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Abstract

In this paper we state and solve an optimal control problem arisen from the management of the sewage disposal
which is dumped into the sea through submarine outfalls. Firstly, we fix oxygen and amount of organic matter as water
quality indicators and we state a partial differential equations model to simulate them in a domain occupied by shallow
waters. Constraints about water quality and economic objectives lead us to a pointwise optimal control problem with state
and control constraints. (The theoretical analysis of the problem has been developed by the authors in (Martinez et al.,
C. R. Acad. Sci. Paris, Serie I 328 (1999) 35.) (Martinez et al., Preprint, Dept. Matematica Aplicada, Univ. Santiago
de Compostela, Spain, 1998.)). We deal with the problem by using time and space discretizations and we propose two
algorithms for the numerical resolution of the discretized problem. Finally, we give numerical results obtained by applying
the described techniques for a realistic problem posed in the ria of Vigo (Spain). (© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

We consider a domain Q C R* occupied by shallow waters (see Fig. 1), for instance a ria or
an estuary, and we suppose that the sewage is dumped into the domain € through Ng submarine
outfalls, each of them located in a fixed point P; in © and connected to a sewage farm. Moreover,
we assumee the existence of Nz areas in Q (denoted by 4,), for example beaches or fish nurseries,
where we need to guarantee the water quality with levels of pollution lower than maximum previously
fixed values.
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Fig. 1. Example of a possible domain €.

Cost

BOD discharged

Fig. 2. Standard function f;(m) for the depuration cost.

In order to control those pollution levels several parameters can be used (dissolved oxygen, heavy
metals, temperature, pH, radioactivity, etc.), which indicate the water quality and its capacity to
hold aquatic life. Two of the most important (especially in the case of domestic discharges) are the
dissolved oxygen (DO) and, directly related to it, the biological oxygen demand (BOD) which is
required by bacteria to decompose the organic matter. As the pollution increases, the oxygen demand
also increases and, as a result of this, the dissolved oxygen decreases. It damages marine life and
causes that the organic matter decomposition continues by means of anaerobic processes, which do
not use oxygen but produce sulphide of hydrogen and methane, both having a nauseating smell. To
avoid this problem, we have to guarantee a minimum level ¢; of DO and a maximum level {; of
BOD in each region 4; to be protected. Consequently, any chemical and/or biological treatment of
the waste water have to be made before the discharge.

We also assume that the depuration process cost in a particular sewage farm is known. This cost
depends on the BOD discharge through the corresponding outfall, in such a way that in order to
discharge a lower amount of BOD it is necessary to carry out a more intensive depuration, leading
to a higher cost. Moreover, the complete purification of water is not possible and there is always a
minimum cost, even with no depuration. Then, the function that represents the purification cost in
the jth sewage farm has a shape as shown in Fig. 2.
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Therefore, the optimal management problem consists of finding the discharges which reduce to
the lowest level the total cost of the purification and guarantee the above mentioned constraints on
the quality of the water.

2. Mathematical model: the continuous problem

The evolution of the BOD and the DO in the domain Q C R? is governed by a system of partial
differential equations (cf. [1,11]), which is a generalization of a previous one introduced by Streter
and Phelps in 1928 to study pollution in the Ohio river. In this way, if the concentrations of BOD
and DO at point x € Q and at time ¢ are denoted by p;(x,¢) and p,(x,¢), respectively, then these
concentrations are obtained as the solution of the following boundary value problem:

d 1 & ,

Ll uVpr = pidpy = —xipi+ 2 > mdx—P) in Qx(0.7),
j=1

910 on I x(0.7),

on

pl(xao):pm(x) in Q’ (1)

0p2 1 .

or +uNVp; — frdp, = —Kip1 + Z’Cz(ds —p2) inQx(0,T),

0p2

— =0 onI'x(0,7),

on

p2(x,0) = po(x) i Q,

where I' denotes the boundary of the domain Q, A(x,t) is the height of water and u(x,¢) is the
horizontal mean velocity. Both of them can be obtained as the solution of the Saint—Venant (shallow
water) equations:

on
4y =0,
2)
oChu) < { 3ushu) o dp. i , (
- o —Fi (g — —1,2
5 +§< ) T Ty SRt ), i=12

where n=h — H, for H(x) a reference level, and the other terms represent the effects of atmospheric
pressure, wind stress, bottom friction, etc. (see [2,3] for further details), m;(t), j=1,...,Ng, is the
mass flow rate of BOD discharged in P,. This is the control of the problem, é(x — P;), j=1,..., N,
denotes the Dirac measure at point P;.

The other parameter are experimentally known: f; and f3, are horizontal viscosity coefficients,
is a kinetic parameter related to temperature, k, is the interface transfer rate for oxygen and d; is
the oxygen saturation density in water.
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Now, we assume that inside the domain Q there are Nz protected zones A; where a maximum
level of BOD and a minimum level of DO must be assured, that is

pl‘A’.xw‘;—)SO‘ia vj:l"“aNZa (3)

p2\4f><<0-7)>Ci’ Vi = 1,...,Nz. (4)

Moreover, taking into account technical limitations, the discharges of BOD must be larger than a
certain value m:

Finally, we suppose known the convex functions f; € C?(0,00), (the treatment cost of the discharge
in the point P, j=1,...,Ng) and, consequently, the global cost of the depuration system in a time
interval [0, T'], which is given by

Ne T
sm=3 [ fmo)a. ©)

Then the problem, denoted by (2), of the optimal management of the depuration systems consists
of finding the values of BOD m,(t), j =1,...,Ng, throughout the time interval in such a way that,
verifying the state system (1), satisfy the constraints (3)—(5) and minimize the cost function (6).

3. The discretized problem

The first step in the numerical resolution of the problem is solving the state system (1). In order
to do it, we choose a number N € N and define

T
At=—>0
N
and t,=nAt, Vn=0,...,N. Moreover, we take a triangulation 7, of Q with vertices x;, j=1,..., Ny,

and consider V), the following finite element space:
Vi={v, € CUQ): vyx € P, VK € 1;,}. (7)

Then, we carry out a time discretization of the partial differential equations system (1) and we
consider the variational formulation of the semi-discretized problem. Thus, using finite elements

techniques, the resultant problem is equivalent to solving the following linear system:
M]hplfz—l = rl’h7 VHZO,...,N— 1, (8)
Mypit =b%, Yn=0,...,N —1,

for pY, and p, given, and where p?, and p3, are numerical approximation of p; and p, at the time z,
and at every vertex of the triangulation, and M,;, My, b},, b5, are the matrices and second member
vectors for the finite elements discretization (see [11] for further details).
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The discretized cost J and the discretized constraints ¢ are given by

j: RNXNE SR
. Ne N—1
m— J(m) = At Z Z OQjnfi(min),
j=1 n=0 (9)

g: RNXNE N RNXNVZ X RNXNVZ X RNXNE

m — g(m)=(p,, — 0, {— ﬁzh’g;"’z)ta
=g1(m) =g2(m)

where m is the vector consisting of all of the discharges at all times, m,, is the amount of BOD
discharged in P; at time ¢,, Q;, are the weights of the quadrature formula, Ny; is the number of
vertices in the protected zones and g,, is a vector of values of p;, at vertices included in the protected
areas for all times.

Then, the optimal control problem (£) is approximated by the following discretized problem with
convex objective function and linear constraints:

min J(m),
(Z7) (" (10)
such that g(m)<0.

4. Numerical resolution

In order to check the results of the numerical resolution of the problem (£7) we have used two
different methods: an admissible points method and a successive quadratic programming algorithm.

4.1. An admissible points algorithm

Firstly we have solved the problem (Z7) by means of an admissible points method which is based
on a globally convergent algorithm introduced by Herskovits [5] and Panier et al. [9] for nonlinear
constraint problems.

If we denote the dimension of the control by p, the number of the constraints on the state by
g and the vector of the dual variables by (4,0) € R?*9, then we can write the first order Karush—
Kuhn—Tucker optimality conditions for our problem as follows:

VJ(m)+ Vg4 —10 =0, G,(m)1 =0, G,(m)0 =0, (11)
4=20, 020,  gi(m)<0,  ga(m)<0, (12)

where G,(m) and G,(m) are diagonal matrices of order ¢ and p, respectively, and with diagonal
elements being the values of the corresponding functions g;(m).

The basic idea of the admissible points algorithm consists of solving the system of equations (11)
in (m,4,0) by using a fixed point method, in such a way that the conditions (12) hold at each
iteration.

If we denote H(m,,0) = V2 (m)+ S0, 2V2gi:(m) + o7 0;V?g,;(m) the Hessian of the La-
grangian and A%, @ two diagonal matrices of order g and p, respectively, with (A*); = (A*), and
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Table 1
Sketch of the admissible points algorithm

Step 0 (1) Compute ¢;(0), Vgi
(2) Choose (m°,1°,0°) such that g(m®)<0, 1°>0, 0°>0
Step 1 Compute the descent direction d* by solving the linear system:
Hm"*,2%,0% Vg -1 d* —VJ(m")
Avg)Y GFoo0 Al = 0 (13)
—oF 0 G 0F+! 0
Step 2 Compute the step length ¢* by employing a line search technique and

define m**! = m* + t*d*
Step 3 Update the dual variable: define (A**!,0%") from (25+!, 05
Step 4 Convergence Test:

(1) If OK — stop algorithm and accept m*
(2) If not OK — return to Step 1

+1 as solution of the problem (2#)

(0%);;=(0%),, then the general sketch of the algorithm, applied to our problem, is given in Table 1
(cf. [8] for further details).

We can analyse now the main aspects of the algorithm:

Step 0: A simple way in order to compute the rows of Vg, is linearizing with respect to m the
system (8) and solving it for the vectors of the canonical basis (cf. [8]).

Step 1: We must note that:

(1) Denoting H*=H(m*, 2*,0*), since constraints are linear, we have that H*=V2/(m*). Moreover,

the particular form of the functional J causes H* to be diagonal and easy to compute.
(2) The fact that f;(m), j=1,...,Ng, are strictly convex in the minimization interval guarantees

that H* is positive definite and, consequently, if (i*,0%) are such that:

(@) () >0, if (g:(m")); =0,

(b) (0%); >0, if (g2(m*)); =0,

(strict complementarity slackness) then the matrix of system (13) is nonsingular (cf. [9]).
Thus, we have obtained a nonsingular linear system of order 2p + g, where the only nondiagonal
blocks are Vg, € 4 ,x, and A*(Vg,) € M, ,. If the values of p (dimension of the control variable)
and g (number of linear constraints that are not bound constraints) are not very large, system (13)
can be simply solved, for instance, by a preconditionated biconjugate gradient method. However,
when p and ¢ grow, the necessity of preconditioning at each iteration makes this method very slow.
In this case, a possible alternative is to solve the system by computing by blocks. So, system (13)

can be written as

H*d* + Vg )k — 105 = —VJ(m"), (14)
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ANV g))d* + GH gt =0, (15)
—Ofd" + GOy = 0. (16)

Taking into account that in our problem g > p, a first strategy consists of computing 45" and 0"
from (15) and (16), respectively, and substituting them into (14), which leads us to the following
system in d*:

[H* — Vg (G A" (Vg,) — (GHY'0F1d* = —VJ(m"). (17)

This system is only of order p and, whenever Gf and G% are nonsingular, the matrix of the sys-
tem is symmetric and positive definite (see [6]). Thus, it can be solved, for instance, by Choleski
method.

Nevertheless, this strategy cannot be developed when Gf or G% are singular, and it is even
problematical if any of the diagonal elements of these matrices is close to zero, because in this case
system (17) is strongly ill-conditioned. An alternative strategy in order to allow this problem is to
determine previously the constraints close to saturation (active constraints) and compute in (15)
and (16) only those variables (45');, (04""), associated to inactive constraints. In this way, (17)
is only completely solved at those iterations where no constraint is fulfilled. In the case of active
constraints, instead of (17), we have the following system:

B* Vg, I\ [d" —VJ(m*)

~k —— -~ ~k
AF~gy & o || 4 |= 0 : (18)
_ék 0 6‘72( é’g+1 O

where the elements with tilde are obtained taking the rows and columns associated to active con-
straints in the corresponding elements, and B* € ./ pxp 18 @ matrix similar to the one of system
(17) where divisions by values close to zero have been eliminated.

This system is of lower order and, although nonsymmetric, is better conditioned than (17). Thus,
for its resolution a QR factorization can be used.

We must also remark that matrix B* is full, which implies a great computational effort. We can
introduce a possible variant in order to obtain B* diagonal, assuming (taking into account condition
(11)) that the coordinates of the dual variable (A¥,0%)" not associated to active constraints are null.
This assumption, that must be taken in mind in Step 3, makes B* diagonal and, consequently, the
resolution of system (18) becomes quicker (now, a preconditionated biconjugate gradient method can
be used). In this case, a correction of the descent direction must be introduced in order to assure
convergence.

Step 2: Since the constraints of our problem are linear, we have chosen the following modification
of Armijo’s rule (cf. for instance [7]):

Let n,v € (0,1). For m*,d* € R? given:

(1) We compute ¢

max?

of the linearity of the constraints).

the largest step such that m* +¢% d* verifies all the contraints (simple because

max
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(2) We choose />0 the first natural number such that

J(m* 'tk dY<T(m*) + 'tk (VI(m"))d*. (19)

max max

(3) We take t* =v/tk and, finally, we define m**! = m* + t*d*.
Step 3: In order to update the values of the dual variable (A5, 05"
variants:

Variant 1: We take &, &, wy, o, A, 07 positive and:
(1Y Vi=1,...,q, Vj=1,..., p, we define

(;tkﬂ)i = sup{()»é“),-, & Hdk”z}’ (20)

we have used two different

(01, = sup{(05""),, Lalla|}, (21)

(2) if (g1(m**1)); = — iy, and (A**1); < A, we redefine (A1), = A!
(3) if (g2(m**"));= — wp and (0*"); < 07, we redefine (0*+'), =0

Variant 2: 1f we consider that the coordinates of the dual variable (f,0%)" associated to inactive
constraints are zero, then a modification of previous algorithm is necessary. Thus, the update of the
dual variable must be made in the following way:

(1) we start with (m°,2°,0°) such that g(m°) <0, =0, 0°=0.
(2) let ¢ > 0 be small. For £k =0,1,2,..., we define

(A =sup{(4), A} if — e<(g:(m")): <0,

(22)
(JF1, =0 otherwise,
(0441, = sup{(0);, 07} if — e <(g2(m")); <0, @3)
0 k1 ) =0 otherwise,

4.2. A successive quadratic programming algorithm

In order to check the numerical results, we have also solved the problem (£7) by means of the
successive quadratic programming algorithm OPTROS5, developed by Pola [10]. The sketch of the
algorithm, applied to our problem, is as follows: we consider the matrix C and the vector b defined
by

Vi=1,...,q: Cj = V(gl)j, bj = _(91(0))./"

V=gt longtp G=(0n, —1....0), b= —(m), (24)

location j

then we rewrite problem (%) in the following equivalent way:

min J(m)
such that (C;)m<b;, Vj=1,...,p+q.
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Fig. 3. Cost function.

Table 2
Parameters for the problem on Vigo’s ria
Saint-Venant parameters Empiric coefficients Adimensional
constants
Tidal cycle: T =124 h B1 = f2 = 2000 m?/s N =120
Tidal run: 2.8 m k1 =115x10"° s~ &=10""
Water density: 1000 kg/m? Ko =9 x 10712 g7! &H=10"°8
Air density: 1.28 kg/m® ds =898 x 107 kg/m* w =107
North latitude: 0.73266 rad pio =0 kg/m’ w=107°
Wind direction: 3.92699 rad pao = 8.082 x 10~ kg/m® =1
Wind velocity: 10 km/h o1 =3.48398 x 10* kg/m’ o' =1

Earth angular velocity:
7.92 x 107° rad/s

o2 =5 x 107 kg/m®
{1 =8.05255 x 107 kg/m’

(> =18.03218 x 1073 kg/m’
m=0 kg

The basic idea of this algorithm is solving (£ ) by an iterative method, in such a way that a
quadratic problem with linear constraints be solved at each iteration. Concretely, at the iteration
k+1, for a given admissible point m*, we denote p*=V.J(m*) and B* =V2/(m*), and we consider
the following second-order approximation of J in the neighborhood of m*:

J(m) = J(m*) + (p*) (m — m*) + 1(m — m*YB*(m — m"), (26)
defining d = m — m* we can rewrite the previous expression as follows:
J(m) ~ Yd'B*d + (p*Yd +J(m"). (27)
q*(d)

Descent direction d* is determined as the solution of the quadratic problem:

ok
min ¢*(d),

(#2)" 1 <" , L (28)
such that (C;)'d<b; — Cim", Vj=1,....,p+q

and step t* is computed by using line search techniques. Thus, we finally define m**! =m* + t*d*.
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Fig. 4. Velocity field at high tide.
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Fig. 5. Velocity field at low tide.

As can be seen, at each iteration, a quadratic problem has to be solved, which has only one
solution because B* is positive definite. In order to compute this solution, an active constraints
algorithm has been used. This algorithm (cf. [4]) is very suitable for this case, because the number
of saturated constraints in our problem is small.
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Fig. 6. BOD concentration at high tide.
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Fig. 7. BOD concentration at low tide (detail).

5. Numerical results

We have solved the problem (£7) under realistic hypotheses: we have taken a two-dimensional
mesh of Vigo’s ria (Spain) as domain €, where we have considered two zones to protect and two
points of discharge (see Figs. 6 and 7). We have also assumed that it is necessary to guarantee
lower levels of pollution in zone 1 than in zone 2. (The values of all the parameters can be seen in
Table 2).
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INCORMUE 1 1 om0 (VN
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Fig. 8. DO concentration at high tide.
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Fig. 9. Optimal discharges during a tidal cycle.

The cost function is given in Fig. 3: we assume pollutant concentration of the sewage arriving to
the sewage farm is 150 kg/m?®, then the depuration cost above this value is constant. The velocity
and the height of the water have been obtained solving the Saint—Venant equations on this domain
(Figs. 4 and 5 show the velocity field at two significant instants). The numerical resolution of the
Saint—Venant equations has been carried out in [3].

Figs. 6 and 7 show the BOD concentration at high tide and at low tide, respectively. The constraints
are satisfied everywhere in the protected areas: at high tide, they saturate at one of the vertices in
zone 1, but at low tide, after a tidal cycle, the saturation takes place at one vertex in zone 2. The
DO concentration at high tide is also shown in Fig. 8.

The values of the optimal discharges, which produce this situation, can be seen in the Fig. 9.

The discharge rate during rising tide is greater at point P, than at point P,. However, during ebb
tide (after 60 time steps) the flow rate decreases at P, and increases at P;. This is an obvious
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consequence of the outfalls position: in fact, during rising tide, P, is a better location than P;, but
during ebb tide, P; is the best of them.

We must remark that, in all the tests we have developed, applying both methods above exposed,
the results have been almost the same. Moreover, the running times are similar, if in the admissible
points algorithm the update of the dual variable is made according to the size of the problem: the
first variant for small values of p and ¢, and the second for larger ones.
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