needed to complete 
the loop, it serves the dual purpose of (1) rendering the theory to 
be anomaly-free and (2) allowing E to have an invariant mass for 
the implementation of the inverse seesaw mechanism.

The notion of inverse seesaw [9–11] is based on an extension 
of the 2 × 2 mass matrix of the canonical seesaw to a 3 × 3 mass 
matrix by the addition of a second singlet fermion. In the space 
spanned by (ν, N, S), where ν is part of the usual lepton doublet 
(ν, l) and N , S are singlets, all of which are considered left-handed, 
the most general 3 × 3 mass matrix is given by
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Fig. 1. One-loop generation of inverse seesaw neutrino mass.

Mν =
⎛
⎝

0 m2 0

m2 mN m1

0 m1 mS

⎞
⎠ . (1)

The zero ν − S entry is justified because there is only one ν to 
which N and S may couple through the one Higgs field φ0. The 
linear combination which couples may then be redefined as N , and 
the orthogonal combination which does not couple is S . If mS,N is 
assumed much less than m1, then the induced neutrino mass is

mν � m2
2mS

m2
1

. (2)

This formula shows that a nonzero mν depends on a nonzero mS , 
and a small mν is obtained by a combination of small mS and 
m2/m1. This is supported by the consideration of an approxi-
mate symmetry, i.e. lepton number L, under which ν, S ∼ +1 and 
N ∼ −1. Thus m1,2 conserve L, but mS breaks it softly by 2 units. 
Note that there is also a finite one-loop contribution from mN

[12,13].
Other assumptions about m1, mS , mN are also possible [14]. If 

m2, mN � m2
1/mS and m1 � mS , then a double seesaw occurs with 

the same formula as that of the inverse seesaw, but of course with 
 BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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Fig. 2. One-loop generation of seesaw neutrino mass with heavy Majorana N .

a different mass hierarchy. If m1, m2 � mN and m2
1/mN � mS �

m1, then a lopsided seesaw [14] occurs with mν � −m2
2/mN as 

in the canonical seesaw, but ν − S mixing may be significant, i.e. 
m1m2/mSmN , whereas ν − N mixing is the same as in the canon-
ical seesaw, i.e. 

√
mν/mN . In the inverse seesaw, ν − N mixing 

is even smaller, i.e. mν/m2, but ν − S mixing is much larger, i.e. 
m2/m1, which is only bounded at present by about 0.03 [15]. In 
the double seesaw, the effective mass of N is m2

1/mS , so ν − N
mixing is also 

√
mν/mN . Here mS � mN , so the ν − S mixing is 

further suppressed by m1/mS .
In the original scotogenic model [7], neutrino mass is radia-

tively induced by heavy neutral Majorana singlet fermions N1,2,3 as 
shown in Fig. 2. However, they may be replaced by Dirac fermions. 
In that case, a U (1)D symmetry may be defined [16], under which 
η1,2 transform oppositely. If Z2 symmetry is retained, then a radia-
tive inverse seesaw neutrino mass is also possible [17,18]. We dis-
cuss here instead the new mechanism of Fig. 1, based on the third 
one-loop realization of neutrino mass first presented in Ref. [2]. 
The smallness of mN , i.e. the Majorana mass of NL , may be natu-
rally connected to the violation of lepton number by two units, as 
in the original inverse seesaw proposal using Eq. (1). It may also 
be a two-loop effect as first proposed in Ref. [19], with a number 
of subsequent papers by other authors, including Refs. [20–22].

In our model, lepton number is carried by (E0, E−)L,R as well 
as NL . This means that the Yukawa term N̄L(E0

Rφ0 − E−
R φ+) is 

allowed, but not NL(E0
Lφ

0 − E−
L φ+). In the 3 ×3 mass matrix span-

ning (Ē0
R , E0

L , NL), i.e.

ME,N =
⎛
⎝

0 mE mD

mE 0 0

mD 0 mN

⎞
⎠ , (3)

mE comes from the invariant mass term (Ē0
R E0

L + E+
R E−

L ), mD comes 
from the Yukawa term given above connecting NL with E0

R through 
〈φ0〉 = v , and mN is the soft lepton-number breaking Majorana 
mass of NL . Assuming that mN � mD , mE , the mass eigenvalues of 
ME,N are

m1 = m2
EmN

m2
E + m2

D

, (4)

m2 =
√

m2
E + m2

D + m2
DmN

2(m2
E + m2

D)
, (5)

m3 = −
√

m2
E + m2

D + m2
DmN

2(m2
E + m2

D)
. (6)

In the limit mN → 0, E0
R pairs up with E0

L cos θ + NL sin θ to form a 

Dirac fermion of mass 
√

m2
E + m2

D , where sin θ = mD/

√
m2

E + m2
D . 

This means that the one-loop integral of Fig. 1 is well approxi-
mated by

mν = f 2m2
DmN

16π2(m2 + m2 − m2)

[
1 − m2

s ln((m2
E + m2

D)/m2
s )

(m2 + m2 − m2)

]
. (7)
E D s E D s
This expression is indeed of the form expected of the inverse see-
saw.

The radiative mechanism of Fig. 1 is also suitable for supporting 
a discrete flavor symmetry, such as Z3. Consider the choice

(νi, li)L ∼ 1,1′,1′′, s1 ∼ 1,

(s2 + is3)/
√

2 ∼ 1′, (s2 − is3)/
√

2 ∼ 1′′, (8)

with mass terms m2
s s2

1 + m′ 2
s (s2

2 + s2
3), then the induced 3 × 3 neu-

trino mass matrix is of the form

Mν =
⎛
⎝

fe 0 0

0 fμ 0

0 0 fτ

⎞
⎠

⎛
⎝

I(m2
s ) 0 0

0 0 I(m′ 2
s )

0 I(m′ 2
s ) 0

⎞
⎠

×
⎛
⎝

fe 0 0

0 fμ 0

0 0 fτ

⎞
⎠

=
⎛
⎝

f 2
e I(m2

s ) 0 0

0 0 fμ fτ I(m′ 2
s )

0 fμ fτ I(m′ 2
s ) 0

⎞
⎠ , (9)

where I is given by Eq. (7) with f 2 removed. Let liR ∼ 1, 1′, 1′′ , 
then the charged-lepton mass matrix is diagonal using just the one 
Higgs doublet of the standard model, in keeping with the recent 
discovery [23,24] of the 125 GeV particle. To obtain a realistic neu-
trino mass matrix, we break Z3 softly, i.e. with an arbitrary 3 × 3
mass-squared matrix spanning s1,2,3, which leads to
⎛
⎝

1 0 0

0 1/
√

2 i/
√

2

0 1/
√

2 −i/
√

2

⎞
⎠ O T

⎛
⎜⎝

I(m2
s1) 0 0

0 I(m2
s2) 0

0 0 I(m2
s3)

⎞
⎟⎠

× O

⎛
⎝

1 0 0

0 1/
√

2 1/
√

2

0 i/
√

2 −i/
√

2

⎞
⎠ , (10)

where O is an orthogonal matrix but not the identity, and there 
can be three different mass eigenvalues ms1,s2,s3 for the s1,2,3 sec-
tor. The assumption of Eq. (8) results in Eq. (10) and allows the 
following interesting pattern for the neutrino mass matrix Mν . 
The Yukawa couplings fe,μ,τ may be rendered real by absorbing 
their phases into the arbitrary relative phases between E0

R and 
νe,μ,τ . If we further assume fμ = fτ , then Mν is of the form [25]

Mν =
⎛
⎝

A C C∗

C D∗ B

C∗ B D

⎞
⎠ , (11)

where A and B are real. Note that this pattern is protected 
by a symmetry first pointed out in Ref. [26], i.e. e → e and 
μ − τ exchange with CP conjugation, and appeared previously 
in Refs. [27,28]. As such, it is also guaranteed to yield maxi-
mal νμ − ντ mixing (θ23 = π/4) and maximal CP violation, i.e. 
exp(−iδ) = ±i, whereas θ13 may be nonzero and arbitrary. Our 
scheme is thus a natural framework for this possibility. Further, 
from Eq. (7), it is clear that it is also a natural framework for quasi-
degenerate neutrino masses as well. Let

F (x) = 1

1 − x

[
1 + x ln x

1 − x

]
, (12)

where x = m2
s /(m

2
E + m2

D), then Eq. (7) becomes

mν = f 2m2
DmN

(m2 + m2 )
F (x). (13)
E D
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Since F (0) = 1 and goes to zero only as x → ∞, this scenario does 
not favor a massless neutrino. If fe,μ,τ are all comparable in mag-
nitude, the most likely outcome is three massive neutrinos with 
comparable masses.

Since the charged leptons also couple to s1,2,3 through E− , 
there is an unavoidable contribution to the muon anomalous mag-
netic moment given by [29]

�aμ = (g − 2)μ

2
= f 2

μm2
μ

16π2m2
E

∑
i

|Uμi|2G(xi), (14)

where

G(x) = 1 − 6x + 3x2 + 2x3 − 6x2 ln x

6(1 − x)4
, (15)

with xi = m2
si/m2

E and

U = O

⎛
⎝

1 0 0

0 1/
√

2 1/
√

2

0 i/
√

2 −i/
√

2

⎞
⎠ . (16)

To get an estimate of this contribution, let xi � 1, then �aμ =
f 2
μm2

μ/96π2m2
E . For mE ∼ 1 TeV, this is of order 10−11 f 2

μ , which 
is far below the present experimental sensitivity of 10−9 and can 
be safely ignored. The related amplitude for μ → eγ is given by

Aμe = efμ femμ

32π2m2
E

∑
i

U∗
ei Uμi G(xi). (17)

Using the most recent μ → eγ bound [30]

B = 12π2|Aμe|2
m2

μG2
F

< 5.7 × 10−13, (18)

and the approximation 
∑

i U∗
ei Uμi G(xi) ∼ 1/36 (based on tribimax-

imal mixing with x1 ∼ 0 and x2 ∼ 1) and mE ∼ 1 TeV, we find

fμ fe < 0.03. (19)

Let fe,μ,τ ∼ 0.1, mN ∼ 10 MeV, mD ∼ 10 GeV, mE ∼ 1 TeV, then 
the very reasonable scale of mν ∼ 0.1 eV in Eq. (7) is obtained, 
justifying its inverse seesaw origin. Since NL is the lightest parti-
cle with odd Z2, it is a would-be dark matter candidate. However, 
suppose we add NR so that the two pair up to have a large invari-
ant Dirac mass, then the lightest scalar (call it S) among s1,2,3 is a 
dark-matter candidate. It interacts with the standard-model Higgs 
boson h according to

−Lint = λhS

2
vhS2 + λhS

4
h2 S2. (20)

If we assume that all its other interactions are suppressed, then 
the annihilations S S → h → SM particles and S S → hh determine 
its relic abundance, whereas its elastic scattering off nuclei via 
h exchange determines its possible direct detection in underground 
experiments. A detailed analysis [31] shows that the present limit 
of the invisible width of the observed 125 GeV particle (identi-
fied as h) allows mS to be only within several GeV below mh/2 or 
greater than about 150 GeV using the recent LUX data [32]. Note 
that the vector fermion doublet (E0, E−) is not the usually consid-
ered vector lepton doublet because it is odd under Z2 and cannot 
mix with the known leptons.

In conclusion, we have shown how neutrino mass and dark 
matter may be connected using a one-loop mechanism proposed 
in 1998. This scotogenic model is naturally suited to implement 
the notion of inverse seesaw for neutrino mass, allowing the scale 
of new physics to be 1 TeV or less. The imposition of a softly bro-
ken Z3 flavor symmetry yields an interesting pattern of radiative 
neutrino mass, allowing for maximal θ23 and maximal CP violation. 
The real singlet scalars in the dark sector carry lepton flavor, the 
lightest of which is absolutely stable. Our proposal provides thus 
a natural theoretical framework for this well-studied phenomeno-
logical possibility.
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