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The Higgs boson mass may arise from a portal coupling to a singlet field σ which has a very large 
VEV f � mHiggs. This requires a sector of “ultra-weak” couplings ζi , where ζi � m2

Higgs/ f 2. Ultra-
weak couplings are technically naturally small due to a custodial shift symmetry of σ in the ζi → 0
limit. The singlet field σ has properties similar to a pseudo-dilaton. We engineer explicit breaking of 
scale invariance in the ultra-weak sector via a Coleman–Weinberg potential, which requires hierarchies 
amongst the ultra-weak couplings.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The Higgs boson presents several well-known puzzles associ-
ated with the problem of the naturalness of the existence of a low 
mass fundamental 0+ field in quantum field theory. The natural-
ness issue is associated with how scale symmetry is implemented 
(or not) for the Higgs boson, and there has been a recent upsurge 
of interest in models that attempt to maintain a classical scale in-
variance which is broken only by scale anomalies [1–4]. Here we 
explore this idea in the context of an extension of the Standard 
Model (SM) that includes a new gauge singlet scalar field σ cou-
pled to the Higgs sector via ultra-weak couplings. In particular, we 
assume that the Higgs couples to the singlet field σ through a por-
tal interaction ζ1σ

2 H† H . Electroweak breaking is induced when σ
acquires a VEV by quantum loops, i.e., through Coleman–Weinberg 
(CW) symmetry breaking [5], and thus yields a mass for σ and 
for the Higgs boson. We consider the case that the σ field VEV f
is much larger than the weak scale, f � vweak , in which case the 
coupling ζ1 must be ultra-weak, |ζ1| = m2

H/ f 2 � 1.
At first sight, constructing a model with ultra-weak scalar cou-

plings would seem to be a foolish thing to do since most SM 
couplings are either technically naturally small (e.g., the electron 
or up and down quark Higgs–Yukawa couplings) or are of the or-
der of the gauge couplings, such as gtop ∼ g3. For example, the 
Higgs quartic coupling λ receives additive contributions from the 
large O (1) couplings gtop , g2 and g1, and thus λ is not ultra-weak.
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Therefore we must ask if ζ1 can be technically naturally small. 
The answer is yes: there exists a custodial symmetry for ultra-weak 
couplings amongst singlet fields. This is a “shift symmetry” and 
it has a Noether current whose divergence is small, ∝ ζi . This is 
the reason why ultra-weak couplings can remain ultra-weak in 
the renormalization group (RG) evolution; the ’t Hooft naturalness 
of ultra-weak couplings is the exact shift symmetry in the limit 
ζi → 0. We have seen shift symmetry in another guise before. Shift 
symmetry naturally casts σ as a pseudo-dilaton (see Appendix A).

As discussed in a companion paper [6], one motivation for such 
small couplings arises in the context of the DFSZ axion solution 
to the strong CP problem where f is identified with the axion 
decay constant [7]. Alternatively, it may be that σ is the dilaton 
responsible for generating the Planck scale, or f may be associated 
with a high energy scale such as Grand Unification. In this paper, 
we wish to demonstrate, in the context of a very simple model, 
how such small couplings are natural and to briefly explore the 
new phenomenology associated with ultra-weak couplings.

2. Origin of Higgs boson mass from an ultra-weak sector

Consider an extension of the SM in which the Higgs boson sec-
tor includes a real singlet scalar field σ . We assume that the theory 
has a classical scale symmetry1 so that only dimension four terms 
are allowed, giving the most general action of the form

1 The idea of classical scale symmetry as a custodial symmetry of a fundamental 
perturbative Higgs boson has been emphasized by Bardeen [1] who argues that 
the additive quadratic divergences associated, for example, with the top quark loop 
correction, are an artifact of using a calculational method that violates classical scale 
invariance. We will return to a discussion of this below.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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S =
∫

d4x

(
1

2
∂μσ∂μσ + (DμH)† DμH − V (H,σ )

)
, (1)

where

V (H,σ ) = λ

2

(
H† H

)2 + ζ1

2
σ 2 H† H + ζ2

4
σ 4. (2)

CW symmetry breaking is analogous to a QCD-like mechanism in 
that it arises entirely from a stress-tensor trace anomaly, i.e., it re-
lies upon scale symmetry breaking by perturbative quantum loops. 
The scale invariance of the action is again recovered in the limit 
h̄ → 0 as quantum loops are turned off and the trace anomaly goes 
to zero.

The RG equations for Eq. (2) are

βλ = dλ(μ)

d ln(μ)
= 1

16π2

(
12λ2 − 3λ

(
3g2

2 + g2
1

) + 3

4

(
g2

1 + g2
2

)2

+ 3

2
g4

2 + 12λg2
t − 12g4

t + ζ 2
1

)
, (3)

β1 = dζ1(μ)

d ln(μ)
= 1

16π2

(
6ζ1ζ2 + 6ζ1λ + 4ζ 2

1

− 3

2
ζ1

(
3g2

2 + g2
1

) + 6ζ1 g2
t

)
, (4)

β2 = dζ2(μ)

d ln(μ)
= 1

16π2

(
18ζ 2

2 + 2ζ 2
1

)
. (5)

An immediately obvious feature is that, due to the custodial shift 
symmetry of σ , the ζi couplings, as a class, are multiplicatively 
renormalized. Therefore if these couplings are very small they will 
remain small over a large range of RG running, i.e., an “ultra-weak 
sector” can be technically natural in the SM.

Let us neglect the contribution of the Higgs field to the poten-
tial momentarily. The σ field, despite having ultra-weak couplings, 
can have a nontrivial CW potential with a minimum at some high 
energy scale f [5]. This requires that: (1) the quartic coupling ζ2 is 
negative for any scale μ ≤ f , (2) β2 is positive, and (3) ζ2( f ′) = 0
at some scale f ′ � f so that ζ2 crosses from negative to posi-
tive values with increasing ln(μ) [4]. The solution to Eq. (5) is, to 
a good approximation, ζ2(μ) ≈ β2 ln(μ/ f ′) with constant β2 > 0. 
This solution satisfies conditions (1) through (3), which can be 
consistent with the overall quartic stability of the potential.

Using the approximate solution for ζ2(μ) with the VEV of σ
itself as the scale μ, the effective potential V CW (σ ) for the field σ
is

V CW(σ ) ≈ 1

4
β2σ

4 ln

(
σ

f ′

)
. (6)

The minimum occurs at 〈σ 〉 ≡ f = f ′e−1/4. We also see that

β2( f ) = −4ζ2( f ), (7)

which is the key “extremal relationship” at the minimum of the 
CW potential [4]. Note that the extremal condition Eq. (7) says 
that we are equating a one-loop O(h̄) expression, β2, to a tree-
level (classical) coupling, ζ2 [5]. The consistency of this result with 
perturbation theory requires that the ζ 2

1 term in β2 be the domi-
nant one, so

β2( f ) ≈ ζ 2
1 ( f )

8π2
, hence

β2( f )

4|ζ2( f )| ≈ ζ 2
1 ( f )

32π2|ζ2( f )| = 1. (8)

Thus the consistency of the CW potential minimum requires a 
substantial hierarchy |ζ2| � |ζ1| � 1 amongst the ultra-weak cou-
plings.
For our present problem, however, we have a mixed potential 
involving the Higgs and σ fields,

V (σ , H) ≈ 1

4
β2σ

4 ln

(
σ

f ′

)
+ λ

2

(
H† H

)2 + ζ1

2
σ 2 H† H . (9)

The minimization procedure can be simplified by writing this as a 
sum of two independent potentials,

V (σ , H) ≈ 1

4
β2σ

4 ln

(
σ

f̃

)
+ λ

2

(
H† H − εσ 2)2

, (10)

where

ε = |ζ1|
2λ

, f ′ = f̃ exp

(
− ζ 2

1

2λβ2

)
, (11)

and ζ1 is negative.
Note that we have not chosen a new RG trajectory parametrized 

by f̃ . Instead, the CW potential appearing in Eq. (10) involves f̃
which is related to our original choice of trajectory (parametrized 
by f ′) through the relationship

β2 ln
(

f ′) = β2 ln( f̃ ) − 2λε2. (12)

The zero-crossing of the original ζ2(μ) = β2 ln(μ/ f ′) remains 
at f ′ . However, what now matters for the minimization of Eq. (10)
is the running of an effective shifted coupling constant ζ ′

2(μ) =
β2 ln(μ/ f̃ ) = ζ2(μ) − 2λε2. Using Eqs. (8), (11), ζ ′

2(μ) will have 
a zero-crossing at a much higher energy scale f̃ = f ′ exp(4π2/λ), 
but it can readily satisfy the extremal condition Eq. (7) at f̃ .

The minimum of Eq. (10) now occurs at

〈σ 〉 ≡ f = f̃ e−1/4, (13)

(〈H〉)2 ≡ v2 = ε f 2, hence ε = v2

f 2
. (14)

The mass eigenstates are computed by expanding the fields about 
the minimum, σ = f + σ̂ and H = v +h/

√
2 (H can be treated like 

a real singlet at this point by going to unitary gauge). The quadratic 
terms in the potential, V (σ̂ , h)2, are then

V (σ̂ ,h)2 = 1

2

(
β2 f 2 + 4λ

v4

f 2

)
σ̂ 2 + λv2h2 − 2

√
2λv3

f
hσ̂

= 1

2

(
β2 + 4λε2) f 2σ̂ 2 + λε f 2h2 − 2

√
2λε3/2 f 2hσ̂ .

(15)

Denoting the physical mass eigenstates as h̃ and σ̃ , we find

h = h̃ +
√

2vσ̃

f
, σ = σ̃ −

√
2vh̃

f
. (16)

To leading order in ε , the eigenfields are diagonal with masses

m2
h = 2λv2 = 2λε f 2 ↔ h̃, (17)

m2
σ = β2 f 2 ↔ σ̃ . (18)

Our model is predictive in terms of ε = v2/ f 2 given that, from 
Eqs. (8), (11), we have

β2 = ζ 2
1

8π2
= λ2ε2

2π2
, therefore m2

σ = m4
h

8π2 f 2
. (19)

For mh = 126 GeV, Eq. (19) gives

mσ ≈ 0.179

(
1010 GeV

)
keV. (20)
f
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The model therefore predicts a low mass 0+ particle for f �
1010 GeV.

The field σ̃ is effectively a dilaton and couples to everything 
the Higgs does with the replacement of the Higgs VEV

v → v +
√

2v

f
σ̃ , hence

δv2

v2
= 2

√
2

f
σ̃ . (21)

For example, σ̃ couples to the electron as

L′ = −
√

2meσ̃

f
ψψ. (22)

Furthermore, this implies that σ̃ will couple to the electromag-
netic field Fμν F μν through vacuum polarization loops of all the 
charged particles in the SM. This coupling is determined by the 
QED β-function and satisfies the familiar dilaton low energy theo-
rems that apply to a very low mass Higgs boson [8,9].

The σ̃ → γ γ decay width can by determined by rescaling 
Eq. (1) of Ref. [9], giving

Γ (σ̃ → γ γ ) = C2
σ

α2m3
σ

256π3 f 2
, (23)

with the coefficient Cσ given by

Cσ =
(∑

Q

e2
Q Nc A f (0) + AW (0)

)
= 11

3
, (24)

where A f (0) = 4/3, AW (0) = −7, and the sum over Q extends 
over all charged fermions in the SM, yielding 

∑
Q e2

Q Nc = 8.2 Using 
Eq. (20), this leads to a lifetime for the mass eigenstate σ̃ of

τσ ≈ 1.27 × 1023
(

f

1010 GeV

)5

sec. (25)

3. Technical naturalness of the ultra-weak sector

The ultra-weak couplings that have been introduced are tech-
nically natural. In general, suppose we have a theory with various 
fields σi , φi with some “large” couplings λi ∼O(1) and some ultra-
weak couplings ζi � O(1). The theory is defined by a classical 
potential

V (σ ,φi, λi, ζi) = V 1(φi, λi) + V 2(σi, φi, ζi). (26)

Here the full potential V decomposes into components V 1 and V 2
where δ

δσi
V 1 = δ

δζi
V 1 = 0, and δ

δλi
V 2 = 0.

The RG equations for the ζi will then take the form

dζi

d ln(μ)
= βζi =

∑
ζ j

ζ j F j
i (ζi, λ), (27)

with polynomial functions F j
i (ζi, λi). The set of couplings {ζi} is 

multiplicatively renormalized and the ζi can therefore be technically 
naturally small.

This multiplicative renormalization of the ζi arises because the 
fields σi are associated with approximate shift symmetries σi →
σ + εi f of the action (see Appendix A). The smallness of the cou-
plings ζi are protected by the shift, i.e., the ’t Hooft naturalness 
condition ζi � 1 is satisfied since, in the limit ζi → 0, we have an 
enhanced exact shift symmetry of the action. Small ζi represents a 
small breaking of this symmetry.

2 Here the low energy theorem is almost exact, in contrast to the Higgs case for 
which the sum includes only the top quark and W loops and the functions A f (τ f )

and AW (τW ) in Eq. (2) of Ref. [9] are evaluated at nonzero τi ∝ m2
h/v2.
Given that the scale of gauge couplings in the SM is O(1), the 
shift symmetry limit can exist only if the σi are gauge singlet 
fields. Indeed, it is not meaningful to talk about shift symmetries 
for fields that carry gauge charges such as the Higgs boson (unless 
one is interested in the consequences of dynamics in the limit that 
gauge couplings can be ignored). The couplings λi of fields such as 
the Higgs boson will receive additive corrections from gauge cou-
plings and will not be multiplicatively renormalized. They will run 
according to the RG and become comparable in size to the gauge 
couplings.

Of course, our argument is subject to gravitational effects. All 
fields, including σ , couple to gravity, which is a gauge theory, so 
the condition of ultra-weak ζi couplings is subject to whether or 
not the shift symmetry can be maintained in the context of grav-
ity. This can be done if the contributions to the RG equations from 
conformal couplings ξi , which appear in terms like 1

2 ξσ 2 R , can re-
main ultra-weak. These, in turn, will involve effective gravitational 
couplings, an example of which is the recent “Agravity” model of 
Salvio and Strumia [10]. It does appear possible to maintain the 
ultra-weak limit of the ζi within the context of this scheme, and 
if the gravitational corrections are responsible for generating the 
ζi then a simple explanation for the hierarchy between ζ2 and ζ1
may be possible. If instanton effects are relevant and yield addi-
tive corrections to the ζi , we expect these to be suppressed as 
exp(−8π2/ζi).

Hence, the shift symmetry may be a powerful constraint that 
admits a natural sector of ultra-weakly coupled physics.

4. Classical scale invariance

Up to now we have assumed that the theory obeys classical 
scale invariance in the sense that scale invariance is broken only 
through the trace anomaly. This assumes, as is the case in dimen-
sional regularization, that the radiative corrections to scalar masses 
that are quadratically dependent on the cut-off scale are canceled
by the bare mass terms, leaving the scalars massless before sponta-
neous symmetry breaking. This makes sense in a pure field theory 
because only the renormalized masses are physical. However, new 
physics at a high scale can spoil this by introducing contributions 
to the scalar masses that are proportional to the high scale. This 
is the case if there is a stage of Grand Unification, for which the 
contributions are proportional to the mass scale of the heavy GUT 
states, but can also happen even if there are no massive states, 
for example when the new scale is generated by the CW mecha-
nism. In the model presented here, such corrections would affect 
the Higgs mass and give rise to the usual hierarchy problem, but 
they also affect the singlet state, despite its ultra-weak couplings, 
because a contribution to the σ mass squared of O (ζiΛ

2) will 
dominate over the CW potential for Λ > O (TeV). To avoid this we 
envisage two possibilities.

The first is that there are no high scales of the type discussed 
above. Of course this cannot be true if gravity is included, but, as 
discussed above, it may be that gravity respects the shift symme-
try and the gravitational corrections to the dilaton mass are small. 
However, one would still expect an unacceptably large contribution 
to the Higgs mass, thereby reintroducing the hierarchy problem. 
Alternatively, if the model is UV complete so that it does not have 
Landau poles, gravity may not contribute to the scalar masses at 
all [11]. This case is analogous to that of a pure field theory with 
classical scale invariance and guarantees that the scalar sector re-
mains massless in the absence of spontaneous symmetry breaking.

The second possibility is to super-symmetrize the model so that 
the quadratic mass terms have a low SUSY scale cut-off. In this 
case, one can have a stage of Grand Unification without introduc-
ing unacceptably large scalar mass contributions. A supersymmet-
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ric version of the model requires an additional Higgs doublet that 
somewhat complicates the model. We will discuss this possibility 
in detail in a partner paper that considers the mechanism in the 
context of axion solutions to the strong CP problem.

5. Conclusions

We have considered the possibility that the Higgs boson mass 
arises from an ultra-weak sector that contains an effective dilaton. 
The dilaton emerges with a very small mass and couples (with 
rescaled couplings) to all final states accessible to the Higgs boson.

The ultra-weak sector is technically natural and is protected by 
a shift symmetry. We believe this symmetry can be maintained in 
quantum gravity.

In a parallel work [6], we will incorporate the axion, which fits 
naturally into an ultra-weak complex singlet field generalization of 
this idea. We will discuss further cosmological and phenomenolog-
ical implications therein.
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Appendix A. Shift current and the dilaton

The field σ with ultra-weak couplings is formally analogous to 
a dilaton, as occurs in a spontaneous breaking of scale symmetry. 
Let us examine this relationship.

Spontaneous scale symmetry breaking can be viewed in two 
ways. The conventional description is to start with a scale invari-
ant theory, containing a dilaton with a shift-invariant potential, 
and matter fields. The dilaton’s shift symmetry is broken by the 
coupling to matter, e.g., as in Yukawa couplings. The stress-tensor 
is traceless. The dilaton can then acquire a nonzero VEV, and the 
matter fields then acquire mass, but the stress tensor remains 
traceless. Hence, we end up with a scale invariant theory, massive 
matter, and a massless dilaton as the Nambu–Goldstone boson.

Alternatively, we can start with massive matter fields, and we 
include a dilaton with a shift-invariant potential, but with cou-
plings to matter that again break the shift symmetry. Now we 
compute the stress tensor and find that it is not traceless, i.e., the 
scale current is not conserved. However, we can find a linear com-
bination of the scale current and the dilaton shift current that is 
conserved; the theory has a hidden symmetry after all.

To see this latter mode, consider an interacting massless scalar 
field and a massive fermion,

S =
∫

d4x

(
ψ̄ i/∂ψ + 1

2
∂μσ∂μσ − V (σ ,ψ) +LI

)
, (A.1)

where

V (σ ,ψ) = mψ̄ψ + gσ ψ̄ψ. (A.2)

LI = (−1/6)∂2σ 2 is an “improvement term” and does not affect 
the equations of motion. The usual diffeomorphism δxμ = ξμ(x), 
holding the metric fixed, then yields the “improved stress tensor” 
[12] as δS = (1/2)(∂{μξν})T μν (see Appendix A of [4]):

Tμν = 2

3
∂μσ∂νσ − 1

6
ημν∂ρσ∂ρσ − 1

3
σ∂μ∂υσ + 1

3
ημνσ∂2σ

+ i
ψ̄γ{μ∂ν}ψ + ημν

(
V (σ ) − iψ̄/∂ψ

)
. (A.3)
2

The last term can be dropped since it vanishes by the fermion 
equation of motion.

The scale current is derived by δxμ = ε(x)xμ , yielding Sμ =
δS/δ∂με = xν Tμν . The divergence of Sμ is the trace of Eq. (A.3),

∂μSμ = T μ
μ = mψ̄ψ, (A.4)

where equations of motion i/∂ψ = mψ + gσψ and ∂2σ = −gψ̄ψ

are used. Therefore, we see that the scale symmetry is apparently 
broken by the fermion mass.

However, there is a “shift current” for the field σ defined by 
the “shift transformation” δσ = ε f , where f is some arbitrary 
mass scale. The shift transformation implies a Noether current 
J S
μ = f ∂μσ . The J S

0 ∝ σ̇ component is the canonical momentum of 
σ , which induces operator shifts in the value of the field through 
the equal time commutation relations, much like a momentum 
operator i∂μ induces shifts in position in ordinary quantum me-
chanics. The conservation law of J F

μ is, of course, equivalent to the 
equation of motion of σ , ∂μ J F

μ = − f δ
δσ V (σ ), where V is a poten-

tial that depends nonderivatively upon σ and other fields.
In the case of Eq. (1), the shift symmetry is broken by the 

Yukawa coupling since

∂μ JμS = f ∂2σ = −g f ψ̄ψ. (A.5)

However, we see that with the special choice g f = m we have a 
conserved current Q μ = Sμ + JμS , the sum of the shift current and 
the scale current

∂μ Q̂ μ = (m − g f )ψ̄ψ → 0|g f =m. (A.6)

The theory therefore has a hidden symmetry.
Note that we could obtain a conserved scale current Ŝμ by 

modifying the stress tensor to

T̂ μν = T μν − 1

3
∂{μ J S

ν} + 1

3
ημν∂ρ JρS . (A.7)

The modified stress tensor implies a modified scale current Ŝμ =
xν T̂μν that has the trace

∂μ Ŝμ = T̂ μ
μ = (m − g f )ψ̄ψ → 0|g f =m. (A.8)

The modified stress tensor is precisely what we would have ob-
tained directly from the scale invariant theory, i.e., Eqs. (A.1), (A.2)
with m = 0, and shifting σ to a nonzero VEV σ → σ + f . The shift 
current is playing a hidden role, buried in the stress tensor, yield-
ing the conserved scale current.

References

[1] W.A. Bardeen, On naturalness in the standard model, Fermilab-Conf-95-391-T, 
Fermilab-Conf-08-118-T and private communication;
C.T. Hill, Conjecture on the physical implications of the scale anomaly, 
arXiv:hep-th/0510177, presented at M. Gell-Mann 75th birthday celebration, 
Santa Fe, 2005.

[2] H. Aoki, S. Iso, Phys. Rev. D 86 (2012) 013001, arXiv:1201.0857 [hep-ph];
V. Elias, R.B. Mann, D.G.C. McKeon, T.G. Steele, Nucl. Phys. B 678 (2004) 147;
V. Elias, R.B. Mann, D.G.C. McKeon, T.G. Steele, Nucl. Phys. B 703 (2004) 413 
(Erratum);
R. Barbieri, L.J. Hall, V.S. Rychkov, Phys. Rev. D 74 (2006) 015007;
L. Lopez Honorez, E. Nezri, J.F. Oliver, M.H.G. Tytgat, J. Cosmol. Astropart. Phys. 
0702 (2007) 028;
J.R. Espinosa, M. Quiros, Phys. Rev. D 76 (2007) 076004;
F.A. Chishtie, D.G.C. McKeon, T.G. Steele, Phys. Rev. D 77 (2008) 065007;
R. Foot, A. Kobakhidze, K.L. McDonald, R.R. Volkas, Phys. Rev. D 77 (2008) 
035006;
F.A. Chishtie, T. Hanif, J. Jia, R.B. Mann, D.G.C. McKeon, T.N. Sherry, T.G. Steele, 
Phys. Rev. D 83 (2011) 105009;
T. Hur, D.-W. Jung, P. Ko, J.Y. Lee, Phys. Lett. B 696 (2011) 262, arXiv:0709.1218 
[hep-ph];
T. Hambye, M.H.G. Tytgat, Phys. Lett. B 659 (2008) 651;
L. Alexander-Nunneley, A. Pilaftsis, J. High Energy Phys. 1009 (2010) 021;

http://refhub.elsevier.com/S0370-2693(14)00699-6/bib6261726465656Es2
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib6261726465656Es2
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib6261726465656Es2
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs2
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs3
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs3
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs4
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs5
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs5
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs6
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs7
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs8
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs8
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs9
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs9
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs10
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs10
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs11
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs12


K. Allison et al. / Physics Letters B 738 (2014) 191–195 195
A. Farzinnia, H.-J. He, J. Ren, Phys. Lett. B 727 (2013) 141;
T. Hur, P. Ko, Phys. Rev. Lett. 106 (2011) 141802, arXiv:1103.2571 [hep-ph];
A. Arhrib, R. Benbrik, N. Gaur, Phys. Rev. D 85 (2012) 095021;
J.S. Lee, A. Pilaftsis, Phys. Rev. D 86 (2012) 035004;
K. Ishiwata, Phys. Lett. B 710 (2012) 134.

[3] S. Iso, Y. Orikasa, Prog. Theor. Exp. Phys. 2013 (2013) 023B08, arXiv:1210.2848 
[hep-ph];
C.D. Carone, R. Ramos, Phys. Rev. D 88 (2013) 055020;
T.G. Steele, Zhi-Wei Wang, Phys. Rev. Lett. 110 (2013) 151601;
T.G. Steele, Z.-W. Wang, D. Contreras, R.B. Mann, arXiv:1310.1960 [hep-ph];
C. Englert, J. Jaeckel, V.V. Khoze, M. Spannowsky, J. High Energy Phys. 1304 
(2013) 060;
V.V. Khoze, G. Ro, J. High Energy Phys. 1310 (2013) 075;
V.V. Khoze, J. High Energy Phys. 1311 (2013) 215;
M. Holthausen, J. Kubo, K.S. Lim, M. Lindner, J. High Energy Phys. 1312 (2013) 
076;
R. Foot, A. Kobakhidze, K.L. McDonald, R.R. Volkas, arXiv:1310.0223 [hep-ph];
E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal, C. Spethmann, 
arXiv:1309.6632 [hep-ph];
M. Aoki, S. Kanemura, H. Yokoya, Phys. Lett. B 725 (2013) 302;
T. Hambye, A. Strumia, Phys. Rev. D 88 (2013) 055022;
R. Dermisek, T. Jung, H. Kim, arXiv:1308.0891 [hep-ph].

[4] C.T. Hill, Phys. Rev. D 89 (2014) 073003.
[5] S.R. Coleman, E.J. Weinberg, Phys. Rev. D 7 (1973) 1888.
[6] K. Allison, C.T. Hill, G.G. Ross, arXiv:1409.4029 [hep-ph].
[7] M. Dine, W. Fischler, M. Srednicki, Phys. Lett. B 104 (1981) 199;

A.P. Zhitnisky, Sov. J. Nucl. Phys. 31 (1980) 260.
[8] J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B 106 (1976) 292;

M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Sov. J. Nucl. Phys. 
30 (1979) 711, Yad. Fiz. 30 (1979) 1368.

[9] M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Nucl. Phys. B 453 (1995) 17, 
arXiv:hep-ph/9504378.

[10] A. Salvio, A. Strumia, arXiv:1403.4226 [hep-ph]; this paper arrived during the 
course of our present work, and presents an implicit ultra-weak sector with 
f ∼ MPlanck.

[11] S. Dubovsky, V. Gorbenko, M. Mirbabayi, J. High Energy Phys. 1309 (2013) 045, 
arXiv:1305.6939 [hep-th].

[12] C.G. Callan Jr., S.R. Coleman, R. Jackiw, Ann. Phys. 59 (1970) 42.

http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs13
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs14
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs15
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs16
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib67656E6572616Cs17
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs2
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs3
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs4
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs5
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs5
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs6
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs7
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs8
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs8
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs9
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs10
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs10
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs11
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs12
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib49736Fs13
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib435448s1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib4357s1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib414852s1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib444653s1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib444653s2
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib5356565As1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib5356565As2
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib5356565As2
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib5370697261s1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib5370697261s1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib53616C76696Fs1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib53616C76696Fs1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib53616C76696Fs1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib4475626F76736B793A32303133697261s1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib4475626F76736B793A32303133697261s1
http://refhub.elsevier.com/S0370-2693(14)00699-6/bib43434As1

	Ultra-weak sector, Higgs boson mass, and the dilaton
	1 Introduction
	2 Origin of Higgs boson mass from an ultra-weak sector
	3 Technical naturalness of the ultra-weak sector
	4 Classical scale invariance
	5 Conclusions
	Acknowledgements
	AppendixA Shift current and the dilaton
	References


