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Abstract

We find an equivalent condition for a continuous vector-valued path to be Lebesgue equivalent to a twice differentiable function.
For that purpose, we introduce the notion of a VBG1/2 function, which plays an analogous role for the second order differentiability
as the classical notion of a VBG∗ function for the first order differentiability. In fact, for a function f : [a, b] → X, being Lebesgue
equivalent to a twice differentiable function is the same as being Lebesgue equivalent to a differentiable function g with a pointwise
Lipschitz derivative such that g′′(x) exists whenever g′(x) �= 0. We also consider the case when the first derivative can be taken
non-zero almost everywhere.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Zahorski [15] and Choquet [1] (see also Tolstov [13]) proved a result characterizing curves (f : [a, b] → R
n)

that allow a differentiable parametrization (respectively a differentiable parametrization with almost everywhere non-
zero derivative) as those curves having the VBG∗ property (respectively which are also not constant on any interval).
Fleissner and Foran [7] reproved this later (for real functions only and not considering the case of a.e. non-zero
derivatives) using a different result of Tolstov. The definition of VBG∗ is classical; see e.g. [12]. The mentioned results
were generalized by L. Zajíček and the author [4] to curves with values in Banach spaces (and also metric spaces using
the metric derivative instead of the usual one). Laczkovich, Preiss [10], and Lebedev [11] studied (among other things)
the case of Cn-parametrizations of real-valued functions (n � 2). For a nice survey of differentiability of real-valued
functions via homeomorphisms, see [8]. L. Zajíček and the author [5] characterized the situation when a Banach
space-valued curve admits a C2-parametrization (for Banach spaces with a C1 norm) or a parametrization with finite
convexity (for arbitrary Banach spaces).

Let X be a normed linear space, and f : [a, b] → X. We say that f is Lebesgue equivalent to g : [a, b] → X

provided there exists a homeomorphism h of [a, b] onto itself such that g = f ◦ h. In the present note, we prove the
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following two theorems characterizing the situation when a vector-valued path allows a twice differentiable parame-
trization (respectively such a parametrization with almost everywhere non-zero derivative):

Theorem 1. Let X be a normed linear space, and f : [a, b] → X be continuous. Then the following are equivalent:

(i) f is Lebesgue equivalent to a twice differentiable function g;
(ii) f is Lebesgue equivalent to a differentiable function g whose derivative is pointwise-Lipschitz and such that for

all x ∈ [a, b], g′′(x) exists whenever g′(x) �= 0;
(iii) f is VBG1/2.

Theorem 2. Let X be a normed linear space, and f : [a, b] → X be continuous. Then the following are equivalent:

(i) f is Lebesgue equivalent to a twice differentiable function g with g′(x) �= 0 for a.e. x ∈ [a, b];
(ii) f is Lebesgue equivalent to a differentiable function g whose derivative is a pointwise Lipschitz function which

is non-zero a.e. in [a, b] and such that for all x ∈ [a, b], g′′(x) exists whenever g′(x) �= 0;
(iii) f is VBG1/2, and f is not constant in any interval.

As a matter of fact, a definition of a new notion of a VBG1/2 function (see Definition 6 below) involving a certain
fractional variation, that was inspired by the results of Laczkovich, Preiss, and Lebedev, is necessary to achieve our
goal.

The case of n-times differentiable functions for n � 3 is more complicated even in the case X = R, and this
case is treated in a separate paper [3] (where we also prove a version of Zahorski lemma for n-times differentiable
homeomorphisms). The difficulty in the case of higher order derivatives of paths stems from the fact that although for
a curve parametrized by the arc-length, the first derivative (provided it exists) is equal to the tangent unit vector (and
thus has norm 1), the magnitude of higher order derivatives is not thus simply bounded. The proof in the real-valued
case of n � 3 uses some auxiliary variations and proceeds in a rather indirect way. This is a similar phenomenon as
the case of C1 parametrizations being different from the case of Cn (n > 1) parametrizations; see e.g. [10, p. 405]
(since, in some sense, the C1 case corresponds to the case of twice-differentiable functions).

2. Preliminaries

By λ we will denote the Lebesgue measure on R. By X, we will always denote a normed linear space, and by
B(x, r) an open ball with center x and radius r > 0. We say that a norm ‖ · ‖ on X is Gâteaux differentiable provided
T v := limt→0 t−1(‖x + tv‖ − ‖x‖) (where v ∈ X) is a bounded linear operator for each x �= 0. If X is separable,
then it is well known that X admits an equivalent Gâteaux differentiable norm (see e.g. [2, Theorem II.3.1(ii)]).
For f : [a, b] → X, we define the derivative f ′(x) := limt→0 t−1(f (x + t) − f (x)) for x ∈ (a, b) (at the endpoints,
we take the corresponding unilateral derivatives). Similarly, the second derivative f ′′(x) of f at x is defined as
f ′′(x) := (f ′)′(x). Note that the property of “being twice differentiable” is preserved under equivalent renormings
of X.

We say that f is pointwise-Lipschitz at x ∈ [a, b] provided limt→0
‖f (x+t)−f (x)‖

|t | is finite. We say that f is
pointwise-Lipschitz provided f is pointwise-Lipschitz at each x ∈ [a, b].

Let f : [a, b] → X be continuous, and assume that X has a Gâteaux differentiable norm (there is no loss of
generality in this assumption since the continuity of f implies that Y := span(f ([a, b])) is separable, and we can work
with Y instead). By Kf we will denote the set of points x ∈ [a, b] such that there is no open interval U containing x

such that f |U is either constant or admits an arc-length parametrization which is twice differentiable.
In the case of X = R, the set Kf coincides with the set of points of varying monotonicity of f (see e.g. [10]).

Obviously, Kf is closed and {a, b} ⊂ Kf . Since the property of a function being twice differentiable clearly does not
depend on the equivalent renorming of X, we see that the set Kf does not depend on the choice of the (equivalent)
Gâteaux smooth norm on X.

We have to assume that the norm on X is Gâteaux differentiable in order to have the following desirable property: if
f : [a, b] → X is twice differentiable (respectively f ′ is pointwise-Lipschitz and f ′′(x) exists whenever f ′(x) �= 0),
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and f ′(x) �= 0 for some x ∈ (a, b), then f |[x−δ,x+δ] admits a twice differentiable arc-length parametrization (respec-
tively an arc-length parametrization with a pointwise Lipschitz derivative which is also twice differentiable).

Let K ⊂ [a, b] be a closed set with a, b ∈ K . We say that an interval (c, d) ⊂ [a, b] is contiguous to K in [a, b]
provided c, d ∈ K and (c, d) ∩ K = ∅ (i.e. it is a maximal open component of [a, b] \ K in [a, b]).

By V (f, [a, x]) we denote the (usual) variation of f on [a, x]. We will sometimes use the notation vf (x) :=
V (f, [a, x]) for x ∈ [a, b]. We say that {yi}Ni=0 is a partition of [a, b] provided a = y0 < y1 < · · · < yN = b.

It is well known (see e.g. [9, Theorem 7] together with [6, Theorem 2.10.13]) that if f : [a, b] → X is Lipschitz,
and f ′(x) exists for almost all x ∈ [a, b], then

V
(
f, [a, b]) =

b∫
a

∥∥f ′(x)
∥∥dx. (2.1)

We will need the following lemma.

Lemma 3. If X is a normed linear space with a Gâteaux differentiable norm, f : [a, b] → X has a pointwise Lipschitz
derivative and f ′′(x) exists whenever f ′(x) �= 0 and x ∈ [a, b], then for each x ∈ Kf either x = a or x = b or
f ′(x) = 0.

Proof. If x ∈ Kf \ {a, b} and f ′(x) �= 0, then there exists δ > 0 such that ‖f ′(y)‖ > η for all y ∈ B(x,2δ) and
some η > 0. Thus, f ′′(y) exists whenever y ∈ B(x,2δ) by the assumptions since f ′(y) �= 0 for all y ∈ B(x,2δ).
By (2.1), note that |vf (s) − vf (t)| � η|s − t | for all s, t ∈ B(x,2δ), and also (v−1

f )′(z) = 1/‖f ′(v−1
f (z))‖ for each

z ∈ vf (B(x,2δ)). For all z ∈ vf (B(x,2δ)) (by the chain rule for derivatives) we obtain

(
f ◦ v−1

f

)′
(z) = f ′(v−1

f (z))

‖f ′(v−1
f (z))‖ ,

and (write v = v−1
f )

(f ◦ v)′′(z) = f ′′(v(z)) − 〈D(‖ · ‖, f ′(v(z))), f ′′(v(z))〉 · f ′(v(z))/‖f ′(v(z))‖
‖f ′(v(z))‖2

.

Since f ◦ v|vf (B(x,δ)) is an arc-length parametrization of f |B(x,δ), we have a contradiction with x ∈ Kf . �
We shall need the following lemma. For a proof, see e.g. [4, Lemma 2.7].

Lemma 4. Let {a, b} ⊂ B ⊂ [a, b] be closed, and f : [a, b] → R be continuous. If λ(f (B)) = 0, then we have
V (f, [a, b]) = ∑

i∈I V (f, [ci, di]), where Ii = (ci, di), (i ∈ I ⊂ N) are all intervals contiguous to B in [a, b].

As in [10], for g : [a, b] → R, α ∈ (0,1), and K ⊂ [a, b], we will define Vα(g,K) as a supremum of sums
m∑

i=1

∣∣g(bi) − g(ai)
∣∣α,

where the supremum is taken over all collections {[ai, bi]}mi=1 of non-overlapping intervals in [a, b] with ai, bi ∈ K

for i = 1, . . . ,m.
We will need the following auxiliary lemma:

Lemma 5. Let α ∈ (0,1), A ⊂ R be bounded, f : A → R be uniformly continuous with Vα(f,A) < ∞. Then
λ(f (A)) = 0.

Proof. By [10, Theorem 2.10], it follows that SVα(f,A) = 0 (see [10] for the definition of SVα). The inequality t � tα

for t ∈ [0,1] shows that if SVα(f,A) = 0, then SV1(f,A) = 0, and thus [10, Theorem 2.9] yields λ(f (A)) = 0. �
We will need the following notion, which plays the role of VBG∗ for the second order differentiability.
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Definition 6. We say that a continuous f : [a, b] → X is VBG1/2 provided f has bounded variation, and there exist
closed sets Am ⊂ [a, b] (m ∈M ⊂ N) such that Kf = ⋃

m∈M Am, and V1/2(vf ,Am) < ∞ for each m ∈M.

If h is a homeomorphism of [a, b] onto itself such that g = f ◦ h, then clearly

Kg = Kf ◦h = h−1(Kf ). (2.2)

Using this fact, the equality vg = vf ◦h = vf ◦ h (since h is a homeomorphism), and the implied equality
V1/2(vg,h

−1(Am)) = V1/2(vf ,Am), it follows that if f is VBG1/2 and g is Lebesgue equivalent to f , then g is
VBG1/2. Also, since the definition of the class VBG1/2 involves only the variation of a given function f , the class of
VBG1/2 functions does not depend on the (equivalent) norm of X since if ‖ · ‖i , i = 1,2, are two norms on X with
C1‖x‖1 � ‖x‖2 � C2‖x‖1 for all x ∈ X, then

C
1
2
1 · V 1

2

(
v

‖·‖1
f ,K

)
� V 1

2

(
v

‖·‖2
f ,K

)
� C

1
2
2 · V 1

2

(
v

‖·‖1
f ,K

)

for any closed K ⊂ [a, b] (here, v
‖·‖i

f is a variation of f with respect to ‖ · ‖i , i = 1,2).
The following example shows that we cannot equivalently replace vf by f in Definition 6 (even in the case X = R).

Example 7. There exists a continuous function f : [0,1] → R with bounded variation such that f is not VBG1/2, but
there exist closed Am ⊂ Kf such that Kf = ⋃

m Am, and V1/2(f,Am) < ∞.

Proof. Let C ⊂ [0,1] be the standard middle-thirds Cantor set. By In we will denote the collection of all intervals
contiguous to C such that λ(I) < 3−n for I ∈ In, and by Kn

i , where i = 1, . . . ,2n, n ∈ N, denote the closed intervals at
level n+ 1 of the construction. Note that there exist open intervals Inik ⊂ [0,1] and numbers anik > 0, where n, k ∈ N

and i = 1, . . . ,2n, such that

(i)
∑

n,k∈N

∑2n

i=1 anik < ∞,
(ii)

∑
k∈N

√
anik = ∞ whenever n ∈ N and i = 1, . . . ,2n,

(iii) Inik ∩ In′i′k′ = ∅ whenever (n, i, k) �= (n′, i′, k′),
(iv) if k �= k′, then there exists x ∈ C such that either Inik < x < Inik′ or Inik′ < x < Inik ,
(v) Inik ⊂ Kn

i , and Inik ∈ In for all n, k ∈ N, and i = 1, . . . ,2n.

To construct the numbers anik satisfying (i) and (ii), let an > 0 be any sequence with
∑

n an < ∞. Let ani := an/2n for
i = 1, . . . ,2n, cni > 0 be chosen so that ani = cni · ∑k k−2 for all n ∈ N, i = 1, . . . ,2n, and anik := cni · k−2. To con-
struct the intervals Inik satisfying (ii)–(v), let A = {(n, i, k): n, k ∈ N, i = 1, . . . ,2n}, and let b : N → A be a bijection.
We will identify Ib(j) with Inik provided b(j) = (n, i, k). Let b(1) = (n1, i1, k1). Choose Ib(1) ∈ {I ∈ In1 : I ⊂ K

n1
i1

}
(this set is clearly non-empty), and we will construct Ib(j) by induction. If Ib(1), . . . , Ib(j) were constructed, then we
denote b(j + 1) = (n, i, k), and choose

Ib(j+1) ∈ {
I ∈ In: I ⊂ Kn

i

} \ {Ib(1), . . . , Ib(j)} (2.3)

(this can be done since the involved set of intervals is clearly infinite).
Since b is a bijection, we defined Inik for each n, k ∈ N, and i = 1, . . . ,2n. Conditions (iii) and (iv) follow from the

fact that all the distinct intervals Inik are intervals contiguous to the Cantor set C. Condition (v) follows from (2.3).
Let I = (a, b) ⊂ [0,1] be an open interval. We denote l(I ) = a, r(I ) = b, and c(I ) = a+b

2 . We will define f (x) := 0

when x ∈ [0,1] \ (
⋃

n,k∈N

⋃2n

i=1 Inik), f (c(Inik)) := anik , and f to be continuous and affine on [l(Inik), c(Inik)] and
[c(Inik), r(Inik)]. Then f is a continuous function and by (i) it follows that V (f, [0,1]) < ∞. Index the countable
family of closed sets

{C} ∪ {{
l(Inik), c(Inik), r(Inik)

}
: n, k ∈ N, i = 1, . . . ,2n

}
as (Am)m∈N. It immediately follows that Kf = ⋃

m∈N
Am and V1/2(f,Am) < ∞ for all m ∈ N (since f |C ≡ 0, and

all those Am that satisfy Am �= C are finite).
Now we will show that f is not VBG1/2. Suppose that Ãm satisfy V1/2(vf , Ãm) < ∞, and Kf = ⋃

m Ãm. Since
C = ⋃

(C ∩ Ãm), by the Baire category theorem, there exists m0 ∈ N and an open interval U such that C ∩ U ⊂
m
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C ∩ Ãm0 ∩ U and C ∩ U �= ∅. Thus, there exists n ∈ N and i ∈ {1, . . . ,2n} such that Kn
i ⊂ U , and conditions (iv), (v),

and (ii) imply that

V 1
2
(vf , Ãm0) �

∑
{I∈In: I⊂Kn

i }

(
V (vf , I )

) 1
2 �

∑
k

√
anik = ∞,

which contradicts the choice of the sets Ãm. Thus, f is not VBG1/2. �
3. Lemmata

The following lemma is a sufficient condition for a function to be VBG1/2.

Lemma 8. Let f : [a, b] → X have a pointwise Lipschitz derivative, and suppose that f ′′(x) exists whenever
f ′(x) �= 0 and x ∈ [a, b]. Then f is VBG1/2.

Proof. Because f ′ is continuous on [a, b] (and thus bounded), by [6, §2.2.7] we see that f is Lipschitz (and thus
has finite variation). Without any loss of generality, we can assume that the norm on X is Gâteaux differentiable (see
Section 2). By Lemma 3, it follows that

f ′(x) = 0 whenever x ∈ Kf \ {a, b}. (3.1)

For j ∈ N define

Dj =
{
x ∈ [a, b]: ∥∥f ′(x) − f ′(z)

∥∥ � j |x − z| for all z ∈ B

(
x,

1

j

)
∩ [a, b]

}
.

Since f ′ is pointwise-Lipschitz, it follows that [a, b] = ⋃
j Dj , and Dj is closed for each j ∈ N. Let Dj = ⋃

k∈N
Djk

be such that each Djk is closed, and diam(Djk) < 1/j . We order the doubly-indexed sequence (Kf ∩ Djk)j,k into
a single sequence (while omitting empty sets); we will call the new sequence Am (m ∈M ⊂ N).

It remains to show that V1/2(vf ,Am) < ∞, where m ∈M. Let m ∈M, and fix j, k ∈ N such that Am = Djk ∩Kf .
Let x < y be such that x, y ∈ Am. If {x, y} �= {a, b}, then note that (since we can assume that for example x �= a and
thus f ′(x) = 0 by (3.1)) using (2.1), we obtain

∣∣vf (y) − vf (x)
∣∣ =

y∫
x

∥∥f ′(s)
∥∥ds � j (y − x)2. (3.2)

If {x, y} = {a, b}, then |vf (y) − vf (x)| = V (f, [a, b]). Applying this observation together with (3.2) to [x, y] =
[ai, bi], i ∈ {1, . . . ,N}, where [ai, bi] are non-overlapping intervals with ai, bi ∈ Am, we obtain

N∑
i=1

∣∣vf (bi) − vf (ai)
∣∣ 1

2 �
√

j

N∑
i=1

(bi − ai) + V
(
f, [a, b]) 1

2 �
√

j(b − a) + V
(
f, [a, b]) 1

2 . (3.3)

By taking a supremum in (3.3) over all sequences {[ai, bi]}Ni=1 as above, we obtain that V1/2(vf ,Am) < ∞. �
Lemma 9. Let ζ : [σ, τ ] → R be a continuous strictly increasing Lipschitz function with ζ(σ ) = 0, and λ(F ) = 0 for
some closed F ⊂ [σ, τ ] with σ, τ ∈ F . Then λ(

√
ζ (F )) = 0, where

√
ζ (x) := √

ζ(x) for x ∈ [σ, τ ].

Proof. Since the function g(x) = √
x on [0,∞) has Luzin’s property (N) (i.e. it maps zero sets onto zero sets), the

conclusion easily follows. �
We will need the following simple lemma.

Lemma 10. Let hm : [a, b] → [cm, dm] (m ∈M ⊂ N) be continuous increasing functions such that∑
hm(x) < ∞ for all x ∈ [a, b].
m∈M
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Let K ⊂ [a, b] be closed and such that λ(hm(K)) = 0 for all m ∈ M. Then h : [a, b] → [c, d], defined as h(x) :=∑
m∈M hm(x), is a continuous and increasing function (for some c, d ∈ R) such that λ(h(K)) = 0.

Proof. The continuity and monotonicity of h follows easily by the assumptions. Let K ⊂ [a, b] be closed with
λ(hm(K)) = 0 for all m ∈ M. Without any loss of generality, we can assume that {a, b} ⊂ K . Let (cp, dp)

(p ∈P ⊂ N) be all the intervals contiguous to K in [a, b]. Let ε > 0 and find M ∈ N such that
∑

m∈M∩(M,∞)(hm(b)−
hm(a)) < ε. Then

λ
(
h
([a, b])) =

∑
m∈M

(
hm(b) − hm(a)

)
� ε +

∑
m∈M∩[1,M]

(
hm(b) − hm(a)

)

= ε +
∑

m∈M∩[1,M]

∑
p∈P

(
hm(dp) − hm(cp)

)
� ε +

∑
p∈P

λ
(
h(cp, dp)

)
,

where we used Lemma 4 to obtain the second equality. Since card(h((cp, dp))∩h((cq, dq))) � 1 for p,q ∈P , p �= q ,
we obtain the equality λ(h([a, b])) = λ(h(

⋃
p∈P (cp, dp))). Since the set h(K) ∩ h(

⋃
p∈P (cp, dp)) is countable, we

get λ(h(K)) = 0. �
Lemma 11. Suppose that X is a normed linear space with a Gâteaux smooth norm. Let f : [a, b] → X be a continuous
VBG1/2 function which is not constant on any interval. Then there exists a continuous strictly increasing v : [a, b] →
[α,β] such that λ(v(Kf )) = 0, f ◦ v−1 is twice differentiable on [α,β] \ v(Kf ) with (f ◦ v−1)′(x) �= 0 for x ∈
[α,β] \ v(Kf ), and for each x ∈ Kf there exists 0 < Cx < ∞ such that∥∥f (y) − f (z)

∥∥ � Cx

∣∣v(z) − v(y)
∣∣(∣∣v(z) − v(x)

∣∣ + ∣∣v(y) − v(x)
∣∣), (3.4)

whenever y, z ∈ [a, b], and sgn(y − x) = sgn(z − x).

Proof. Let Am (m ∈M ⊂ N) be as in the definition of VBG1/2 for g = f ◦ v−1
f . Note that g is 1-Lipschitz, and

Kg = vf (Kf ) (3.5)

(note that vf is a homeomorphism because f is not constant on any interval; see (2.2)). Since f is VBG1/2, by
Lemma 5 we have λ(vf (Kf )) = λ(vg(Kg)) = 0. Let � = vf (b). Note that because g is an arc-length parametrization
of f , we have V (g, [c, d]) = d − c for all 0 � c < d � � (we will use this fact frequently without necessar-
ily repeating it). Let (cp, dp) (p ∈ P ⊂ N) be all the intervals contiguous to Kg in [0, �]. Since λ(vg(Kg)) = 0,
by Lemma 4 (applied to f = vg) we have V (g, [0, �]) = � = ∑

p∈P V (g, [cp, dp]) = ∑
p∈P (dp − cp), and thus

λ(Kg) = � − λ(
⋃

p∈P (cp, dp)) = 0. For m ∈ M and x ∈ [0, �], we define vm(x) as a supremum of the sums

N∑
i=1

(bi − ai)
1
2 , (3.6)

where the supremum is taken over all finite sequences {[ai, bi]}Ni=1 of non-overlapping intervals in [0, �] such that
ai, bi ∈ (Am ∪ {0, x}) ∩ [0, x] for i = 1, . . . ,N . Similarly, we define ṽm(x) for x ∈ [0, �] as a supremum of the sums
in (3.6), where the supremum is taken over all finite sequences {[ai, bi]}Ni=1 of non-overlapping intervals in [0, �] such
that ai, bi ∈ (Am ∪ {x, �}) ∩ [x, �] for i = 1, . . . ,N . Note that vm is increasing and ṽm is decreasing on [0, �]. Note
that vg is affine on each [cp, dp], and

vm(x) = vm(z) + (x − z)
1
2 for x ∈ [cp, dp], (3.7)

where z = max((Am ∪ {0}) ∩ [0, cp]), and similarly for ṽm. Thus vm (and similarly ṽm) is twice (or even infinitely
many times) differentiable on [0, �] \ vf (Kf ) with v′

m(x) > 0 for all x ∈ [0, �] \ vf (Kf ). Find εm > 0 such that

(a) if we define w(x) := ∑
m εm · (vm(x) − ṽm(x)), then w(0), and w(�) are finite (thus, w(x) is finite for all x ∈

[0, �]), and w is continuous on [0, �] (provided all vm, ṽm were continuous),
(b) for all m ∈ M and p ∈ P with cp + 1/m < dp − 1/m and all x ∈ (cp + 1/m,dp − 1/m), we have

εm · max(v′
m(x), |v′′

m(x)|,−ṽ′
m(x), |ṽ′′

m(x)|) < 2−m.
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By (b), it is easy to see that w′(x) exists, is positive, and w′′(x) exists for each x ∈ [0, �] \ vf (Kf ). Put v := w ◦ vf ,
α = v(a), and β = v(b).

To show that v is strictly increasing, it is enough to show that w is strictly increasing (as vf is strictly increasing
by the fact that f is not constant on any interval). On the other hand, to show that w is strictly increasing, it is enough
to show that vm is strictly increasing for each m ∈ M. Fix m ∈ M. Let x, y ∈ [0, �] with x < y. If x, y ∈ [cp, dp] for
some p ∈ P , then (3.7) implies that vm(x) < vm(y), and similarly if x ∈ (cp, dp) or y ∈ (cp′ , dp′) for some p ∈ P
(respectively p′ ∈P). If x, y ∈ Kf , and (x, y) ∩ Am = ∅, then

vm(t) = vm(z) + √
t − z for all t ∈ [x, y], (3.8)

where z = max((Am ∪ {0}) ∩ [0, x]), and thus vm(x) < vm(y). Finally, if there exists q ∈ Am ∩ (x, y), then vm(x) �
vm(q) < vm(q) + √

y − q � vm(y), and thus vm(x) < vm(y) also in this case. By a similar argument, ṽm is strictly
decreasing.

For a fixed m ∈ M, we will prove that whenever r, s ∈ Am ∪ {0, �} with r < s, then

vm(s) − vm(r) �
∑

p∈P :
(cp,dp)∩[r,s]�=∅

(
vm(dp) − vm(cp)

)
. (3.9)

A symmetrical argument then shows that

ṽm(r) − ṽm(s) �
∑

p∈P :
(cp,dp)∩[r,s]�=∅

(
ṽm(cp) − ṽm(dp)

)
. (3.10)

To prove (3.9), fix ε0 > 0, and let {[ai, bi]}Ni=1 be non-overlapping intervals in [r, s] such that ai, bi ∈ (Am ∪ {r, s}) ∩
[r, s] for i = 1, . . . ,N such that vm(s) = vm(r) + ∑N−1

i=0 (bi − ai)
1/2 + ε, for some 0 � ε < ε0/2. For i ∈ {1, . . . ,N}

by Lemma 4 applied to f = vg on [a, b] = [ai, bi] and B = (Am ∪ {r, s}) ∩ [ai, bi] (note that λ(vg(Am)) = 0 since
λ(vg(Kg)) = 0, and thus λ(vg(B)) = 0), let (γ i

j , δi
j ) (j ∈ {1, . . . , J i}) be a finite collection of intervals contiguous to

Am ∪ {r, s} in [ai, bi] such that (bi − ai) �
∑J i

j=1(δ
i
j − γ i

j ) + (
ε0
2N

)2. Then

vm(s) − vm(r) �
N∑

i=1

J i∑
j=1

(
δi
j − γ i

j

) 1
2 + ε0

2
+ ε. (3.11)

By Lemma 9 applied to ζ(x) = x − γ i
j on [σ, τ ] = [γ i

j , δi
j ], F = Kg ∩ [γ i

j , δi
j ], and because vm(x) = vm(γ i

j ) +
(x − γ i

j )1/2 for x ∈ [γ i
j , δi

j ], we have that λ(vm(Kg ∩ [γ i
j , δi

j ])) = 0, and by Lemma 4 applied to f = vm on [a, b] =
[γ i

j , δi
j ], and B = Kg ∩ [γ i

j , δi
j ], we obtain that

(
δi
j − γ i

j

) 1
2 �

∑
p∈P :

(cp,dp)⊂[γ i
j ,δi

j ]

(
vm(dp) − vm(cp)

)

for each i ∈ {1, . . . ,N} and j ∈ {1, . . . , J i}. Combining this inequality with (3.11), we get

vm(s) − vm(r) �
∑

p∈P :
(cp,dp)∩[r,s]�=∅

(
vm(dp) − vm(cp)

) + ε0,

and by sending ε0 → 0 it follows that (3.9) holds.
To show that v is continuous, it is enough to show that each vm is continuous (as this implies that w is continuous

by the choice of εm’s, and the continuity of vf follows from e.g. [6, §2.5.16]). Fix m ∈M. From (3.7), it follows that

(∗) vm is continuous from the right at all points x ∈ ⋃
p∈P [cp, dp), and continuous from the left at all points x ∈⋃

(cp, dp].
p∈P
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If (x, y)∩Am = ∅ for some y > x with y ∈ (0, �] ∩Kg , then (3.8) implies that vm is continuous from the right at x. If
x ∈ Am is a right-hand side accumulation point of Am (i.e. Am ∩ (x, x + δ) �= ∅ for all δ > 0), then (3.9) implies that
lim y→x+

y∈Am

vm(y) = vm(x), since

∑
p∈P :

(cp,dp)∩[x,y]�=∅

(
vm(dp) − vm(cp)

) → 0 (3.12)

as y → x+. Now the monotonicity of vm implies that it is continuous from the right at x. Concerning the continuity
from the left, by (∗) it is enough to prove that vm is continuous from the left at all points y ∈ (Kg ∩ (0, �])\⋃

p∈P {dp}.
Fix such a point y. If there is an x ∈ [0, y) such that (x, y)∩Am = ∅, then (3.8) implies that vm is continuous from the
left at y. If y is a left-hand side accumulation points of Am, then (3.9) together with (3.12) imply that vm is continuous
from the left at y. A similar argument as above yields the continuity of ṽm.

Now we will prove that λ(v(Kf )) = 0. Note that we already established that λ(Kg) = 0. Because Kg = vf (Kf )

by (3.5), it is enough to prove that λ(w(Kg)) = 0. To apply Lemma 10 to hk , where h2k := εk · vk , and h2k+1 :=
−εk · ṽk , we have to check that λ(vm(Kg)) = 0 and λ(ṽm(Kg)) = 0 for all m ∈M. Let m ∈ M. Then (3.9) applied to
r = 0, and s = � shows that vm(�)− vm(0) �

∑
p∈P (vm(dp)− vm(cp)), and since vm(Kg)∩ vm(

⋃
p∈P (cp, dp)) = ∅,

we get λ(vm(Kg)) = 0. Similarly, we obtain λ(ṽm(Kg)) = 0. Thus, Lemma 10 shows that λ(w(Kg)) = 0.
To prove that the second derivative of f ◦ v−1 exists and the first derivative is non-zero on [α,β] \ v(Kf ), let

x ∈ [α,β] \ v(Kf ). Put y = w−1(x). There exists p ∈ P and q ∈ N such that y ∈ (cp + 1/q, dp − 1/q). Since (by
the chain rule and the smoothness of the norm on X) g is twice differentiable on (cp, dp) and ‖g′(x)‖ = 1 for all
x ∈ (cp, dp) (because g is an arc-length parametrization of f , because t − s = ∫ t

s
‖g′‖ for cp < s < t < dp , and since

g′ is continuous with ‖g′‖ � 1 on (cp, dp), it follows that ‖g′(x)‖ = 1 for all x ∈ (cp, dp)) it is enough to prove
that w′(y) exists, is non-zero, and w′′(y) exists (since then (f ◦ v−1)′(x) = g′(y) · (w−1)′(x), and (f ◦ v−1)′′(x) =
g′′(y) · ((w−1)′(x))2 + g′(y) · (w−1)′′(x)). But by the choice of εm (for m > q), and by the properties of vm, ṽm for
all m, we see that w′(y) exists, w′(y) > 0, and w′′(y) exists; the rest is a straightforward application of the “derivative
of the inverse function” rule.

To prove (3.4) for f and v, by a substitution using vf , it follows that it is enough to establish a version of (3.4),
where f is replaced by g, and v by w. To that end, take m ∈ M such that x ∈ Am, and let Cm = (εm)−2.
Take y, z ∈ [0, �]. Without any loss of generality, we can assume that x < y < z (if y < x, then a symmetric
estimate using ṽm yields the conclusion). Let 0 < ε0 < vm(z) − vm(x). Find a sequence {[ai, bi]}Ni=1 of non-
overlapping intervals with endpoints in (Am ∪ {x, y}) ∩ [x, y] with bi < ai+1 for i = 1, . . . ,N − 1, and such that
vm(y) = vm(x) + ∑N

i=1(bi − ai)
1/2 + ε, for some 0 � ε � ε0 (such a choice of {[ai, bi]}Ni=1 is possible because

x ∈ Am). Then

vm(z) � vm(x) +
N−1∑
i=1

(bi − ai)
1
2 + (z − aN)

1
2

� vm(x) +
N−1∑
i=1

(bi − ai)
1
2 + (z − y + bN − aN)

1
2 .

Thus (since z − y � ‖g(z) − g(y)‖), we get

vm(z) − vm(y) � (bN − aN + z − y)
1
2 − (bN − aN)

1
2 − ε

= ‖g(y) − g(z)‖
(bN − aN + z − y)

1
2 + (bN − aN)

1
2

− ε

� ‖g(y) − g(z)‖
vm(z) − vm(x) + vm(y) − vm(x)

− ε.

By sending ε0 → 0, we obtain∥∥g(y) − g(z)
∥∥ �

(
vm(z) − vm(y)

)(
vm(z) − vm(x) + vm(y) − vm(x)

)
. (3.13)
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To finish the proof of (3.4) for g and w, note that vm(τ)−vm(σ ) � 1
εm

(w(τ)−w(σ)) for any 0 � σ < τ � �; thus (3.4)
follows from (3.13). �

We will need the following version of Zahorski’s lemma. See e.g. [8] for a proof of a slightly weaker statement.

Lemma 12. Let F ⊂ [α,β] be closed, {α,β} ⊂ F , and λ(F ) = 0. Then there exists an (increasing) continuously differ-
entiable homeomorphism h of [α,β] onto itself such that h′(x) = 0 if and only if x ∈ h−1(F ), h is twice differentiable
on [α,β] \ h−1(F ), and h−1 is absolutely continuous.

Proof. Since we were not able to locate a reference in the literature for this exact statement, we will sketch the
proof. Let (ai, bi) (where i ∈ I ⊂ N) be all the intervals contiguous to F in [α,β]. For each i ∈ I find a C1 function
ψi : (ai, bi) → R such that

• ψi(x) � 0 for all x ∈ (ai, bi), and limx→ai+ ψi(x) = limx→bi− ψi(x) = ∞,
• mi := minx∈(ai ,bi ) ψi(x) > 0, and if |I| = ℵ0, then lim i→∞

i∈I
mi = ∞,

• ∑
i∈I

∫ bi

ai
ψi(t) dt < ∞.

Such functions ψi clearly exist. Define ψ : [α,β] → R as ψ(x) := ψi(x) for x ∈ (ai, bi), and ψ(x) = 0 for x ∈ F .
By the choice of ψi , it follows that ψ is integrable. Define k(x) := ∫ x

α
ψ(t) dt ; then k is continuous and (strictly)

increasing. By integrability of ψ , it follows that k has Luzin’s property (N), and thus k is absolutely continuous by
the Banach–Zarecki theorem (see e.g. [14, Theorem 3]). Since k is an integral of a positive C1 function on [α,β] \ F ,
it follows that k′′(x) exists for all x ∈ [α,β] \F and also k′(x) > 0. We also have that k′(x) = ∞ for x ∈ F \ (

⋃
i{ai}),

as for x ∈ F and t > 0 small enough, we have

k(x + t) − k(x) � mj(x + t − aj ) +
∑

(ai ,bi )⊂[x,x+t]
mi(bi − ai) � mt · t,

where j ∈ I is such that x + t ∈ (aj , bj ) and for mt := min{mk: (ak, bk) ∩ [x, x + t] �= ∅} we have limt→0+ mt = ∞
by the choice of ψi . If x = ai for some i ∈ I , then we have k(x + t)− k(x) � t · miny∈[x,x+t] ψi(y), and the minimum
goes to infinity with t → 0+ by the choice of ψi . By continuity and symmetry, the rest follows. Now define ϕ(x) :=
α + β−α

k(β)
k(x), h := ϕ−1, and the conclusion of the lemma follows. �

4. Proofs of the main results

Proof of Theorems 1 and 2. We will prove the theorems simultaneously. The implication (i) ⇒ (ii) in both theorems
is trivial. To prove that (ii) ⇒ (iii) in Theorem 1, let h be a homeomorphism such that g = f ◦ h has pointwise
Lipschitz derivative and such that g′′(x) exists whenever g′(x) �= 0. Then Lemma 8 implies that g is VBG1/2. By
a remark following Definition 6, it follows that f is VBG1/2.

To prove that (ii) ⇒ (iii) in Theorem 2, conclude that f is VBG1/2 as in the corresponding implication of Theo-
rem 1. Further, note that if g′(x) �= 0 for a.e. x ∈ [a, b], then g is not constant in any interval. This notion is clearly
stable with respect to Lebesgue equivalence.

To prove that (iii) ⇒ (i) in Theorem 2, without any loss of generality, we can assume that the norm on
X is Gâteaux differentiable (see Preliminaries). Lemma 11 implies that there exists an increasing homeomor-
phism v : [a, b] → [α,β] such that f ◦ v−1 is differentiable on [α,β], twice differentiable on [α,β] \ v(Kf ),
and λ(v(Kf )) = 0. Apply Lemma 12 to F = v(Kf ) to obtain an (increasing) continuously differentiable homeo-
morphism h : [α,β] → [α,β] such that h′(x) = 0 if x ∈ h−1(v(Kf )), and such that h is twice differentiable on
[α,β] \ h−1(v(Kf )). Let g = f ◦ v−1 ◦ h. By the chain rule for derivatives, we have that g is twice differentiable on
[α,β] \ h−1(v(Kf )). Let x ∈ h−1(v(Kf )). Then by (3.4) there exists a Cx > 0 such that

‖f ◦ v−1(y) − f ◦ v−1(z)‖ � 2Cx

∣∣z − h(x)
∣∣ (4.1)
|y − z|
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for z < y < h(x) or h(x) < y < z (and by continuity this holds also for y = h(x)), and y, z ∈ [α,β]. It follows that
(f ◦ v−1)′(h(x)) = 0. Thus, g′(x) = 0 by the chain rule. It also follows from (4.1) that (f ◦ v−1)′(·) is pointwise-
Lipschitz at h(x) with constant 2Cx . This implies that∥∥∥∥g′(x + t) − g′(x)

t

∥∥∥∥ =
∥∥∥∥ (f ◦ v−1)′(h(x + t))h′(x + t)

t

∥∥∥∥
=

∥∥∥∥ (f ◦ v−1)′(h(x + t)) − (f ◦ v−1)′(h(x))

t

∥∥∥∥ · h′(x + t)

� 2Cx ·
∣∣∣∣h(x + t) − h(x)

t

∣∣∣∣ · h′(x + t),

for all x + t ∈ [α,β]. The continuity of h′ at x shows that g′′(x) = 0. We see that f is Lebesgue equivalent to g (by
composing v−1 ◦ h with an affine change of parameter). To see that the function g has non-zero derivative almost
everywhere, we note that the homeomorphism h obtained by applying the Lemma 12 has an absolutely continuous
inverse and (f ◦ v−1)′(x) �= 0 for all x ∈ v(Kf ) by Lemma 11, where λ(v(Kf )) = 0.

To show that (iii) ⇒ (i) in Theorem 1, suppose that f is constant on some interval, and let (ci, di) (i ∈ I ⊂ N)
be the collection of all maximal open intervals such that f is constant on each (ci, di). It is easy to see that we can
find a continuous function f̃ : [a, b] → X such that f = f̃ on [a, b] \ ⋃

i (ci, di), f̃ is affine and non-constant on
(ci,2ci/3 + di/3), (2ci/3 + di/3, ci/3 + 2di/3), (ci/3 + 2di/3, di), such that ci, di ∈ K

f̃
for i ∈ I , such that f̃ is

VBG1/2, and such that if u = f ◦ ξ (respectively v = f ◦η) is an arc-length parametrization of f |[ci−δ,ci ] (respectively
f |[di ,di+δ]) for some δ > 0, and u′−(ξ−1(ci)) (respectively v′+(η−1(di))) exists, then f̃ ′+(ci)/‖f̃ ′+(ci)‖ �= u′−(ξ−1(ci))

(respectively f̃ ′−(di)/‖f̃ ′−(di)‖ �= v′+(η−1(di))). Then, K
f̃

= Kf ∪ ⋃
i∈I{ci,2ci/3 + di/3, ci/3 + 2di/3, di}. By the

previous paragraph, there exists a homeomorphism h of [a, b] onto itself such that f̃ ◦ h is twice differentiable. It
follows that f ◦ h is twice differentiable (since (f̃ ◦ h)′(x) = (f̃ ◦ h)′′(x) = 0 for all x ∈ h−1(

⋃
i{ci, di}) by the

construction). �
The following example shows that even in the case of X = R, VBG1/2 functions do not coincide with continuous

functions satisfying V1/2(f,Kf ) < ∞.

Example 13. There exists a continuous VBG1/2 function f : [0,1] → R such that V1/2(f,Kf ) = ∞ (and thus f is
not Lebesgue equivalent to a C2 function by [10, Remark 3.6]).

Proof. Let an ∈ (0,1) be such that an ↓ 0. Define f (a2k) = 0, f (a2k+1) = 1/k2 for k = 1, . . . , and f (0) = f (1) = 0.
Extend f to be continuous and affine on the intervals [a2k+1, a2k] and [a2k+2, a2k+1]. Then Kf = {0,1} ∪ {an: n � 2}
and it follows that f is VBG1/2 (with the obvious decomposition A0 = {0,1}, An = {an} for n � 2), but
V1/2(f,Kf ) = ∞ since

∑
k�2

√∣∣f (a2k) − f (a2k+1)
∣∣ =

∑
k�2

1

k
= ∞. �
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