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Abstract

There have been signi�cant advances on formal methods to verify complex systems recently.
Nevertheless, these methods have not yet been accepted as a realistic alternative to the veri�cation
of industrial systems. One reason for this is that formal methods are still di�cult to apply
e�ciently. Another reason is that current veri�cation algorithms are still not e�cient enough
to handle many complex systems. This work addresses the problem by presenting a language
designed especially to simplify writing time-critical programs. It is an imperative language with
a syntax similar to C. Special constructs are provided to allow the straightforward expression
of timing properties. The familiar syntax makes it easier for non-experts to use the tool. The
special constructs make it possible to model the timing characteristics of the system naturally and
accurately. A symbolic representation using BDDs, model checking and quantitative algorithms
are used to check system timing properties. The e�ciency of the representation allows complex
realistic systems to be veri�ed. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Formal veri�cation tools are becoming more and more e�cient every day. Until
recently, it was not possible to verify large industrial systems using formal methods.
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Today this scenario has been changed by the development of more e�cient veri�cation
methods such as symbolic model checking [5, 22]. It is now possible to verify systems
of realistic complexity such as the Futurebus cache coherence protocol [11] and the
PCI Local Bus [8].
However, in spite of signi�cant technical success, formal methods have yet to be

recognized as a viable alternative to the veri�cation of industrial systems. One reason
is because even though current algorithms are signi�cantly more e�cient than their
predecessors, there is still a limit on the size of problems that can be handled. Unfor-
tunately, several interesting examples are still out of reach. This problem is especially
evident in systems where time is a vital parameter such as controllers for industrial
machinery, power plants or airplanes. In these systems, a late response can have seri-
ous or even fatal consequences. We will refer to this type of systems as time-critical
systems. 3 Modeling time is di�cult and frequently the time component is the bottle-
neck of the veri�cation. Another di�culty in the use of formal veri�cation is that most
tools are not simple to use. Extensive knowledge about the veri�cation method is fre-
quently required. Also, the language used to verify the system is usually signi�cantly
di�erent from the language used to implement it. As a consequence, the designer must
maintain separate descriptions of the system, leading to problems in managing di�er-
ent versions of the code and potentially introducing translation errors. Moreover, the
two goals of increasing the veri�cation e�ciency and the development of more ex-
pressive and simpler to use languages can be contradictory. A language with powerful
constructs can be easy to program in, but the veri�cation of those constructs can be
expensive.
This work addresses these problems by presenting a new language used to describe

time-critical systems called Verus. Verus provides a familiar environment for writing
timed programs. Its syntax resembles the syntax of C, the language most frequently
used to implement such systems. The development of the model and its veri�cation
can be performed faster since both languages are similar. Also, the translation process
is less error-prone. This work describes Verus in detail and shows how time-critical
programs can be e�ciently represented and manipulated symbolically.
Verus uses a discrete notion of time. The model of a Verus program is a �nite

state-transition graph and time passes by one time unit at each transition in the graph.
The simplicity of this representation makes it amenable to a symbolic implementation
using binary decision diagrams. This representation is very e�cient, we have applied
this method to the veri�cation of several real systems, such as an aircraft controller
[7], a robotics controller [9] and a distributed heterogeneous time critical system [10].
In all cases the examples veri�ed are either actual systems or use components and
protocols employed in current industrial products.

3 They are also called real-time systems in the literature, but this term can be confusing since real-time
also connotes the use of a continuous time representation.
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1.1. The Verus language

The main goal of Verus is to allow engineers and designers to describe timed systems
easily and e�ciently. Special primitives are provided for the expression of timing
aspects such as deadlines, priorities, and time delays. These primitives make timing
assumptions explicit. A di�erent approach is taken by many other languages, such as
C, that allow programs where timing assumptions are not clearly stated. This results
in ambiguous speci�cations that are di�cult to prove correct. The approach taken in
Verus makes the speci�cation clearer and more complete.

2. Overview of Verus

This section provides an overview of the language by presenting a simple time-
critical program. This program implements a solution for the producer–consumer prob-
lem by bounding the time delays of its processes. No synchronization is needed if the
time delays of producer and consumer are de�ned properly. The code for the producer
process is shown below. Variable p is a pointer to the bu�er in which data is stored
and the produce variable signals the production of an item. After initialization, the
program enters a nonterminating loop in which items are produced at a certain rate.
Line 7 introduces a time delay of 3 units. Line 8 marks the production of an item and
in line 9 p is updated appropriately. Line 10 makes sure that the event produce is
observed. It is needed because the state of a Verus program can only be observed at
wait statements. As it will be seen in Fig. 1, if a wait is not introduced in line 10,
line 11 would cancel the e�ect of the assertion of produce before it can be observed.

1 producer(p)

2 {

3 boolean produce;

4 p = 0;

5 produce = false;

6 while(!stop) {

7 wait(3);

8 produce = true;

9 p = p+1;

10 wait(1);

11 produce = false;

12 };

13 }

Fig. 1. Producer code.
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2.1. Wait statements

In Verus time passes only on wait statements. For example, lines 4–6 execute in
time zero and time elapses only after the loop condition has been tested. This feature
allows a more accurate control of time, and eliminates the possibility of implicit delays
in
uencing the results of the veri�cation. It also generates models with fewer states,
since contiguous statements are collapsed into one transition.

2.2. Nondeterminism

To illustrate another characteristic of Verus, let us assume that the producer is not
required to actually produce an item after 3 time units, but may instead leave the value
of p unchanged. This characterizes a nondeterministic choice, and can be modelled in
Verus by changing line 9 to

9 p = select{p,p+1}:
The consumer process is very similar to the producer. The basic di�erences are

that it waits for less time before consuming, and that it only consumes if p and c have
di�erent values (p == c signals an empty bu�er) (Figs. 2 and 3).

2.3. Process instantiation

In the main function, the producer and consumer processes are instantiated as
can be seen in Fig. 4. An implicit instantiation of the main module is assumed, where
main executes as another module. Process instantiation in Verus follows a synchronous
model. All processes execute in lock step, with one step in any process corresponding
to one step in the other processes. Parallel process composition is discussed in Sec-
tion 3.4. Asynchronous behavior can be modeled by using stuttering, which introduces
nondeterministic transitions and e�ectively models the desired behavior. We can use
nondeterministic assignments to variables to determine if the system will wait for an-
other step or not, as seen in the �gure below. Notice that the individual statements can
be hidden in a preprocessing step. This technique is described in detail in [6].

2.4. The main function

Speci�cations can also follow the code as can be seen below. These speci�cations
compute the minimum and maximum time between producing an item and consuming
it, as well as checking that a produce is always followed by a consume. Details about
the veri�cation method can be found in Section 4.

2.5. Periodic execution and deadlines

To illustrate di�erent features of Verus some extensions to the program above are
considered. The �rst comes from realizing that both processes will always execute,
even when no data exists. In this case CPU cycles are wasted, the processes are busy
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14 consumer(p, c)

15 {

16 boolean consume;

17 c = 0;

18 consume = false;

19 while (!stop) {

20 wait(1);

21 if (p != c) {

22 consume = true;

23 c = c+1;

24 wait(1);

25 consume = false;

26 };

27 };

28 }

Fig. 2. Consumer code.

1 wait(1);

2 r = select{false,true};
3 if (r) wait(1);

4 r = select{false,true};
5 if (r) wait(1);

Fig. 3. A stuttering transition of between 1 and 3 time units.

29 main()

30 {

31 int p, c;

32 process prod producer(p),

33 cons consumer(p, c);

34 spec AG(prod.produce to AF cons.consume)

35 MIN[prod.produce, cons.consume]

36 MAX[prod.produce, cons.consume]

37 }

Fig. 4. Producer=consumer main function.

waiting. For example, the consumer uses the processor even if the producer does
not generate items. In real systems busy waiting is virtually never used. In order to
model systems as realistically as possible, busy waiting should be avoided. In Verus
this can done using periodic execution, where execution is scheduled at speci�c points
in time. It can be easily speci�ed in Verus. The producer can be made into a periodic
process executing once every 10 time units as seen in Fig. 5. The �rst parameter of the



100 S.V.A. Campos, E. Clarke / Theoretical Computer Science 253 (2001) 95–118

1 producer(p, c)

2 {

3 boolean produce;

4
5 p = 0;

6 produce = false;

7 periodic(0, 10, 10) {

8 wait(3);

9 produce = true;

10 p = p+1;

11 wait(1);

12 produce = false;

13 };

14 }

Fig. 5. Periodic producer.

periodic statement is the start time, which speci�es how many time units the periodic
code will idle before starting its execution for the �rst time. The second parameter is
the period. In this case the statements following periodic will execute once every
10 time units. The third parameter de�nes a deadline. It states that the execution must
�nish in less than 10 time units or an exception will be raised (exception handling
is discussed later). Deadlines can also be de�ned independent of period using the
deadline(n) statement.

2.6. Exceptions

The only exception currently de�ned in Verus is a missed deadline. It occurs when
the code inside a deadline or a periodic statement does not �nish within the spec-
i�ed time. An exception handler must be speci�ed for the exception to take e�ect.
When a deadline is missed the code designated as handler is executed. After the exe-
cution of the exception handler control is passed to the statement following the deadline
statement. This can be, for example, the next instantiation of a periodic process.
Fig. 6 shows the typical exception handling mechanism. Whenever a deadline is

missed an error 
ag is asserted. The veri�cation procedure can then check to see if
the error condition is reachable.

2.7. Internal and external variables

There are two types of variables in Verus, internal and external. Unless assigned a
speci�c value, the value of both types of variables is chosen nondeterministically from
all possible values (true or false for booleans and 0::2width − 1 for integers). The two
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1 producer(p, c)

2 {

3 boolean produce;

4
5 handler {

6 error = 1;

7 } for {

8 p = 0;

9 produce = false;

10 periodic(0, 10, 10) {

11 wait(3);

12 produce = true;

13 p = p+1;

14 wait(1);

15 produce = false;

16 };

17 };

18 }

Fig. 6. Exception handling.

types di�er, however, regarding the rules that control when their value changes. The
value of an internal variable changes only when assignments are executed. External
variables on the other hand model the interaction of the model with the environment.
They correspond to inputs from the outside world, and the program has no control
over their value. Assignments to external variables are not allowed and their value can
change nondeterministically at any transition of the model. The declaration of external
variables is preceded by the extern keyword.
The data types allowed in Verus are �xed-width integer and boolean. Nondeter-

minism is supported, which allows partial speci�cations to be described. Language
constructs have been kept simple in order to allow a very e�cient compilation into a
state-transition graph. Smaller representations can then be generated, which is critical
to the e�ciency of the veri�cation and permits larger examples to be handled.

2.8. Related work

There are several other languages for specifying �nite-state time-critical systems.
Esterel [3] is one such language. It is an imperative language, but its syntax may be
very unfamiliar to most designers of time-critical systems, accustomed to programming
in C or similar languages. For example, specifying the execution of a periodic process
with a deadline is not as straightforward as in Verus. Process algebras are also used
to specify time-critical systems [4, 14, 16, 25] but they are also frequently unfamiliar
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to designers. The disadvantage of using an unfamiliar language is that the designer
needs to adopt his=her coding style to that of the new language. Forcing designers to
do so can lead to loss of interest in the method, since extra e�ort has to be spent
to use it. Frequently, designers give up on new tools because they cannot a�ord the
time to learn it properly. By using a familiar language for veri�cation we overcome
this extra obstacle in making formal methods a practical tool to be used directly by
designers.
Modechart [13, 20] and Statechart [23] are other examples of speci�cation languages

that can be used to model time-critical systems. They are graphical languages in which
nodes represent states, and transitions are explicitly drawn between states. However,
complex constructs such as periodic are di�cult to draw. Moreover, many systems are
too large to be naturally described using languages in which individual states are drawn
in the program.
In this work, we use a discrete notion of time. In recent years, there has been

considerable research on algorithms that use continuous time [1, 2, 18, 19]. Most of
these techniques use a transition relation with a �nite set of real-valued clocks and
constraints on times when transitions may occur. It can be argued that such algorithms
lead to more accurate results than discrete time algorithms. However, an uncountable
in�nite state space is required to handle continuous time, because the time component in
the states can take arbitrary real values. Unfortunately, the representation of this in�nite
state space can be very expensive in practice. This makes it very di�cult to verify
many large complex systems using continuous time tools. Discrete-time tools, however,
compromise accuracy for e�ciency. It is possible to verify larger systems using discrete
time, but with less accuracy. In many cases, however, the loss of accuracy is not a
problem. For the veri�cation of controllers for many mechanical [17], electrical [8]
and chemical processes [24], for example, discrete time is acceptable since many other
factors in these controllers already a�ect the accuracy of measurements. Some of these
factors include the use of synchronous circuits, the granularity of operating system timer
interrupts which a�ects the observability of events in the computer, or even the slow
speed in which some of these processes operate. In such cases, it is preferable to use
a discrete-time tool, since this may simplify veri�cation, speeding it up considerably
and possibly enabling the analysis of larger systems.

3. Semantics

The meaning of a Verus program is a state-transition graph. Section 3.1 explains
how state-transition graphs are represented in Verus. Also, in Section 3.1 the concept
of wait graphs is introduced. Wait graphs are an abstraction used to keep track of the
control 
ow of the program. The formal semantics is described in Section 3.2. The
initial discussion is restricted to a single process, that is, only one 
ow of execution.
The semantics of concurrency in Verus is not discussed until Section 3.4.
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3.1. State-transition graphs in Verus

The state-transition graph constructed from a program P is GP =(SP; IP; TP), where
SP is the set of states, IP is the set of initial states and TP is the transition relation.
The set of states is de�ned by the variables in the program. IP and TP will be seen
shortly.

3.1.1. Symbolic representation
States are de�ned by the assignment of values to program variables. Each possi-

ble assignment to the program variables is a state. For example, if the program has
three boolean variables a; b and c, examples of states are (a; b; c); (a; �b; �c) and ( �a; �b; c),
where, for variable v; v means the variable is true in the state, and �v means the variable
is false. Boolean formulas over program variables can be true or not in a given state.
The value of a boolean formula in a state is obtained by substituting into the formula
the values of the variables in that state. For example, the formula (a∨ c) is true in all
states shown above. The graph representation used by Verus is a direct consequence
of this observation. Sets of states are represented by boolean formulas, where each
formula represents the set of states in which the formula is true. For example, the
formula true represents the set of all states, the formula false represents the empty set
of states, and the formula (a∨ c) represents the set of states in which a or c are true.
The size of the BDD representation for a set of states is not directly related to the
number of states in it. Frequently, the BDD for a set of states is signi�cantly smaller
than another corresponding representation for the same set of states. This is one of
the reasons for the e�ciency of the method. However, in the worst case the size
of the BDD can be exponential in the number of variables in the formula. In this
case, the BDD representation is not smaller than an explicit representation for the
states, possibly making veri�cation impossible. This problem is known as the state
explosion problem. Fortunately, there exist several e�cient heuristics to manipulate
BDDs that help avoid this exponential blowup of states in the majority of cases
[22].
Transitions can also be represented by boolean formulas. A transition T (s; s′) is

represented using two sets of variables, one for the current state and another for
the next state. Each variable in the next state set corresponds to one variable in
the current state set. If state s is represented by the formula fs over the current
state variables, and state s′ is represented by formula f′

s over the next state vari-
ables, then the transition T (s; s′) is represented by the formula fs ∧ f′

s . For exam-
ple, a transition from state ( �a; �b; c) to state ( �a; b; �c) is represented by the formula
¬a ∧ ¬b ∧ ¬c ∧ ¬a′ ∧ b′ ∧ ¬c′. The transition relation of a graph is the disjunction
of all transitions in the graph. The meaning of the formula representing the transition
relation is the following: there exists a transition from s to s′ i� the substitution of
the variable values for s in the current state variables and s′ in the next state variables
of the transition relation yields true. Further details about this representation can be
found in [6, 22].
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3.1.2. Tracking the control 
ow – wait graphs
In Verus, the program state can only be observed at wait statements. When a wait

is executed all changes caused by the execution of the block of statements since the
previous wait take e�ect at the same time. As seen in Fig. 7, transitions in the graph
occur only when wait statements are executed. Each transition corresponds to time
elapsing by one unit. Longer waits are modeled by a sequence of unit transitions.
It is easier to understand the behavior of a Verus program by concentrating on

its wait statements. This is done by translating the program into a wait graph. The
wait graph corresponding to a Verus program is a graph in which the states are the
wait statements in the program. It is an intermediate representation between the Verus
program and the corresponding state-transition graph. It is used only to illustrate how
this translation occurs and is not actually constructed. In the discussion below, to
di�erentiate between distinct waits, waiti represents the ith occurrence of a wait

statement in the source program. Traversing the same wait statement more than once
does not change its number. Subscripts have been added to the sample program below
to aid the presentation, no subscript exists in actual programs.
As discussed, each wait in the program is a state in the wait graph. Transitions

between waits are de�ned as follows. A transition between waiti and waitj exists i�
waitj can be reached from waiti in the control 
ow of the program without going
through intermediate waits. Edges of the wait graph are labelled by a relation Tij
between any two states in the state-transition graph. Intuitively, given two states s and
s′; Tij(s; s′) means that if program execution is in waiti and the current state is s, then
there exists a path in the control 
ow leading to waitj without intermediate waits, and
executing the statements on this path changes state s into state s′.
Notice that Tij represents exactly all transitions from s to s′ in the state graph such

that s and s′ are, respectively, the current state of the program before and after control is
transferred from waiti to waitj. This makes it possible to construct the state transition
graph that corresponds to a given Verus program from its wait graph. The set of all

Fig. 7. Wait statement example: if s0 is the current state at the �rst wait, s1 will be the current state at the
second.
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Fig. 8. A Verus program and part of its corresponding wait graph.

relations between wait statements represents all transitions in the program and their
disjunction constitutes the transition relation of the state-transition graph.

3.1.3. Wait counters
Since each relation Tij corresponds to a set of transitions, their disjunction should

correspond to the transition relation of the program. However, this is not true because
Tij does not contain information about where it came from (waiti) and where it leads
to (waitj). The disjunction of all relations would not maintain consistency of the values
of variables after the execution of a sequence of waits.
This problem is solved by creating an extra variable in the program to record this

information, the wait counter wc. Each wait statement is preceded by an assignment
wc = i, where i is the occurrence number of the wait statement (this assignment is
introduced by the compiler; it is not part of the source code). The relation Tij now
contains information about where it leads to, since the assignment wc = j is introduced
before waitj. As detailed in the next section, the previous value of the wait counter
indicates where this transition came from. Now Tij has all information needed to main-
tain consistency across sequences of wait statements. The disjunction of all relations
between waits is the transition relation of the program (Fig. 8).

3.1.4. Determining the initial state set
The initial state set of a Verus program is the state it reaches just after executing the

�rst wait. In order to compute the initial state set, Verus programs start with an initial
wait, with the wait counter of 0 (introduced by the compiler). The state of the program
at this point, S0, is represented by the formula (wc=0). The initial state set is de�ned
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as the set of states reached from S0 in one transition. Alternatively, the initial state
could be de�ned as (wc=0). However, this can cause a nonintuitive behavior because
in the set of states de�ned by (wc=0) no variable has been initialized. De�ning the
initial state set as the set of states reachable from (wc=0) in one step ensures that all
variables have been initialized in the initial state.

3.1.5. E�cient representation of time
Time is represented by transitions in the state-transition graph. Each transition rep-

resents one time unit. This representation is extremely simple, but also extremely
e�cient. Even though each time unit is individually described in the source program,
it is not necessarily explicitly represented internally. The BDD representation used by
Verus minimizes the boolean formulas that correspond to these transitions. This usually
generates small representations even for very long transitions.
Two cases can be considered when dealing with long transitions represented by a

sequence of unit transitions. If at the intermediate steps nothing else happens except
for the passage of time, the corresponding BDD will be small since the only event to
represent is the increment of the wait counter variable value. If many events happen
at intermediate steps, their representation may be complex and the corresponding BDD
large. But in this case, it would be necessary to represent these events regardless of
which representation of time is used. For example, timed automata use clock variables
to represent time [1, 2, 18, 19]. Their value is not necessarily incremented by one,
so long time delays can be represented by one transition. However, if other events
may occur during one such long delay, they must be taken into account, making the
veri�cation of such systems considerably more expensive. This is one of the main
reasons for the complexity of the veri�cation of time critical systems, represented
using timed automata, BDDs or any other method.
The representation proposed in this work does not add a signi�cant overhead to this

problem, and it takes advantage of the e�ciency of BDD manipulation algorithms. This
e�ciency can be attested by the various systems veri�ed such as the PCI local bus
[8], a heterogeneous time critical system in which multimedia data travels over several
di�erent types of communication links [10] and others. For example, the full aircraft
controller example described in Section 5 has 15 concurrent processes and we have
been able to produce counterexamples with depth greater than 2000 states in minutes
using a PC workstation. The depth of a counterexample is relevant because it measures
the depth of the breadth �rst search performed to verify the property. In this example,
we have been able to represent the parallel composition of 15 processes and perform
an extremely deep breadth �rst search on a state space with more than 1015 states.

3.2. Formal semantics

The state space of a Verus program is de�ned by a set of boolean variables. A state
in the model is an assignment of values to the variables. The set of all states is ST .
A relation between any two states belongs to Relation≡Powerset(ST × ST ).
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The function R given below constructs the relations between wait statements. In-
tuitively, given a relation r describing the program until the execution of statement
Stmt, function R will produce the relation r′ describing the program after executing
Stmt. The function R also constructs another relation t by accumulating the relations
constructed for all wait statements. Function R is de�ned by

R : STMT→ Relation× Relation→ Relation× Relation;
where pairs of relations are 〈r; t〉; r being the relation containing changes to the program
state since the last wait statement, and t being the transition relation of the program,
that is, the disjunction of the relations between all pairs of wait statements. Relations
r and t are represented by boolean formulas as explained previously.
The state-transition graph corresponding to a program P is constructed as follows.

Given program P, function R constructs 〈r; t〉 = R<P=〈wc = 0; false〉, where t is the
transition relation of the state-transition graph corresponding to P, and the initial state
set is constructed from t as discussed above.
Additional de�nitions are needed before presenting the semantic functions:

• There are only boolean variables in the program. Integer variables are encoded in
binary and substituted for the corresponding boolean variables.

• V and V ′ are two sets of boolean variables such that for each variable v in the
program there are corresponding variables v∈V and v′ ∈V ′. The value of program
variable v in the current state is represented by v∈V , and in the next state by
v′ ∈V ′. A transition is a relation between variables in V and V ′.

• A variable wait counter (wc) is introduced in the model. An assignment wc = i;

exists just before statement waiti.
• Programs start with the sequence: wc = 0; wait 0;

• All programs are assumed to have as the last statement:
while (true) wait(1);

This statement guarantees that transitions will be generated for all programs, since
transitions are only generated at wait statements. It also ensures that after the program
terminates its state will remain unchanged.

3.2.1. Primary expressions
The meaning of a Verus expression is a boolean formula corresponding to the syntac-

tic expression. Since the core language only allows boolean expressions, the translation
is straightforward; it is described below by the function E:

E<true= = true; E<false= = false;
E<v= = v′ where v is an internal variable and v′ ∈ V ′;

E<v= = v where v is an external variable and v ∈ V:
Internal variables are represented by their next state value, while external variables

are represented by their current state value. This choice of representation signi�cantly
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a�ects the behavior of each type of variable. Initially, lets consider how internal vari-
ables behave. All references to an internal variable will be denoted by its next state
variable. For example, a reference to variable v in the left-hand of an assignment (as
in v = false) will be denoted by the next state variable v′, and the assignment will
change the value of v′ in the current relation (see semantics of assignments). This is
expected, since assignments determine the value of variables in the next state.
However, other references to v (as in x = !v) also refer to v′. In the assignment

x = !v the value of x′ in the current relation will be assigned the negation of the value
of v′. Two cases must be considered. If variable v has been assigned a value previously,
this assignment has updated the value of v′ in the current relation. Consequently, the
assignment to x uses the most recent value assigned to v. In the case that variable
v has not been assigned any value, the current relation enforces that the value of
internal variables does not change via the clause (

∧
v∈ internal variables v= v

′) introduced
in the current relation at wait statements (see R<wait=). This clause guarantees that the
current and next state variables of internal variables have the same value (the clause is
automatically overridden if an assignment is made). This has the e�ect that the value
of an internal variable does not change if no assignments are made.
External variables, on the other hand, are not included in the wait statement clause

introduced in the current relation. This is because their value is not maintained across
wait statements. External variables may change value nondeterministically at wait
statements and they cannot be assigned to. The value an external variable has at any
point in the program is the value it had in the previous wait statement, since no
assignments exist. This value is represented by its current state variable.
A �nal case that must be considered is what happens when the value of the next

state variable v′ changes after an assignment that refers to its old value. For example,
in the code x = !v; v=false; we must be sure that the new value of v′ does not
a�ect the value assigned to x′. This does not happen, however, because during the
assignment to v′, its old value is assigned to a new variable y which is substituted for
v′ in r, eliminating cross referencing between the old and new values of v′. This can
be seen in detail in the semantics for the assignment statement below.

3.2.2. Boolean expressions

E<expr1| |expr2= = E<expr1= ∨ E<expr2=;
E<expr1 && expr2= = E<expr1= ∧ E<expr2=;
E<!expr= = ¬E<expr=

3.3. Statements

3.3.1. Assignments

R<v = expr=〈r; t〉 = 〈(∃y[v = Expr y=v ∧ ry=v]); t〉;
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where v=E<v=; Expr=E<expr= and y is a new variable.This expression computes the
strongest post-condition for the assignment v = expr given r as a pre-condition. If r
is the set of valid transitions in the graph since the last wait, the expression above
determines the largest set of transitions that satisfy the assignment and that satisfy r
for variables other than v. Intuitively, it substitutes the previous value of v in r for
Expr, while maintaining the values of other variables.

R<v = select{expr1; expr2}=〈r; t〉 = let〈r′; t〉 = R<v = expr1=〈r; t〉;
〈r′′; t〉 = R<v = expr2=〈r; t〉in
〈r′ ∨ r′′; t〉

The relation for a nondeterministic assignment is the disjunction of the expression for
each possible assignment. In other words, a nondeterministic assignment is true if any
possible value is assigned. The extension of R for the case in which more than two
expressions exist is a simple extension of this disjunction and is omitted for brevity.

3.3.2. Sequential execution
R<S1; S2=〈r; t〉 = R<S2=(R<S1=〈r; t〉)

3.3.3. Wait statements

R<waiti(1)=〈r; t〉=
〈(

(wc = i) ∧
∧
v∈IV

v = v′
)
; (t ∨ r)

〉
where IV is the set of

internal variables in the program:

Function R for the wait statement changes the previous relation in two ways. At this
point in the program transitions that lead to waiti are generated. These transitions are
represented by relation r before the wait is executed. r is then disjointed with the
previous transition relation t. This is the only clause that changes the value of t.
Moreover, the current relation after the execution of waiti must re
ect the fact that

a new set of transitions will be computed. The new relation speci�es that transitions
start in waiti with the formula (wc= i). The destination of the new set of transitions
will be established when the next wait statement is found. At that point, the assignment
wc= j before waitj introduces the formula (wc′= j) in the current relation, specifying
where the transition leads to. Because of these two conditions, all transitions specify a
value for both the current and next state wait counters.
Finally, it is necessary to introduce the expression

∧
v∈IV v= v

′ into the current
relation. For internal variables this expression guarantees that unless assigned a new
value, internal variables maintain their previous value across transitions. This allows
the use of the next state variable as the semantic value of internal program variables.
Whenever an internal variable is referenced, its next state variable will have its previous
value (via the clause v= v′ above) or its new value (via an assignment).
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3.3.4. Conditionals

R<if cond S1 else S2=〈r; t〉 = let〈r′; t′〉 = R<S1=〈(r ∧ cond); t〉;
〈r′′; t′′〉 = R<S2=〈(r ∧ ¬cond); t〉in
〈r′ ∨ r′′; t′ ∨ t′′〉

Each branch in the if statement is executed by restricting its parameter to the set of
transitions that satisfy the appropriate conditional – S1 receives those transitions satisfy-
ing cond, and S2 receives transitions not satisfying cond. In this way, if control reaches
the if statement through a state that satis�es the condition, control will proceed to S1.
If the state does not satisfy the condition, control proceeds to S2. The representation
of a conditional is the disjunction of the representation of its branches.

3.3.5. Loops
The representation of a while loop can be seen as unrolling the loop into nested if

statements: if cond{S1; if cond{S1; : : :}};. We describe below this recursive structure
using the �x operator, which returns the least �xpoint of the functional given as its
argument.

R<while condS1= = fix(�f�〈r; t〉:let〈r′; t′〉 = f(R<S1=〈(r ∧ cond); t〉);
〈r′′; t′′〉 = 〈(r ∧ ¬cond); t〉in
〈r′ ∧ r′′; t′ ∨ t′′〉)

The operations performed by the functional above are projection (from the result of
the application of f into r′ and t′), disjunction (of r′, r′′ and t′, t′′) and pairing (of the
results of the disjunctions). Since these operations are continuous [26], any functional
constructed from them is also continuous. By being continuous, the functional is also
monotonic, and therefore it has a �xpoint.
However, not all programs with while statements have well behaved semantics. For

example, a �xpoint characterization for an in�nite loop without waits is the relation
false, which corresponds to nontermination. But since there are no waits in the
program, time does not pass. Nontermination in this case means that if the program
is in state s when the code below is executed, there will be no outgoing transition
from s, that is, the nonterminating behavior is not observable. In order to avoid this
anomalous behavior, we impose the rule that all execution sequences inside all whiles
in the program must execute at least one wait statement. This ensures that even
nonterminating while programs are always observable.

3.3.6. Schedule statements

schedule statement ::=

deadline (constant) compound statement
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The deadline statement is translated into the Verus core language by creating an in-
teger variable timer. At the deadline keyword an assignment timer= 0 is in-
serted. Within the scope of the deadline, each wait(n) statement is preceded by
timer= timer + n; and by a check if (timer ¿ = deadline) error code, where
the exception handler de�nes error code.

schedule statement ::=

periodic (constant; constant; constant) compound statement:

The periodic statement is handled in a similar way. The di�erence is that an in�nite
loop is inserted enclosing the periodic statement, and once the periodic statement has
�nished executing, a loop is inserted to enforce the periodicity:

while (timer < period) {

timer = timer + 1;

wait(1);

};

A similar loop is inserted before the main loop at the beginning of the periodic
statement to account for the initial o�set. Notice that by using multiple timer variables
it is possible to nest periodic and deadline statements.

3.3.7. Exception handling

schedule statement ::=

handler compound statement for compound statement

The �rst compound statement is the exception handler, and the second is the scope
of the handler. The exception handling statement handler S1 for S2 is translated by
substituting the error code created by deadline statements in S2 for: S1 else {. The
compound statement S1 is executed in case of a missed deadline, and the else clause
guarantees that the rest of the deadline statement is skipped in case of a missed
deadline. The { after the else is closed at the end of the deadline statement.

3.4. Parallel process composition

Given a set of processes de�ned by their state-transition graphs, it is possible to
construct a global state-transition graph corresponding to the environment in which
all processes execute concurrently. The concurrency model implemented in Verus is
synchronous, that is, one transition in the global model corresponds to exactly one
transition in each process.
Given two processes de�ned by their state transition graphs G1 = (S1; I1; T1) and

G2 = (S2; I2; T2) we can construct a global state transition graph G=(S; I; T ) by:
• S = {(s1; s2) | s1 ∈ S1; s2 ∈ S2 and s1〈v〉= s2〈v〉, for all shared variables v}, where s〈v〉
denotes the truth value of variable v in state s.
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Each state in the global model contains one component in each process. However,
one constraint must be satis�ed. If a variable is referenced in more than one process,
its value in each component of the global state space must be the same. This model
guarantees consistency of the values of shared variables.

• I = {(i1; i2) | i1 ∈ I1; i2 ∈ I2 and (i1; i2)∈ S}
An initial state in G is a state in the global model that is an initial state in all
processes.

• T ((s1; s2); (t1; t2)) i� T1(s1; t1) and T2(s2; t2)
A transition in the global model exists i� it corresponds to existing transitions in each
component. Symbolically T is constructed by conjuncting T1 and T2. The meaning
of the formula representing the global transition relation is that a transition exists if
transitions exist in all components.

4. The veri�cation algorithms

4.1. CTL and RTCTL model checking

Verus allows the veri�cation of untimed properties expressed as CTL formulas [22]
such as AG (prod.produce -> AF cons.consume). This property means that it is an
invariant of the system (the AG part) that a produce is always followed by a consume
(the AF part). Timed properties can be expressed as RTCTL (real-time CTL formulas
[15]. CTL formulas allow the veri�cation of properties such “p will eventually occur”,
or “p will never be asserted”. However, it is not possible to express bounded properties
such as “p will occur in less than 10 ms” directly. RTCTL model checking overcomes
this restriction by allowing bounds on all CTL operators to be speci�ed [15].
Many important properties of timed systems can be veri�ed using both CTL and

RTCTL model checking. For example, we have used it to show the existence of priority
inversion in a time-critical system [6]. In this example, we have modeled a simple
system in which processes communicate in a nonregular pattern. The main objective
is to determine which problems can arise from this communication and how to avoid
them. The bounded until operator allows us to determine the existence of priority
inversion, and to check that the solution implemented, priority inheritance, avoids the
problem.

4.2. Quantitative algorithms

Most veri�cation algorithms assume that timing constraints are given explicitly. Typ-
ically, the designer provides a constraint on response time for some operation, and the
veri�er automatically determines if it is satis�ed or not. Unfortunately, these tech-
niques do not provide any information about how much a system deviates from its
expected performance, although this information can be extremely useful in �ne-tuning
the behavior of the system.
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Verus implements algorithms that determine the minimum and maximum length of all
paths leading from a set of starting states to a set of �nal states. It also has algorithms
that calculate the minimum and the maximum number of times a speci�ed condition
can hold on a path from a set of starting states to a set of �nal states. Our algorithms
provide insight into how well a system works, rather than just determining whether
it works at all. They enable a designer to determine the timing characteristics of a
complex system given the timing parameters of its components. This information is
especially useful in the early phases of system design, when it can be used to establish
how changes in a parameter a�ect the global system behavior.
Several types of information can be produced by this method. Response time to

events is computed by making the set of starting states correspond to the event, and
the set of �nal states correspond to the response. Schedulability analysis can be done
by computing the response time of each process in the system, and comparing it to
the process deadline. Performance can be determined in a similar way. The algorithms
have been used to verify several time critical and non time critical systems. More
information about the veri�cation algorithms can be found in [6, 8–10].

5. A more complex example: an aircraft controller

This section presents a more realistic application of the Verus tool than the producer/
consumer program described above. We will brie
y describe an aircraft controller sys-
tem that is based on controllers employed in existing military aircrafts [21]. Some
examples of the Verus code used to model the system are also shown. We conclude
with a brief analysis of the results obtained. A full analysis can be found in [7].
The control system for an airplane can be characterized by a set of sensors and

actuators connected to a central processor. This processor executes the software to
analyze sensor data and control the actuators. Our model describes this control program
and de�nes its requirements so that the speci�cations for the airplane are met.
The aircraft controller is divided into systems and subsystems. Each system performs

a speci�c task in controlling a component of the airplane. The most important systems
are implemented in our model to provide a realistic representation of the controller.
Examples of systems being controlled are:
• Navigation: Computes aircraft position. Takes into account data such as speed, alti-
tude, and positioning data received from satellites or ground stations.

• Radar Control: Processes data received from radars. Identi�es=positions targets.
• Display: Updates information on the pilot’s screen.
Each system is composed of one or more subsystems. Timing constraints for each

subsystem are derived from factors such as required accuracy, human response charac-
teristics and hardware requirements. There are 15 subsystems in our example. Concur-
rent processes are used to implement each subsystem. Processes execute periodically
and are de�ned by their period and the execution time of each instantiation. Periods
range from 25 to 200 ms, and execution times range from 1 to 9 ms. Communication
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among the various processes is done indirectly. No data are shared directly; processes
communicate only through data servers called monitor tasks. The time to access shared
data is included in the process execution time.
The code below models a process with a 200 ms period and a 3 ms execution time.
1 radar_control()

2 {

3 boolean radar_activate, data_available;

4 radar_activate = false;

5 data_available = false;

Initially we declare two boolean variables that 
ag the beginning and end of execu-
tion of each instantiation of the process. They are used when checking process running
time. Initially both variables are false.
6 periodic (0, 200, 0) {

7 radar_activate = true;

8 wait(1);

We then start the periodic execution and 
ag the beginning of the execution. A one
time unit wait is inserted so other processes can observe that radar activate is true.
9 radar_activate = false;

10 wait(2);

Variable radar activate is deasserted, and the process ends this instantiation.
11 data_available = true;

12 wait(1);

13 data_available = false;

14 };

15 }

Finally, the end of execution is asserted and the periodic loop is iterated. The code for
the other 14 processes is similar. The code for the scheduler completes the model. But
before presenting the scheduler, it is important to understand the interaction between
processes and scheduler. Processes request execution by asserting a request variable
which is read by the scheduler. Upon deciding which processes executes the scheduler
asserts a variable granted read by all processes. To make this interaction clear we
repeat the code for the same process, but now translated into the core language to show
the features discussed. Another modi�cation has been implemented below, moving the
periodic statement into the scheduler. In this way more than one process can make use
of the same variable used to implement the periodicity.
1 int time, granted;

2 boolean req1, req2,... ;

Variable time is the counter used to enforce periodicity. The variables granted and
req i are used by the scheduler.
3 p1(time, granted, req1)}

4 {

5 boolean radar_activate, data_available;

6
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7 req1 = false;

8 radar_activate = false;

9 data_available = false;

10 while (true) {

11 while (time != 0) wait(1);

The periodic statement has been replaced by an in�nite loop that only starts when
time is 0. Notice that when waiting on line 11 variable req1 is false, and therefore
p1 does not request execution at this point.
12 req1 = true;

13 radar_activate = true;

14 while (granted != 1) {\tt }}

15 wait(1); radar_activate = false;

16 };

17 wait(1);

18 radar_activate = false;

When execution starts the request variable is asserted and the process must wait
until being granted the processor (lines 14–16) before continuing. Line 17 corresponds
to the process executing for one time unit.
19 while (granted != 1) wait(1);

20 wait(1);

21 while (granted != 1) wait(1);

22 wait(1);

The process executes until completion in lines 19–22. But before each step it must
check to see if it still has the processor.
23 data_available = true;

24 req1 = false;

25 wait(1);

26 data_available = false;

27 };

28 }

The end of the execution is similar to the previous one.
29 scheduler(req1, req2,..., time, granted)

30 {

31 time = 0;

32 while (true) {

33 if (req1) granted = 1; else

33 if (req2) granted = 2; else

35 ...

36 granted = 0;

The scheduler executes an in�nite loop which starts by assigning a value to the
granted variable. It checks requests in the priority order (highest priority �rst) and
grants the processor to the higher priority requesting process. In this example priorities
are static, they are de�ned by the order in which requests are tested.
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37 wait(1);

38 if (time < 199) {

39 time = time + 1;

40 } else {

41 time = 0;

42 };

43 };

44 }

Line 37 makes the granted variable observable. The scheduler then increments the
time variable and repeats the cycle.
In the main module all processes are instantiated, and their schedulability is checked

using quantitative timing analysis. A time-critical system is schedulable if all processes
�nish execution before their deadline. Usually, the deadline is the same as the period,
that is, processes must �nish before their next instantiation. We have been able to
determine that the system is schedulable. We have also been able to determine several
other properties of the system such as the response time of the weapons subsystem.
Whenever the pilot presses the �ring button a complex sequence of events occurs. We
have been able to determine its fastest and its slowest response times. The complete
analysis of this example can be found in [7]. The �nal model has about 1015 states,
and the transition relation uses approximately 4600 BDD nodes. Properties have been
computed in seconds in all cases.
45 main()

46 {

47 process P1 p1(time, granted, req1),

48 P2 p2(time, granted, req2),

49 ...

50 SCH scheduler(req1, req2,...,

51 time, granted);}

52

53 spec

54 MIN(P1.start, P1.end)}

55 MAX(P1.start, P1.end)}

56 MIN(P2.start, P2.end)}

57 MAX(P2.start, P2.end)}

58 ...

59 }

6. Conclusions

This work presents a new language to be used in the formal veri�cation of time
critical systems, the Verus language. Verus provides a familiar environment to verify
time critical systems. The syntax is similar to the syntax of the C language, simplifying
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the use by nonexperts. It has special constructs to express the timing characteristics of
the program naturally and accurately.
Verus programs are compiled into state-transition graphs, which provide a simple and

extremely e�cient representation of time. The discrete model of time allows the use of
fast symbolic algorithms for veri�cation. The simplicity of the internal representation
does not restrict the language, however, as attested by the examples of systems that
have been veri�ed. Several large complex time critical systems have been veri�ed using
Verus. Most examples are either existing industrial applications or use components
employed in real systems.

References

[1] R. Alur, C. Courcourbetis, D. Dill, Model-checking for real-time systems, Proc. 5th Symp. on Logics
in Computer Science, 1990, pp. 414–425.

[2] R. Alur, D. Dill, in: Automata for modeling real-time systems, Lecture Notes in Computer Science,
17th ICALP, Springer, Berlin, 1990.

[3] G. Berry, G. Gonthier, The ESTEREL synchronous programming language: design, semantics,
implementation, Sci. Comput. Programm. 19 (1992).

[4] T. Bolognesi, F. Lucidi, in: A timed full LOTOS with time=action tree semantics, Theories and
Experiences for RealTime System Development, World Scienti�c, Singapore, 1994.

[5] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, J. Hwang, Symbolic model checking: 1020 states
and beyond. 5th Symp. on Logics in Computer Science, 1990.

[6] S.V. Campos, A quantitative approach to the formal veri�cation of real-time systems, Ph.D. thesis, SCS,
Carnegie Mellon University, 1996.

[7] S.V. Campos, E.M. Clarke, W. Marrero, M. Minea, H. Hiraishi, Computing quantitative characteristics
of �nite-state real-time systems, Real-Time Systems Symp., 1994.

[8] S.V. Campos, E.M. Clarke, W. Marrero, M. Minea, Verifying the performance of the PCI local bus
using symbolic techniques, ICCD, 1995.

[9] S.V. Campos, E.M. Clarke, W. Marrero, M. Minea, Verus: a tool for quantitative analysis of �nite-state
real-time systems, Workshop on Languages, Compilers and Tools for Real-Time Systems, 1995.

[10] S.V. Campos, O. Grumberg, Selective quantitative analysis and interval model checking: verifying
di�erent facets of a system, Comput. Aided Veri�cation (1996).

[11] E.M. Clarke, E.A. Emerson, in: Synthesis of synchronization skeletons for branching time temporal
logic, Logic of Programs: Workshop, Yorktown Heights, NY, May 1981., Lecture Notes in Computer
Science, Vol. 131, Springer, Berlin, 1981.

[12] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan, L.A. Ness, Veri�cation of
the Futurebus+ cache coherence protocol, 11th CHDL, 1993.

[13] P. Clements, C. Heitmeyer, G. Labaw, A. Rose, MT: a toolset for specifying and analyzing real-time
systems, IEEE Real-Time Systems Symp., 1993.

[14] J. Davies, S. Schneider, A brief story of timed CSP, Theoret. Comput. Sci. 138 (2) (1995) 243–271.
[15] E.A. Emerson, A.K. Mok, A.P. Sistla, J. Srinivasan, in: Quantitative temporal reasoning, Lecture Notes

in Computer Science, Computer-Aided Veri�cation, Springer, Berlin, 1990.
[16] A.N. Fredette, R. Cleaveland, RTSL: a language for real-time schedulability analysis, IEEE Real-Time

Systems Symp., 1993.
[17] V. Hartonas-Garmhausen, S. Campos, E. Clarke, A. Cimatti, F. Giunchiglia, Veri�cation of a

safety-critical railway interlocking system with real-time constraints, 28th IEEE Internat. Symp. on
Fault Tolerant Computing, 1998.

[18] T. Henzinger, P. Ho, H. Wong-Toi, HyTech: the next generation, IEEE Real-Time Systems Symp.,
1995.

[19] T. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking for real-time systems, Proc.
7th Symp. on Logic in Computer Science, 1992.



118 S.V.A. Campos, E. Clarke / Theoretical Computer Science 253 (2001) 95–118

[20] F. Jahanian, D. Stuart, A method for verifying properties of modechart speci�cations, IEEE Real-Time
Systems Symp., 1988.

[21] C. Locke, D. Vogel, T. Mesler, Building a predictable avionics platform in Ada: a case study, IEEE
Real-Time Systems Symp., 1991.

[22] K.L. McMillan, Symbolic model checking – an approach to the state explosion problem, Ph.D. Thesis,
SCS, Carnegie Mellon University, 1992.

[23] J. Ostro�, Formal methods for the speci�cation and design of real-time safety critical systems, J. Systems
Software 18 (1) (1992).

[24] S.T. Probst, Chemical process safety and operability analysis using symbolic model checking, Ph.D.
Thesis, Dept. of Chemical Engineering, Carnegie Mellon University, 1996.

[25] J. Quemada, D. Frutos, A. Azcorra, TIC: a timed calculus, Formal aspects computing 5 (3) (1993)
224–252.

[26] G. Winskel, The Formal Semantics of Programming Languages, an Introduction, The MIT Press,
Cambridge, MA, 1994, pp. 135–139.


