
Representation of General and Polyhedral 
Subsemilattices and Sublattices of Product Spaces 

Arthur F. Veinott, Jr.* 

Department of Operations Research 
Stanford University 
Stanford, California 94305-4022 

To Alan J. Hoffman, who has inspired me by the beauty and ingenuity of his 
mathematics and the warmth of his friendship, on the occasion of his 65th 
birthday. 

Suhmittecl by Uriel G. Rothblum 

ABSTRACT 

It is shown that each element of the lattice of meet (resp., join) sublattices of a 
product S of n chains has a representation as the intersection of n subsets of S, the 
ith of which is decreasing (resp., increasing) for each fixed value of the ith coordinate 
for each i. This result is applied to show that an arbitrary element of the lattice of 
sublattices of S has a representation as the intersection of n2 subsets, the ij th of 
which is decreasing for each fixed value of the ith and increasing for each fixed value 
of the jth coordinate for each i, j. Irreducible representations are given in each case, 
providing an alternative proof of an instance of Hashimoto’s (1952) representation of 
sublattices of a distributive lattice. Moreover, irreducible representations are given for 
the polyhedral members of the lattice of closed convex subsets of n-dimensional 
Euclidean space that are at once subsemilattices or sublattices. It is also shown that 
the polyhedral subsemilattices and sublattices can be represented as duals respectively 
of pre-leontief substitution systems and generalized network-flow problems. Finally, 
the problems of checking whether a polyhedral set is a subsemilattice or sublattice are 
reduced to that of solving a system of linear inequalities, thereby showing that these 
recognition problems can be solved in polynomial time. 
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1. INTRODUCTION 

ARTHUR F. VEINOTT, JR. 

Subsemilattices’ and sublattices have applications in many areas of the 
mathematical sciences. For that and other reasons, it is useful to understand 
their structure and to be able to recognize them. A fundamental way to do 
this is to study representations of subsemilattices (resp., sublattices) in the 
lattice of all such subsets of a semilattice (resp., lattice). 

A (meet) representation of an element s of a lattice S is a nonempty 
subset L of S of which s is a meet, written s = AL. If L is a finite set, the 
representation is called finite. It is often useful to restrict representations in a 
lattice S to elements s that are irreducible, i.e., s = t A u for some t, u E S 
only if s = t or s = u. Elements of S that are not irreducible are called 
reducible. A representation is called irreducible if each of its elements is 
irreducible. It is also natural to seek representations that do not contain 
inessential elements. An element r of a representation L is called redundant 
if AL = A(L\{ r 1). A representation is called irredundant if none of its 
elements is redundant. Any finite representation can be refined to make it 
u-redundant by successively deleting redundant elements. For a more com- 
plete discussion of these concepts see [2], [3], and [4]. 

The purpose of this paper is to develop finite and irreducible representa- 
tions for the elements of several lattices and to discuss their structure. We do 
this in Section 2 for the lattice of meet (resp., join) sublattices of a finite 
product S of chains, and in Section 4 for the lattice of sublattices of S. We 
also develop irreducible representations for the polyhedral meet (resp., join) 
sublattices of (3” in Section 3 and show them to be precisely the duals of 
pre-Leontief substitution systems. We do this for polyhedral sublattices of ?H n 
in Section 5 and show them to be precisely the duals of generalized 
network-flow problems. Moreover, we show in Section 3 (resp., Section 5) 
that the problem of checking whether a polyhedral set is a subsemilattice 
(resp., sublattice) can be reduced to determining whether or not an associ- 
ated polyhedral set is nonempty, and so can be done in polynomial time. For 
brevity we limit the discussion of this paper mainly to subsets of finite 

‘A subset L of a poset S is called a meet (resp., join) sublattice of S if each pair r, s of 

elements of L has a greatest lower bound (resp., least upper bound) in S, denoted r A s and 
called their meet (resp., denoted r v s and caffed their join), that is also in L. Call L a sublattice 
(resp., subsemilattice) of S if L is both (resp., either) a meet and (resp., or) join sublattice of S. 

Calf S a lattice (resp., semikttice, meet lattice, join lattice) if it is a sublattice (resp., 
subsemilattice, meet sublattice, join sublattice) of itself. Call a lattice S complete if every 

nonempty subset L of S has a greatest lower bound AL, called its meet, and a least upper bound 
VL, called its join, in S. A chain is a linearly ordered set. 
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products of chains and to polyhedral subsets of !Rn. We remove these 
restrictions elsewhere. 

The results in this paper were obtained largely during the period 
1965-1973 and were presented in a number of forums’ at that time. In 
particular, early forms of the results characterizing the polyhedral subsemilat- 
tices and sublattices were obtained while I was on sabbatical leave during the 
academic year 19681969 and had the good fortune to be in Alan Hoffman’s 
group at the IBM Research Center. Much of the general theory presented 
here was developed while I enjoyed the hospitality of Yale University’s 
Department of Administrative Sciences on sabbatical leave during the aca- 
demic year 1972-1973. Donald Topkis [9,8] collaborated in the development 
of the finite representation of sublattices as discussed in footnote 11. The 
irreducible representations of subsemilattices and sublattices were obtained 
during 1973-1976, the latter representation being a sharper form of an 
instance of one found by Hashimoto 15, p. 1831. These and other contribu- 
tions will be discussed more frilly in the sequel. 

In order to develop the desired representations, we require a few defini- 
tions. Let 2’ be the set of all subsets of an arbitrary set S that is partially 
ordered by set inclusion _C . Then 2’ is a complete lattice in which meets are 
intersections and joins are unions. Frequently one is interested in the family 
of all subsets of S that have some property 9. If that family includes S 
among its members and is closed under intersections, then each subset L of S 
has a @hull, viz., the intersection of all subsets of S that contain L and have 
the property .@. (For example, if S is a lattice, the sub&ice hull of L is the 
intersection of all sublattices of S that contain L.) In that event, the family is 
a meet sublattice of 2’ and a complete lattice, called a Moore lattice, in 
which the join of any subfamily F of the family is the @hull of the union of 
the members of 9. The lattice of meet (resp., join) sublattices of a meet 
(resp., join) lattice is a Moore lattice, as is the lattice of sublattices of a lattice. 
And so is the lattice of closed convex3 subsets of %“, as well as its 
intersection with the lattice of meet (resp., join) sublattices and the lattice of 
sublattices. 

‘1 presented this work in a seminar at Yale University in April 1973, the 1973 International 
Symposium on Mathematical Programming (91, a Seminar in Dynamic and Lattice Programming 

at Stanford University in the first quarter of 1974, and a series of invited Lectures at IRIA, 
France in September 1974. I also gave talks on lattice programming-including the representa- 

tion of sublattices-in the spring of 1973 at Columbia University, Cornell University, University 
of Montreal, and University of Rochester; a Special Invited Lecture at a regional meeting of the 
IMS in 1973; and a Short Course for the AMS in January 1975. 

“Convex is used throughout in the sense of vector spaces, not lattices. 
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2. REPRESENTATION OF SUBSEMILATTICES 

Let S = X &,S, be a product of posets Sk, k E iz’. A subset L of S is called 
idecreasing (resp., i-increasing) if i E N and for each I = ( rk) E L and 
s = (sk) E S with r > s (resp., r < s) and r, = s,, one has .s E L. Since for 
each fixed i E N, the set of i-decreasing (resp., i-increasing) subsets of S is a 
Moore lattice, each subset L of S has an idecreasing (resp., i-increasing) 

hull denoted L/ (resp., L,‘). It is easy to see that, for each i, both the 
i-decreasing and the i-increasing hulls of 1, have useful interual representa- 
tions as projections rs.i,K of subsets K of I, x S ori S, viz., 

(1) 

and 

(2) 

THEOREM 1 (Representation of subsemilattices of products of chains). 
The following properties of a subset L of a finite’ product S = X ,yS, of 
chains” are equivalent: 

(a) L is a meet (resp., join) sublattice of S. 
(‘b) L is the intersection of its (NI i-decreasing (resp., i-increasing ) hulls 

for all i E IV. 

(c) L is the intersection of i-decreasing (resp., i-increasing) subsets of‘s 
for all i E A? 

‘If K is not finite, the implications (b) = (c) =3 (a) and their proofs nevertheless remain 

valid. The implication (a) =) (b) and its proof also remain valid if 1, is conthtionally meet (resp.. 

join) subcomplete, i.e., for each nonempty subset K of I, that is bormdetl below (resp., above) in 
S, AK (resp., VK) exists in S and is in L. 

‘Actually, the representation of meet (resp., join) sublattices in Theorem I-i.e., (a) inlplies 

(b)-and its proof remain valid under the weaker hypothesis that the S, are meet (resp.. join) 
lattices. Moreover, the idecreasing (resp., i-increasing) hull (1) (resp., (2)) is theu a meet (resp.. 

join) sublattice because the class of meet (resp., join) sublattices is closed under projections. 
However, under the weaker hypothesis, an arbitrary i-decreasing (resp., i-increasing) set need 

not be a meet (resp., join) sublattice, so (c) does not imply (a). For this reason, the more general 

representation does not seem as useful as the one presented. 
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FIG. 1. Representation of a meet sublattice L of a product S, X S2 of two chains. 

Proof. By duality, it suffices to prove the result reading without paren- 
theses. 

(a) =+ (b): Since .L: is a hull of L, L c n,,,Z,:. If s E fl,L$, there exist 
r ’ E L with r i 2 s and r,’ = si for all i E N. Thus s = ANr i E L because L is 
a meet sublattice of S. 

(b) -j (c): The i-decreasing hulls of L are idecreasing subsets of S for all 
i E N. 

(c) * (a): Since intersections of meet sublattices are meet sublattices, it 
suffices to show that each Mecreasing subset L of S is a meet sublattice. To 
that end, suppose r, s E L. By possibly relabeling, we can assume that r, < si 
since Si is a chain. Then r A s E S, r A s < r and (r A s)~ = r,. Thus because 
L is i-decreasing, r A s E L. n 

The l- and 2decreasing hulls Lf and Li respectively of a meet sublat- 
tice L of a product S = S, X S, of two chains are illustrated in Figure 1. 
Observe that, as Theorem 1 asserts, L = Lt n Li. 
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Representation of Subsemilattice Hulls of Subsets 
of Finite Products of Chains 

For any subset L of the 1 N tchain product S with finite ) N 1, let L ” 

(resp., L ” ) be the meet-sub&ice (resp., join-sublattice) hull of L. Of 
course L * (resp., L” ) is the set of all finite meets (resp., joins) of elements 
of L. The next result expresses both the meet- and join-sublattice hulls of L in 
terms of their i-decreasing and i-increasing hulls. 

COROLLARY 2 (Representation of subsemilattice hulls of subsets of finite 
products of chains). lf L is a subset of a finite product S = X ,vSk of 
chains, then the meet-sublattice (resp., join-sublattice) hull of L is the 
intersection of its idecreasing (resp., i-increasing) hulls for all i E A? 

Proof. By duality, it is enough to prove the result reading without 
parentheses. By the representation-of-subsemilattices Theorem 1, n,v-L: c 
T),&L” )/ = L” _C fl,vL/, so equality occurs throughout. n 

Zrreducible Representations of Subsemilattices 
We now extend the representation-of-subsemilattices Theorem 1 by devel- 

oping irreducible representations and characterizing the elements thereof. In 
order to do this, we shall generally have to give up the finiteness and even 
(finite) irredundance of the representation. The key to developing irreducible 
representations of subsemilattices is to observe first that L is i-decreasing if 
and only if its complement L“ is i-increasing. Incidentally, this fact and 
Theorem 1 imply that meet (resp., join) sublattices of finite products of 
chains have representations in meet (resp., join) sublattices whose comple- 
ments are join (resp., meet) sublattices. 

THEOREM 3 (Irreducible representation of subsemilattices of finite prod- 
ucts of chains). Every meet (resp., join) sub&ice of a finite product 
S = X $5, of chains has a representation as an intersection of sets, each of 
which is the complement of an i-increasing (resp., idecreasing) hull of a 
singleton set { s } for some i E N and s E S, and is irreducible,” the last being 
so if and only if either s = VS (resp., s = AS) or si + VS, (rev., s, # ASi). 

‘Since the lattice of meet (resp., join) s&lattices is compactly generated. the existence of the 
irreducible representations follows from the theory of such lattices [3, pp. 43-441. However, the 

present approach has the advantages of also describing the qualitative structure of the elements 
of the representation and of not relying on Zorn’s lemma. 

‘I am greatly indebted to Margarida Mello for sharpening my earlier version of Theorem 3 

by characterizing precisely which of the complements of i-decreasing (resp., i-increasing) hulls of 

singleton sets are irreducible. Her characterization and a slight modification of her proof thereof 
are included here with her kind permission. 
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Proof. By duality, it is enough to prove the result for a meet sublattice L 
of S. We claim first that for each s E S\L, there is an i E N such that 
{ s }/ 5 S\ L and either s = VS or si f V Si. To see this, observe from the 
representation-of-subsemilattices Theorem 1 that there is a j E N such that 
s E L A. Since Lj is jdecreasing, Lj ’ 

d 
is j-increasing, so {s}: 5 Lf’cS\L. 

If elt er s = VS or si + VS,, the claim is proved by setting i = j. In the 
contrary event, si = V Si and there is an i z j such that s, z VS,. Then 
{s}> _C {s}: c S\L, establishing the claim. 

It remains to justify the claimed characterization of irreducible { s >,’ ‘. If 
s = VS, then ( s}tc = S\{VS} is trivially irreducible. If si # VS,, then {s}‘” 
is also irreducible. To see this, it suffices to show that each meet sublattice 
PI {s}‘” also contains s4 {s}‘“. Now there is an r~P\{s}“, so ri=si 
and r > s. Choose t E S such that si < ti, which is possible because si # VS,, 
andtj=sjforj#i.ThentE{s}>C~Pandsos=r/\tEP. 

If si = VS, and sj f VS, for some j + i, then { s }> (’ is reducible. For 
choose T E S so that si < rj, which is possible because si f VS,, and r, = sk 
for k+j. Then P= {s},?“~{r} and o= {s}~“~{s} aremeet sublattices 
of Sthataredistinctfrom{s}~‘,and{s}~”=PnQ. n 

We remark that if VS, (resp., AS,) does not exist, then {s):’ (resp., 
{ s }I “) is an irreducible meet (resp., join) sublattice for every s E S, because 
then trivially si f VS, (resp., si z ASi). 

In Figure 2 we illustrate an element of the irreducible representation of 
Theorem 3 for the meet sublattice L of a product S = S, x S, of two chains 
given in Figure 1. Notice that the l-increasing hull {s) 1’ of the element 
s E S\ L given there is contained in S\ L, so the complement of { s ) T 
contains L but not s, and so separates L from s. By contrast, the comple- 
ment of { s }l does not contain L. 

v s = s1 x s2 

--_) 

5 

FIG. 2. Element of irreducible representation of a meet sub&ice L of a product 
S, x S, of two chains. 
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Observe that Theorem 3 assures that each meet sublattice of S can be 
expressed as an intersection of sets, each of which is a set of r E S that do not 
satisfy both of the inequalities 

T>S and ri ,< si (3) 

for some fixed s E S and i E N. An equivalent formulation is that r satisfies 
at least one of the IN 1-t 1 (strict) inequalities 

rj<si forsome jEN or ribs,. 

Analogous formulations for join sublattices may be found by reversing the 
above inequalities. 

Moreover, Theorem 3 implies that each meet (resp., join) sublattice of a 
finite product of chains has a coordinate-free irreducible representation as an 
intersection of sets of the form D’ u I“ where D is a principal dual ideal 
(resp., prime dual ideal) and I is a prime ideal (resp., principal ideal).’ To see 
this for meet sublattices, let D be the first of the sets in (3) and Z be the 
second.g 

Finally, note that Theorem 3 implies the main assertion of Theorem 1, 
viz., (a) * (c), since complements of i-increasing (resp., idecreasing) hulls of 
singleton sets are i-decreasing (resp., i-increasing). 

‘Let S be a poset. A subset I, of S is decreasing (resp., increasing) if for each r EL and 
s E S with s c r (resp., .r > r), one has s E I_. A subset L of S is an ideal (resp., dual ideal) if it ib 

a decreasing join (resp., increasing meet) sublattice. An ideal (resp., dual ideal) is prime if its 
complement is a dual ideal (resp., ideal). A set of the form { s E S: s < r ] (resp., ( s E S: s 2 r )) 
is the principal ideal (resp., principal dual ideal) generated by r E S. 

“Garrett Birkhoff kindly pointed out to me in 1973 that representations of subsemilattices of 

products of chains can be used to provide representations of subsemilattices of quite general 

semilattices. To see this, use the mapping f that sends each element s of a meet (resp.. join) 

semilattice S into the principal ideal (resp.. principal dual ideal) generated by s. Then f is a 

meet (resp., join) isomorphism of S into the lattice of meet (resp., join) sublattices of S. Since 

that lattice is a Moore lattice of subsets of S, and 2” can be considered to be-more precisely, is 
isomorphic to-a product of IS/ two-element chains, the representations given here can be used 

in 2” and then carried back into S. 
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3. REPRESENTATION AND RECOGNITION 
OF POLYHEDRAL SUBSEMILATTICES 

Next we apply the representation-of-subsemilattices Theorem 1 to give 
irreducible representations of the polyhedral’s elements of the Moore lattice 
of closed convex meet (resp., join) sublattices of 9%“. To that end, call a 
matrix pre-leontief if each of its columns has at most one positive element. 

THEOREM 4 (Irreducible representations of polyhedral subsemilattices as 
dual pre-Leontief substitution polyhedra). The following are equivalent: 

(a) L is a polyhedral meet (resp., join) sublattice of 8”. 
(b) L=(s~%“:As<b} f or some matrix (A b) with - A (resp., A) 

having pre-Leontief transpose. 
(c) L is the intersection of finitely many closed half-spaces, each of 

which is an irreducible element of the lattice of closed convex meet (resp., 
join) sublattices of CR”. 

Proof. By duality, it is enough to prove the result reading without 
parentheses. 

(a) a(c): Since L is polyhedral, it follows from (1) that Lf is the 
projection of a polyhedral set and so is itself polyhedral. Thus, there is a 
matrix (A’ b’) with L/ = {SE !Rfl: A’s< b’} for each i. Since L” is 
idecreasing, each column of A’, except possibly the ith, is nonnegative. Now 
let A = (A’) and b = (b’). By the representation-of-subsemilattices Theorem 
1, L = flrL/ = { s E !R n : As < b ) and - A has preleontief transpose. 

(b) 3 (c): Let (a j bj) denote the jth row of (A b), and put Hj = 
{sE!Itn: a is < bi }. From (2), there is an i, depending on j, such that every 
element of ai, except possibly the ith, is nonnegative. Thus, Hj is idecreas- 
ing and so, by Theorem 1, is a meet sublattice of 93 “. Moreover, the 
half-space Hj is also irreducible, since that is so of the closed half-spaces in 
the lattice of closed convex subsets of 8”. Thus, since L = n jHj, (c) holds. 

(c) * (a): Finite intersections of polyhedral meet sublattices are polyhe- 
dral meet sublattices. n 

It should be emphasized that Theorem 4 does not assert that each 
half-space in every n-redundant irreducible representation of a polyhedral 

“‘Elsewhere we establish similar (but countable) representations for arbitrary elements of 
the lattices of closed convex meet sublattices, join sublattices, and sublattices. 



ARTHUR F. VEINOTT, JR. 

meet (resp., join) sublattice is a meet (resp., join) sublattice, but merely that 
there is such a representation. 

EXAMPLE. Suppose that L is the intersection of the three half-spaces 
S-t,<0, - s + t < 0, and as + Pt < 0 in the plane, where a, /3 are con- 
stants satisfying (Y + /-I < 0. Then L is a meet sublattice (indeed, a sublattice) 
not depending on a, ,8, and each such representation is n-redundant. How- 
ever, the third half-space is a meet sublattice (and a sublattice) if and only if 
~$3 < 0. Thus, there are infinitely many irredundant irreducible representa- 
tions some of whose members are not meet sublattices. 

The proof of Theorem 4 suggests a constructive method for finding a 
finite representation of a polyhedral meet (resp., join) sublattice L in closed 
half-spaces, each of which is a meet (resp., join) sublattice. The method is to 
use (1) (resp., (2)) to compute the projections L: (resp., L/ ) by, say, the 
Fourier-Motzkin elimination procedure. As the proof that (a) implies (b) of 
Theorem 4 shows, this produces the desired representation of L as a dual 
pre-Leontief substitution system. 

As can be seen from the above example, the representation given in 
Theorem 4 is not generally unique. However, as we now show, the represen- 
tation is unique when the polyhedron has full dimension. In order to see this, 
we require a definition. A closed half-space H in !B” is called tangent to a 
closed convex subset L of ‘93” at a point s E L if L. c H and if the 
hyperplane bounding H is the unique supporting hyperplane to L at s. It is 
known [7, p. 1721 that if the dimension of a polyhedron L in !R ‘I is n, then L 
has a unique irredundant irreducible representation, viz., its tangent closed 
half-spaces. 

If L is a closed half-space { s E !R ” : us 6 h } and a meet (resp., join) 
sublattice of $31 n, then every finite irredundant representation of L in closed 
half-spaces consists solely of the tangent closed half-space L itself. Thus by 
Theorem 4, - a (resp., a) has at most one positive element. 

COROLLARY 5 (Unique irredundant irreducible representation of polyhe- 
dral subsemilattices of full dimension). Zf L is a polyhedral meet (resp., 
join) sublattice of %“, then each tangent closed half-space of L is a meet 
(resp., join) sub&ice of 32 . 5 n Zf aLso the dimension of L is n, then L has a 

unique irredundant irreducible representation, viz., its tangent closed half- 
spaces. 

Proof. It follows from Theorem 4 that L has a finite irredundant 
irreducible representation in closed half-spaces that are at once meet (resp., 
join) sublattices. Moreover, that representation must contain all the tangent 
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closed half-spaces. If also the dimension of L is n, that representation 
contains only the tangent closed half-spaces. = 

Characterization of Polyhedral Subsemiluttices by Linear Inequalities 
The next result characterizes when a polyhedral set is a subsemilattice by 

means of linear inequalities. 

THEOREM 6 (Characterization of polyhedral subsemilattices by linear 
inequalities). IfL={s~~‘:As~b}(resp., L={sE%“:-As<b})is 
a nonempty polyhedron for some m x (n + 1) matrix (A b), the following 
are equivalent: 

(a) L is a meet (resp., join) sublattice of !I?“. 
(b) There exist m X m matrices x’ and m X n matrices pi = (r_l>,) for 

i = I..., n that satisfy the linear inequalities 

- ,d + X’A = 0, i = l,..., n, 

&= A, 
(4) 

p;k > 0, x'>,O foralli,j,kwithi#k. 

Proof. By duality, it suffices to prove the result reading without paren- 
theses. And by the representation-of-subsemilattices Theorem 1, L is a meet 
sublattice of 93 n if and only if L 13 n;Lf, i.e., if and only if every sequence 
S,T1,.,., r R E % ” that satisfies the system 

ri > s, (i=l,...,n) (5) 

has the property that As < b. This is so if and only if for each 1~ j < n, the 
maximum of a js subject to (5) does not exceed bj, where (a j bj) is the jth 
row of (A b). By the duality theorem of linear programming, this is so if and 
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only if the dual of this linear program has a feasible solution whose objective 
function does not exceed b, for each j. The system (4) expresses this fact. n 

Polynomial-Time Recognition of Polyhedral Suhsemilattices 
One immediate implication of Theorem 6 is the following. 

COROLLARY 7 (Polynomial-time recognition of polyhedral subsemilattices). 
There is a polynomial-time algorithm f;,r testing whether u polyhedron is n 

meet ( resp., join) sublattice. 

Proof. This follows from Theorem 6, the fact that the size of the lineal 
inequality system (4) is polynomial in that of the system As < b, and the fact 
that there exist algorithms for solving systems of linear inequalities that run in 
time that is polynomial in the size thereof, e.g., those of Khachiyan and 
Karmarkar. n 

Computations 
One way of testing whether or not a nonempty polyhedron Id = 

( s E !X ” : As ,< b } is a meet sublattice is to proceed as follows. First permute 
and partition the rows of the matrix (A b) so that 

(A I,,=[;:, ;:,]. 

where A’ is the submatrix of A whose rows contain at most one negative 
element. Then check whether every solution of A’s < h’ is a solution of 
A”s < b”, i.e., whether the latter inequalities are redundant. This is so if and 
only if the matrix linear inequalities XA’ = A”, Xb’ < b”, and X 3 0 have a 
matrix solution X with the same number of rows as A” and columns as A’T. 

If the double-primed inequalities are redundant, then the polyhedron is a 
meet sublattice. If the double-primed inequalities are not redundant, then 
check whether or not the polyhedron has dimension n, i.e., whether or not 
there is a positive number t and an s E 91” such that As + 11 G I?, where 1 is 
an m-element column vector of ones. In view of Corollary 5, if the polyhe- 
dron I, has dimension n, then l. is not a meet sublattice. 

If the double-primed inequalities are not redundant and the polyhedron L 
has dimension less than n, then check whether or not the inequalities As < /I 
are implied by the inequalities (5). This is so if and only if the inequalities (4) 
have a solution, or by Theorem 6, if and only if I, is a meet sublattice. 
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In each of the above cases, existence of a solution to the system of 
inequalities can be checked by using any algorithm for solving linear pro- 

grams, e.g., the simplex method. Also one can check whether L is a join 
sublattice by simply replacing A by - A in the above development. 

4. REPRESENTATION OF SUBLATTICES 

Let S = X hrSk be a product of lattices S,, k E N. Each i-decreasing 
j-increasing subset of S is evidently a cylinder with base in S, x Sj for i + j 

and base in Si for i = j. Since for each fixed i, j E N the set of i-decreasing 
j-increasing subsets of S is a Moore lattice, each subset L of S has an 
idecreasing j-increasing hull, denoted LjjT. Evidently, for each i, j E N, 
LA.r = Lb’ has an internal representation as a projection of a subset of L x S ‘1 
on S, viz., 

(6) 

The next result shows that the i-decreasing j-increasing hull can be formed in 
either of two equivalent ways, viz., by taking the i-decreasing hull and then 
the j-increasing hull, or by taking the j-increasing hull and then the idecreas- 
ing hull. 

LEMMA 8 (i-Decreasing j-increasing hulls). If L is (I subset of a product 
S = X NS, of lattices, then (L:); = LliJ’ = (Lj)/ for all i, j E N. 

Proof. By duality, it is enough to prove the first equality. To that end, 
observe from the projection formulas (1) (2) and (6) on putting T = S that 

(L$=a,{(s,t)ELf XT:s,<t,si=tj} 

=n,{(r,s,t)ELXSX2’:s<T, si=ri, s,<t, Sj=tj} 

= q{(r,t)ELXT:?+;, r+$} =L;iY 
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THEOREM 9 (Representation of sublattices of products of chains).” The 
following properties of a subset L of a finite” product S = X .Sk of chains’” 
are equivalent: 

(a) L is a sublattice of S. 
(b) L is the intersection of its IiV1’ idecreasing j-increasing hulls for all 

i,j E N. 
(c) L is the intersection of idecreasing j-increasing subsets of S for all 

i, j E N. 

Proof. (a) * (b): By (l), LI is the projection of a sublattice of the lattice 
L x S on S and so is a sublattice of S. Thus, by the representation- 
of-subsemilattices Theorem 1 and Lemma 8, L = ni L: = ni[fl j( L: )i ] = 
n. .L+?. 

“\by= (c): The i-decreasing j-increasing hulls of L are i-decreasing 
j-increasing subsets of S for all i, j. 

(c) 3 (a): By the representation-of-subsemilattices Theorem 1, idecreas- 
ing j-increasing subsets are sublattices, and intersections of sublattices are 
sublattices. n 

We illustrate the representation presented in Theorem 9 for the sublattice 
L of a product S = S, X S, of two chains given in Figure 3. There we exhibit 
the idecreasing j-increasing hulls LkjT of L for each i, j = 1,2. Observe that 
as Theorem 9 asserts, L = LflT f’ LizT n Li2? n L,i,‘. 

“I established that (c) implies (a) in 1965. The converse, viz., that (a) implies (c), has a more 

complex history. I established the converse where S is 11.dimensional Euclidean space and I. is a 

closed convex subset of full dimension in stages between the autumn of 1968 and the winter of 
1S70-1971. Armed with these and other results of mine, D. M. Topkis made a crucial advance in 

August 1971 by establishing Corollary 11 below and deriving a second result from which the 

general converse could have been, hut was not at that time, derived. In attempting to understand 

Topkis’ long proof, I formulated and proved the converse in the winter of 1972-1973 essentially 

as given here. About two years later, Topkis developed a short proof that Corollary 11 implies 

the converse and published it in [8]. 

‘“If N is not finite. the implications (b) a(c) =(a) and their proofs nevertheless remain 
valid. The implication (a) j(b) and its proof also remain valid if S is conditionally meet and join 

s&complete relative to itself and L is subcomplete, i.e., every nonempty subset of L has both a 

meet and join in S that are also in L. 

“iActually, the representation of sublattices in Theorem 9, i.e., (a) implies (h), and its proof 
remain valid under the weaker hypothesis that the S, are lattices. Moreover, the i-decreasing 

j-increasing hull (6) is then a sublattice, because the class of sublaltices IS closed under 
projections. However, under the weaker hypothesis, an arbitrary i-decreasing j-increasing set 

need not be a sublattice, so (c) does not imply (a). For this reason, the more general 
representation does not seem as useful as the one presented. 
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FIG. 3. Representation of a sublattice L of a product S, X S, of two chains. 

Representation of Sublattices of Finite Products of Chains in Projections 
It is possible to give representations of sublattices of S in their projec- 

tions. The next two results accomplish this. 

COROLLARY 10 (Representation of projections of sublattices of finite 
products of chains). If L is a sublattice of a finite product S = X ,vSk of 
chains and Q c N, then the cylinder in S whose base is the projection of L on 
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Proof. Let 4,K be the projection of K _C S on X S Since each 
0 1. 

i-decreasing j-increasing subset of S with i, j E 0 is a cylinder with base in 
X (,Sk, it follows that 7rc’(,Lfjr is the idecreasing j-increasing hull of the 

Theorem 
n 

The next result was discovered independently by CG. M. Bergman in 1967 
(see [I]) and by D. M. Topkis [S] in 1971. 

COROLLARY 11 (Representation of sublattices of finite products of chains 
in cylinders whose bases are two-dimensional projections). If L is a sublflt- 
tice of a finite product S = X ,vS, of chains, then L is the intersection of‘the 
cylinders whose bases are the projections of L on S, x Sj for all i f j E A’. 

Proof. This is immediate from the representation-of-sublattices Theorem 
9 and Corollary 10, where 0 ranges over the pairs i, j E N with i + j. w 

Representution of Sublattice Hulls of Subsets of Finite Products of Chains 
For each subset L of the finite product S = X ,VS, of chains, let LA ” be 

the subbttice hull of L. Clearly, L AV is the set of finite meets and joins of 
elements of L. An easy application of the distributivity of S shows that the 
sublattice hull can be generated sequentially, i.e., (LA )” = L^” = (L” )^. 

COROLLARY 12 (Representation of sublattice hulls of subsets of finite 
products of chains). lf L is u subset of a finite product S = X vSx of 
chains, then the sublattice hull of L is the intersection of its i-ciecreusing 

j-increming hulls for all i, j E LV. 

Proof. Since L;i’ 2 L .. IS a sublattice of S for all i, j, it follows from the 
representation-of-sublattices Theorem 9 that n,, j L;“I’ c n,, j( LA ” );i’ = L” ” 
c n,, jL;‘jr, so equality occurs throughout. n 

irreducible Representations of Sublattices of Finite Products of Chains 
We now extend the representation-of-sublattices Theorem 9 by develop- 

ing irreducible representations of the type established by Hashimoto [S]. In 
order to do this, we shall generally have to give up the finiteness and 
irredundance of the representation. The key to developing irreducible repre- 
sentations of sublattices is to observe first that L is i-decreasing j-increasing 
if and only if its complement L’ is i-increasing j-decreasing. Thus comple- 
ments of these sublattices are also sublattices. Incidentally, this fact, together 
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with Theorem 9, implies that each sublattice of a finite product of chains has 
a representation in sublattices whose complements are sublattices, which is 
an instance of a result of Koh [6]. 

THEOREM 13 (Irreducible representation of sublattices of finite products 
of chains). Every nonempty sublattice of a finite product S = X YSk of 
chains has a representation as an intersection of sets, each of which is the 
complement of an i-increasing j-decreasing hull of a singleton set {s} for 
some i, j E N and s E S, and is irreducible,‘” the last being so if and only if 
either (a) s2 f VS, and sj f AS, or (b) (si, sj) is the least or greatest element 
of si x Sj! 

Proof. Observe that if (a) or (b) does not hold for some i, j E N and 
s E S, then either (c) si = VS, and sj # VS, or (d) si # AS, and si = /\Sj. 
Also, s 4 (s}I’,““ for all i, j E N and s E S. Now let L be a nonempty 
sublattice of S. 

We claim first that for each s E S\L, there exist i, j E N for which 
{s } ,\” I‘ contains L and either (a) or (b) holds. To that end, notice from the 
representation-of-sublattices Theorem 9 that there exist k, 1 E N such that 
s GC Lt:. Since Lk,’ is k-decreasing l-increasing, LL,“‘ is k-increasing l- 
decreasing, so ( s } :,I 5 LiJT (‘ c S\ L. Hence, { s ) lf ’ contains L. Now on 
setting i = k and j = 1, it follows that one of (a), (b), (c), or (d) holds. If (c) 
holds, then { s } !,lC > { s } 1: ’ 2 L, so instead on setting i = j = 1, we see that 
(a) or (b) holds. Similarly, if (d) holds, then {s } Li I‘ > {s } :f I‘ 2 L, so instead 
on setting i = j = k, we see again that (a) or (b) holds, which establishes the 
claim. 

It remains to show that {s }I’,“’ is irreducible if (a) or (b) holds and 
reducible if (c) or (d) holds. To that end, if (a) holds, then since s CZ {s) Jji’, 

ts}>jl ' is irreducible if every sublattice P 3 ( s }i’il (‘ also contains s. To see 
that s E P, observe first that there exists r E P\{ s}:~~ (‘, so r, < s, and 
rj >- sj. Now there exist ti > si in Si and uj c sj in Sj. Put t, = sk for k # i, 
uk = So for k f j, t = (tr), and u = (u,). Then t, u E ( s}:~~’ c P, so s = (r A 
t)V UEP. 

“‘Since the lattice of sublattices is compactly generated. the existence of the irreducible 
representations follows from the theory of such lattices [3, pp. 43-441. However, the present 
approach has the advantages of also describing the qualitative strwture of the elements of the 
representation and of not relying on Zorn’s lemma. 

“‘1 am greatly indebted to Margarida Mello for her collaboration in sharpening my earlier 
version of Theorem 13 to characterize precisely which of the nonempty complements of 

i-increasing j-decreasing hulls of singleton sets are irredwible. The characterization and a slight 

modification of her proof thereof are included here with her kind permission. 
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FIG. 4. Elements of irreducible representation of a sublattice L of a product 
S, x S, of two chains. 

If (b) holds, then either (s,, sj) = (AS,,AS,) or (si, sj) = (VS,,VS,). In the 
former event, we show that ( s}Tjl ’ is irreducible by contradiction. Thus 
suppose that { s } iT L ’ is reducible, whence { s},:J ’ = P n Q for some sublat- 
tices I’, Q distinct from { s}JjJr. Then there exist r E P\{ s}hL” and 2 E Q\ 
( s}lfjL’. Thus, ri = ti = s, and rj, tj > sj. Let uk = r, A t, for k f i, and 
choose ui > si in S,. The last is possible, for if not, Si = { si}, whence 
(s)/j~C=EK Lc {S},rjJC, which is a contradiction. Now u j z s j, u = (u, ) E 

{s}$~~ = P (7 Q, and (I = (a[) 3 r A u = t A u E P CT Q = {s}$l” = 
{u E S: oi > si}, contradicting the fact that ui = si. If instead (si, sj) = 
(VS,,VS,), then { s},~ T 1 ’ is irreducible by duality on interchanging the roles of 
i and j and applying what was just shown. 

If (c) holds, there is an rj > sj in Sj. Then P = { t E S: tj # rj) and 
Q = { t E S : tj < s j or tj = rj } are sublattices distinct from { s }A” ‘, and 
{ s } A” ’ = P n Q. If instead (d) holds, there is an r, < si in Si. Then P = 
{ t E S: ti f T,} and Q = {t E S: ti > si or ti = I; } are sublattices distinct from 
{ s}AiC, and { s}A1” = P n Q. Thus, in both cases, { s},;~” is reducible. H 

We remark that if VS, and ASj do not exist, then { s}ALC is an irreducible 
sublattice for every s E S, because then trivially si # VS, and sj + AS,. 

In Figure 4 we illustrate two elements of the irreducible representation of 
Theorem 13 for the sublattice L of a product S = S, X S, of two chains given 
in Figure 3. Observe that the 2-increasing ldecreasing hull of the element 
s E S \ L in the left side of the figure is contained in S \ L, so the comple- 
ment of {s }Jr” contains L, but not s, and so separates L from s. Similarly, 
the l-increasing ldecreasing hull of the element s E S\ L in the right side of 
the figure is contained in S\ L, so the complement of { s } :f also contains L, 
but not s, and so separates L from s. Moreover, it is apparent from both the 
left and right sides of the figure that the complement of no other i-increasing 
jdecreasing hull of s contains L in either case. 
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Observe that Theorem 13 assures that each nonempty sublattice of S can 
be expressed as an intersection of sets, each of which is a set of r E S, that do 
not satisfy both of the inequalities 

rj>sj and ri<si 

for some fixed s E S and i, j E N. An equivalent formulation of this condition 
is that T satisfies at least one of the two (strict) inequalities 

Ti>Si or Ti < Si. (7) 

Moreover, Theorem 13 implies that each nonempty sublattice of a finite 
product of chains has a coordinate-free representation as an intersection of 
sets of the form D U I where D is a prime dual ideal and I is a prime ideal. 
To see this, let D be the first of the sets in (7) and Z be the second. This is an 
instance of a result of Hashimoto [5, p. 1831, because a product of chains is a 
distributive lattice. 

Finally, note that Theorem 13 implies the main assertion of Theorem 9, 
viz., (a) 3 (c), because complements of i-increasing j-decreasing hulls of 
singleton sets are i-decreasing j-increasing. 

5. REPRESENTATION AND RECOGNITION 
OF POLYHEDRAL SUBLATTICES 

We now apply the representation-of-sublattices Theorem 9 to give irre- 
ducible representations of the polyhedral elements of the Moore lattice of 
closed convex sublattices of %“. To that end, recall that a generalized 
node-arc incidence matrix is a matrix in which each column has at most one 
positive and one negative element. 

THEOREM 14 (Irreducible representations of polyhedral sublattices as dual 
generalized network-flow polyhedra). The following are equivalent: 

(a) L is a polyhedral sublattice of %“. 
(b) L= {sE(%“:As<b} f OT some matrix (A b) with A the transpose 

of a generalized node-arc incidence matrix. 
(c) L is the intersection of finitely many closed half-spaces, each of 

which is an irreducible element of the lattice of closed convex sublattices 
of 93”. 
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Proof. (a) d(b): Since L is polyhedral, L;“IT is polyhedral because by 
(6) it is a projection of a polyhedral set. Thus there is a matrix (11” h’j) with 
L/]’ = {s E %“: A’js ,< 6’1). Since L,j 1 T is i-decreasing j-increasing, the ith 
and jth columns of 4’i are respectively nonpositive and nonnegative, and the 
remaining columns vanish. Let A = (A’]) and b = (h’j). Then by the repre- 
sentation-of-sublattices Theorem 9, L = ni, jL:jT = Is E !I?“: As < b) and A 
is the transpose of a generalized node-arc incidence matrix. 

(b) =c. (c): Let (al; b,) denote the kth row of (A b), and put N, = 
{ s E di ” : aks < bk}. From (b), there is a pair i, j such that the ith and jth 
elements of a k are respectively nonpositive and nonnegative, and the remain- 
ing elements vanish. Thus, H, is i-decreasing j-increasing, and so by Theo- 
rem 9, is a sublattice of $8”. Moreover, the half-space ti, is also irreducible, 
since that is so of the closed half-spaces in the lattice of closed convex subsets 
of !H”. Thus, since L = n,H,, (c) holds. 

(c) 3 (a): Finite intersections of polyhedral sublattices are polyhedral 
sublattices. W 

Observe that, as the example following Theorem 4 shows, Theorem 14 
does not assert that each half-space in every irredundant irreducible represen- 
tation of a polyhedral sublattice is a sublattice, but merely that there is such a 
representation. However, the proof of Theorem 14 suggests a constructive 
method for finding a finite representation of a polyhedral sublattice L in 
closed half-spaces, each of which is a sublattice. The method is to use (6) to 
compute the projections L;i’ by, say, the Fourier-Motzkin elimination proce- 
dure. As the proof that (a) implies (b) of Theorem 14 shows, this produces the 
desired representation of L as a dual generalized network-flow polyhedron. 

If L is a closed half-space {s E 8”: us 6 b} and a sublattice of 91”, then 
every finite irredundant representation of L in closed half-spaces consists 
solely of the tangent closed half-space L itself. Thus by Theorem 14, m has at 
most two nonzero elements, and they are of opposite sign. 

COROLLARY 15 (Unique irredundant irreducible representation of polyhe- 
dral sublattices of full dimension). If L is a polyhedral sublattice of 3 r’, 
then euch tangent closed half-space of L is a subluttice of Yi”. If also the 
dimension of L is n, then L has a unique irredundunt irreducible representcl- 
tion, viz., its tangent closed h&f-spaces. 

Proof. It follows from Theorem 14 that L has a finite irredundant 
irreducible representation in closed half-spaces that are at once sublattices. 
Moreover. that representation must contain all the tangent closed half-spaces. 
If also the dimension of L is n, that representation contains only the tangent 
closed half-spaces. n 
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COROLLARY 16 (Characterization of affine subsemilattices and sublattices). 
The following are equivalent: 

(a) L is an affine meet sublattice of !)I”. 
(b) L is an aff;ne join sublattice of 9%“. 
(c) L is an affine sublattice of !R”. 
(d) L={s~%“:As=b} f or some matrix (A b) with A the transpose 

of a generalized node-arc incidence mutrix. 
(e) L is the intersection of finitely many hyperplanes, each of which is a 

sublattice of !??*“. 

Proof. (a) e(b)=(c): By duality, it is enough to show (a) implies (b). 
Suppose r, s E L. Then r A s E L because L is a meet sublattice. Thus since 
L is affine, T V s = r + s - r A s E L, as claimed. 

(c) * (d): By Theorem 14, L has an irredundant irreducible representa- 
tion H,, . . . , H,, with H,={sE%“: a,s < bi ) for some vector (ai bi) with 
a i + 0 having at most one positive and one negative element for each i. 
Suppose s E L. We show that s is on the boundary of Hi for each i. If not, s 
is in the interior of Hi for some i. But Hi is not redundant, so there is an 
T E L that is on the boundary of Hi. Thus since L is affine, 2r - s E L = 
fI j Hj c Hi, a contradiction. Hence L is the intersection of the hyperplanes 
bounding H,, . . . , H, as claimed. 

(d) j (e): For each i, the ith row (ai b;) of (A b) and its negative both 
have at most one positive and at most one negative element. Thus, the 
half-spaces { s E % n : ais<bi} and (SE%‘: - ais G - bi } are both sublat- 
tices, as is their intersection, the bounding hyperplane { s E !J? n : a is = bi }. 

(e) * (a): Intersections of affine sublattices are affine sublattices. n 

Characterization of Polyhedral Sublattices by Linear Znequalities 
The next result characterizes when a polyhedral set is a sublattice by 

means of linear inequalities. 

THEOREM 17 (Characterization of polyhedral sublattices by linear inequal- 
ities). Zf L={sE%“:As<b) is a nonempty polyhedron for some m x 
(n + 1) matrix (A b), the following are equiualent: 

(a) L is a sublattice of % “. 
(b) There exist m x m matrices Xi and m x n matrices pi, i = 1,. . . , n, 

that satisfy (4), and m x m matrices 2 and m X n matrices $, i = 1,. . . , n, 
that satisfy (4) with - A replacing A. 



702 ARTHUR F. VEINO’IT, JR. 

(c) There exist m X m matrices Xii and column m-vectors p’j, vii, i, j = 
1 >..., n, that satisfy the linear inequalities 

p’jl, - Vljl j + x’44 = 0, all i, j, 

i ( -yk’lk+~k’ll)=A, 
k.l=l 

all i, j, 

(8) 

where li is the ith unit row n-vector ,for all i. 

Proof. (a) c=) (b): Apply both parts of Theorem 6. 
(a) CJ (c): By the representation-of-sublattices Theorem 9, L is a sublat- 

tice of !R” if and only if every sequence s,r’jE!R”, i,j=l,...,n, that 
satisfies 

Ar’i< b, 

r.ij G s. t I’ 
(i,j=l,...,n) (9) 

also satisfies As < b. This is so if and only if for each 1~ k < n, the maximum 
of aks subject to (9) does not exceed b,, where (ak bk) is the kth row of 
(A b). By the duality theorem of linear programming, this is so if and only if 
the dual of this linear program has a feasible solution whose objective 
function does not exceed b, for each k. The system (8) expresses this fact. n 

Polynomial-Time Recognition of Polyhedral Subluttices 
One immediate implication of Theorem 17 is the following. 

COROLLARY 18 (Polynomial-time recognition of polyhedral sublattices). 
There is a polynomial-time algorithm for testing whether a polyhedron in !I? n 
is a sublattice thereof. 
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Proof. This follows from Theorem 17, the fact that the size of the linear 
inequality system (8) is polynomial in that of the system As < b, and the fact 
that there exist algorithms for solving systems of linear inequalities that run in 
time that is polynomial in the size thereof, e.g., those of Khachiyan and 
Karmarkar. m 

Computations 
One polynomial-time algorithm for testing whether a polyhedron is a 

sublattice is to use the polynomial-time algorithms for separately testing 
whether a polyhedron is a meet and a join sublattice as discussed at the end 
of Section 3. This appears to be more efficient than testing whether a 
polyhedron is a sublattice by using (c) of Theorem 17. 

Dual Network-Flow Polyhedra 
Theorem 14 gives a sublattice characterization of dual generalized net- 

work-flow polyhedra. The next result does likewise for dual network-flow 
polyhedra. A node-arc incidence matrix is a matrix in which each column has 
one + 1, one - 1, and zeros elsewhere. Let 1 be a column n-vector of ones. 

COROLLARY 19 (Characterization of dual network-flow polyhedra). The 
folZowing are equiualent: 

(a) L is a polyhedral sublattice of % “, and L + Xl = L for all X E %. 
(b) L={~E& : 5 n As < b} for some matrix (A b) with A the transpose 

of a node-arc incidence matrix. 

Proof. (a) j(b): By Theorem 14, L = {s E !I?“: As < b} for some ma- 
trix (A b) for which A is the transpose of a generalized node-arc incidence 
matrix. We can, of course, assume without loss of generality that no row of A 
is vacuous, for any such row can be removed. Now we must have Al = 0, for 
if not, Al f 0. Then we find for any fixed s E L, by choosing lh\ large 
enough, that A(s + hl) = As + hA1 & b, which contradicts the fact that 
L + Xl = L. Since Al = 0, each row of A has two nonzero elements, one the 
negative of the other. Thus, on multiplying each row of (A b) by the 
reciprocal of the positive element in the corresponding row of A, we can 
assume without loss of generality that each row of A has one + 1, one - 1, 
and zeros elsewhere. 

(b) * (a): By Theorem 14, L is a polyhedral sublattice of !I? n. Also, since 
for each s E L and h E % we have A( s + Xl) = As f b, it follows that 
L+Al=L. n 
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I am indebted to Donald Topkis for his collaboration in developing the 
representation-of-sub&ices Theorem 9, to Donald Brown for introducing me 
to compactly generated lattices, to Robert Mifflin for reminding me how to 
check for redundancy in a linear program, to Garrett Birkhoff for pointing 
out to me that representations of subsemilattices of products of chains can be 
used to give corresponding representations of subsemilattices of quite general 
semilattices, to Uriel Rothblum for a number of helpful comments, and to 
Margarida Mello for a careful reading of an earlier version of this paper as 
well as significant contributions to the final forms and proofs of Theorems 3 
and 13. 
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