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Abstract

Nested multi-step stochastic correction offers a possibility to improve updating algorithms for numerical simulations of
lattice gauge theories with fermions. The corresponding generalisations of the two-step multi-boson (TSMB) algorithm as well
as some applications with hybrid Monte Carlo (HMC) algorithms are considered.

0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction

The main task in numerical Monte Carlo simula-
tions of lattice gauge theories with fermions is to eval-
uate the (ratio of) fermion determinants appearing in
the Boltzmann weight for the gauge fields. The idea
of the stochastic (“noisy”) correctioi] is to prepare
a new proposal of the gauge configuration during up-
dating by some approximation of the determinant ratio

and accept or reject the change based on a stochasti

estimator. This “stochastic correction step” takes care
of the deviation of the approximate determinant ratio
from the exact one.

In multi-boson updating algorithni2] it is natural
to introduce a stochastic correction step in order to cor-
rect for the deviations of the applied polynomial ap-
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proximations. In special cases it is possible to perform
the correction by an iterative invert|]. More gener-
ally, the correction step can be based on successively
better polynomial approximations, as in the two-step
multi-boson (TSMB) algorithm{4]. A suitable way

to obtain the necessary polynomial approximations
is to use a recursive scheme providing least-square
optimisation[5,6]. Based on this stochastic correc-
tion scheme, the TSMB updating algorithm has been
Successfully applied in several numerical simulation
projects both in supersymmetric Yang—Mills theory
(see[7] and references therein) and in QCD (see, for
instance[8-11]).

In the present Letter we generalise the idea of
stochastic correction into a scheme of nested suc-
cessive corrections based on polynomial approxima-
tions with successively increasing precision. (A sim-
ilar “multi-level Metropolis” scheme has been pro-
posed in Refd12,13]) In the next section we consider
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multi-step multi-boson algorithms. The last section is
devoted to different possibilities for combining multi-
step stochastic correction with variants of the hybrid
Monte Carlo (HMC) updating algorithifi4]. In par-
ticular, optimised HMC algorithms based on mass pre-
conditioning [12,15] and polynomial hybrid Monte
Carlo (PHMC) algorithm$16] are considered.

2. Multi-step multi-boson algorithms

The multi-step multi-boson (MSMB) algorithm is
a generalisation of the TSMB updating algorithm.
Therefore, let us briefly recapitulate the basics of
TSMB. Let us assume that the determinant of the Her-
mitian fermion matrixQ = Q' is positive, at least
on most of the gauge configurations occurring with
non-negligible weight in the path integral. In this case

the sign of the determinant can either be neglected or

taken into account by reweighting on an ensemble of
configurations obtained by updating without the sign.
(If the sign of the determinant plays an important role
then there is a “sign problem” which cannot be dealt
with by a straightforward Monte Carlo simulation pro-
cedure.) Without the sign the determinant factor in the
Boltzmann weight of the gauge configurations is

|detQ|* = (detQ?)*, @
where in case oV mass-degenerate Dirac-fermion

flavours we havex = %Nf. (Note that for a Majo-
rana fermiona = %1.) Of course, for several fermion
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where the intervale, 1] covers the eigenvalue spec-
trum of Q2 on gauge configurations having a non-
negligible weight in the path integral. The determi-
nant factor in the Boltzmann weight can then be taken
into account with Lischer’'s multi-boson representa-
tion. Assuming that the roots of the polynomi&{x)
occur in complex conjugate pairs, one can introduce
the equivalent forms

0%) =ro [ [[(Q £ nj)*+1?]

j=1

P(

=ro[ [(Q = p})(Q - p).

j=1

®)

wheren is the degree of (x) and the roots are; =
(1 +i1)j)2With pj=pmj+ivj. With the help of com-
plex boson (pseudofermion) fields;, one can write

(detQ?)”

« [T ef(2 - p)(@ - )]

j=1
O(/[ddﬂexp{ sz) Q pJ Q- Pj ]yxéfx
=1 xy
(6)

In representatio(6) the complex boson fields;,,
j=1,2,...,n carry the indices of the corresponding
fermion fields. For instance, in QCD with Wilson-type
fermions there are colour and Dirac-spinor indices.

1

flavours with different masses there are several factors Since the multi-boson action if6) is local, similarly

as in(1). Applying determinant break-up [17,18] one
writes

(det0?)” = [(det@?)*/"*]"*, @)
with some positive integetig. In what follows we
always consider a single determinant factor with an ef-
fective powerx:
2\ Ny
(detQ?)”, g’ 3)
If there are several such factors in the path integral
then each of them can be separately taken into accoun
in the same way.

The basic ingredient of TSMB is a polynomial ap-
proximation

o=

Px)~x% =xe€le Al 4)

t

to the gauge field action, one can apply the usual
bosonic updating algorithms like Metropolis, heatbath
or overrelaxation. In fact, the multi-boson action is
Gaussian hence for the multi-boson fields a global
heatbath update is also possible which creates, for a
fixed gauge field, a statistically independent new set
of boson fields.

The polynomial approximation i(4) is not exact.
In order to obtain an exact updating algorithm one
has to correct for its deviation from the function to
be approximated. One can easily show that for small
fermion masses in lattice units the (typical) smallest
eigenvalue ofQ? behaves agam)? and for a fixed
quality of approximation within the intervgé, 1] the
degree of the polynomial is growing asox e /2
(am)~L. In general, the polynomial approximation has
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to be precise enough in order that the deviations in ex-
pectation values be smaller than the statistical errors.
In practical applications, for instance in QCD simula-
tions, this would require very high degree polynomials
with n of the order 18-10*. (For numerical exam-
ples showing the convergence rate of the polynomial
approximations seg6].) Performing numerical sim-
ulations with such a high is practically impossible
(and would be in any case completely ineffective). The
way out is to perform the corrections stochastically.

For improving the approximation if4) a second
polynomial is introduced:

Pi(x)Po(x) =x7%, x€le, Al @)

The first polynomialP1(x) gives a crude approxima-
tion as in(4) with P1(x) = P(x). The second polyno-
mial P>(x) gives a good approximation according to

(8)

During the updating proces®; is realized by
multi-boson updates where#s is taken into account
stochastically by aoisy correction step. For this, after
preparing a new set of gauge fields'] from the old

Pa(x) = [x* Pr(x)]
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by setting it equal to

n=Pay(QIU) 2y (13)

In order to obtain the inverse square root on the right-
hand side 0{13), one can proceed with a polynomial
approximation

Po(x) >~ Po(x) Y2, x el Al (14)

Note that here the intervadk, A] can be chosen dif-
ferently, usually withe < ¢, from the approximation
interval[e, A] for P».

The polynomial approximation i¢7) can only be-
come exact in the limit when the degrae of the
second polynomialP; is infinite. Instead of investi-
gating the dependence of expectation valuesphy
performing several simulations, it is also possible to
fix some high value ofi, for the simulation and per-
form another correction in th@easurement of expec-
tation values by still finer polynomials. This is done by
reweighting the configurations. (A similar reweight-
ing procedure is applied in the PHMC algorithm of
Ref.[16].) This measurement correction is based on a
further polynomial approximatio®’ with polynomial

one[U] by local updates, one generates a Gaussiandegree:’ which satisfies

random vector having a distribution
o~ P2AQIUP)

f[dn]e*nTPz(Q[Ulz)n ’

©)

and accepts the change of the gauge fielgl— [U']
with probability

min{1, A(n; [U'] < [U])}, (10)
where
A(n; [U'] < [U1) = exp{—n" P2(Q[U'1?)n

+1" Py (QIUP)n)}. (11)

One can show4] that this update procedure satisfies [
the detailed balance condition and hence creates the

correct distribution of the gauge fields. (See the proof
for the more general case of MSMB given below in
(20)—(23))

The Gaussian noise vectgrcan be obtained from
n’ distributed according to the simple Gaussian distri-
bution

ot
e N

S 12
Jldn1e= 2

lim Pix)Pr(x)P'(x)=x"%, xele,al. (15)
n—oo
The intervall¢’, A] can be chosen by convenience, for
instance, such that’ = 0, A = Amax, WhereAmax is
an absolute upper bound of the eigenvalue®f(In
case ofe’ = 0 the approximation interval is strictly
speaking(¢’, 1]. An absolute upper bound for the
eigenvalues ofD? exists because the commonly used
fermion matrices are bounded from above.) In prac-
tise, instead o’ = 0, itis more effective to take’ > 0
and determine the eigenvalues beldvand the corre-
sponding correction factors exactly. For the evaluation
of P’ one can use&’-independent recursive relations
5], which can be stopped by observing the required
precision of the result. After reweighting the expecta-
tion value of a quantity is given by

(4) = AP L= POy,
(exp(n'[1— P (QHn}u,y

wheren is a simple Gaussian noise likg in (12).

Here (---)y , denotes an expectation value on the

gauge field sequence, which is obtained in the two-
step process described before, and on a sequence of

(16)
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independent’s. The expectation value with respectto The first polynomialP; is realized during updating by
the n-sequence can be considered as a Monte Carlolocal updates as in TSMB. The higher approximations
updating process with the trivial actidi = n'n. The P, ..., P, are implemented by a sequence of nested
length of then-sequence on a fixed gauge configura- noisy correction steps as ii®)—(11) The necessary
tion can, in principle, be arbitrarily chosen. In practise Gaussian distributions of noise vectors can be obtained
it has to be optimised for obtaining the smallest possi- by appropriate polynomials, similarly {a4):
ble errors with a given amount of computer time. _

The polynomial approximations @), (8), (14)and Pi(x) = Pi(x)" % (i=2,3,...,k), x €[&, ]
(15) can be obtained in a recursive scheme providing (19)
least-square optimisatidh,6]. Numerical methods to The proof of thedetailed balance condition for
determine the polynomial coefficients can be based MSMB goes essentially in the same way as for TSMB.
either on arbitrary precision arithmeti¢&9] or on The aim is to reproduce with the firstorrection steps
discretisation of the approximation interf&0]. The the canonical distribution of the gauge field
expansion in appropriately defined orthogonal polyno-

mials is an important ingredient, both in determining w@[U1= ¢!V

the polynomial coefficients and in the application of « {detPl[U]deth[U] . ~-detPl-[U]}_l
the polynomials of the squared fermion matg¥ on

avector. i=12,...,k), (20)

~ Least-square optimisatio_n _corresponds to minimis- \yhere the short notatio®;[U] = P;(Q[U]?) is used

ternative is to minimise théc-norm which is equiv- | et ys assume that detailed balance holds for the
alent to the minimisation of the maximal relative de- fjrst (i — 1) steps, that is the transition probability

viation. In general, the goal is to obtain the smallest Pi_1)([U'] < [U)) satisfies
possible deviation of the expectation values with the

smallest possible polynomial degree. The experience P;_q([U'] < [U])e 5!V
with the least-square optimisation in TSMB has been

-1
rather satisfactory because it gives the best overall fit > {detPi[U]--- detP; (U1}

of the lattice action with a given polynomial degree. = Pi-1)([U] < [U’])e—Sg[U’]
(For numerical examples comparing- with Lo- , 1
optimisation see Ref6].) The often stated advantage x {detP1[U"] - detP 1 [U']} . (21)

of minimising the upper limit of the relative deviation  The transition probability of théth step is a product

of the lattice action is relativised by the fact that the de- ¢ Pi_1([U'] < [U]) with the acceptance probability
viation of the expectation values from the correct ones Pia([U'] < [U]):

is in general a complicated function of the deviation in
the lattice action. P ([U'] < [U])

The multi-step multi-boson (MSMB) updating al- . / ‘ /
gorithm is a straightforward generalisation of TSMB Pin (U] < WD) Pora(IU] < [U1). (22)
updating. Instead of the two-step approximatioiiin It is easy to show that P, ([U’] < [U]) is defined
we now consider a sequence of polynomial approxi- according to9)—(11)with P, replaced byP; then the

mations of arbitrary length: acceptance probability satisfies
Pr(x)Po(x)--- Pe(x) ~x~%, x €& [ex, Al (17) Pia(IU'] < [U1){detp,[U]}
-1
Here the subsequent polynomials define approxima- = Piiya([U] + [U’]){detP,»[U’]} : (23)
tions with increasing precision according to From this immediately follows that the transition prob-
" 1 ability of the ith step P ([U'] < [U]) satisfies the
Pi() = [x*Py(x)- i) (1=2.3,....k). detailed balance conditiof21) with (i — 1) replaced

(18) by (i).
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An alternative way to prove that the described pro-
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another test run on a 6 32 lattice we have cho-

cedure creates the correct distribution of the gauge sen a point where a detailed simulation has been per-

fields is to consider the fields as additional pseudo-
fermion fields in the Markov chain with the lattice
action given by the exponent (@).

formed recently with both the TSMB and HMC al-
gorithm[22], namely at = 0.74,« = 0.158, 4 =0
with a bare quark mass in lattice units:, ~ 0.024.

The advantage of the multi-step scheme comparedIn a three-step algorithm the following parameters

to the two-step one is that the lower approximations

were chosenug = 2, n1 = 60, np = 200, 12 = 300,

can be chosen to be less accurate and consequently:z = 800, 3 = 900. (The degree of the polynomi-
have lower polynomial degrees and are faster to per- als P; and P; is denoted by:; andn;, respectively.)

form. The last approximations, which are very precise

The second correction step was called after perform-

and need high polynomial degrees, can be done lessing 10 update cycles involving the first correction. The

frequently. The last polynomidt, can already be cho-
sen so precise that, for some given statistical error,
the measurement correction wiff becomes unnec-
essary.

An easy generalisation of the multi-step scheme de-
scribed until now is to require the correct function to
be approximated itf17) only in the last step and al-
low for functions easier to approximate in the previous
steps. This means thét8) can be generalised, for in-
stance, to

Pi(x) = [(x + p)* Py(x) -+ Pima(0)] "

(i=1,2,...,k), (24)

with positive p; and p, = 0. This has a resemblance
to the “mass preconditioning” as introduced for HMC
algorithms in Refs[12,15] The advantage qR4) is
that forp; > 0 one can decrease the degree of the poly-
nomial P;(x) and at the same time, #;/p;_1 is not
much smaller than 1, the acceptance intiecorrec-
tion step remains high enough.

integrated autocorrelation for the average plaquette in
these test runs were typically aroumg‘;q ~ 10 full
update cycles including the second correction.

The simulation costs in these runs turned out to
be, even with a moderate effort put in parameter tun-
ing, by about a factor of 1.5 lower than in the cor-
responding well-tuned TSMB runs. The gain comes
from the lower cost of the first correction compared
to the correction step in TSMB. The cost of the sec-
ond correction does not contribute much to the full
cost because it is done infrequently. For instance, on
the 16 - 32 lattice the TSMB run had the parame-
tersng = 4,n1 = 34,np = 720,12 = 740. (Note that
the cost of the correction is mainly determined by the
productn g (n2 4 nn2) which is 5840 in TSMB and only
1000 in the first correction of MSMB.)

3. Multi-step correction for HMC

The first (updating) step producing a new gauge

There are other multi-step approximation schemes field configuration can also be replaced by hybrid

conceivable: for instance, one can takex) ~ x %/
(i =1,...,k) which corresponds to the determinant
breakup in(2). Similarly, “mass preconditioning” can

Monte Carlo trajectorie$l4]. In this step some ap-
proximation of the fermion determinant can be used
and after a few trajectories one can perform a sto-

also be considered as a generalisation of determinantchastic correction step. The rest within a multi-step

breakup.

We performed several tests with the MSMB algo-
rithms in some of the simulation points of R¢1.1]
with the Wilson fermion action for two flavours of
guarks and the DBW?2 gauge actifi] for the colour
gauge field. In particular, on ar? 816 lattice atg =
0.55, k = 0.188, 1« = 0 (simulation point(c) in [11]
with a bare quark mass in lattice units:, ~ 0.015)

a three-step algorithm was tuned for obtaining bet-
ter performance. (Herg denotes the “twisted mass”
which is actually set equal to zero in these runs.) In

correction scheme is the same as in MSMB updating.

A possible application of multi-step stochastic cor-
rections is to perform a HMC update with a mass-
preconditioned fermion matrix which corresponds to
p1 > 0in Eq.(24) and correct for the exact determi-
nant (that is,o; = 0) stochastically. The polynomials
for the stochastic corrections are defined in the same
way as in(24).

Another possibility is to start by an update step as
in polynomial hybrid Monte Carlo (PHMCJ]16]. In
order to generate the correct distribution of pseudo-
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fermion fields at the beginning of the trajectory one
needs a polynomial as {19) also fori = 1:
Pi(x) = Pi(x) Y2,

x € [€, A]. (25)

In order to avoid very high degree first polynomials
P1(x), which would cause problems with rounding
errors in the calculation of the fermionic for¢23],
one should use determinant break-up (see £)).
The ordering of the root factors in the expression of
the fermionic forcg16] is best done according to the
procedure proposed ii®]. Again, the stochastic cor-
rection steps can be performed during the update ac-
cording to the procedure described in Secon

Besides decreasing the polynomial degrees in the
PHMC update step, another advantage of applying de-
terminant breakup is that both magnitude and variance
of the quark force is decreased approximately propor-

tional tOngl/z.
In some test runs or’816 lattices the performance
of the PHMC algorithm with stochastic correction
turned out to be promisingly good. In particular, we
performed simulations with the paramet@rs= 0.55,
« = 0.184,0.186,0.188, 1« = 0 corresponding to the
points (a), (b) and (c¢) in Ref. [11] with bare quark
masses in lattice unitem, ~ 0.071, 0.039, 0.015, re-
spectively. The PHMC trajectories were created by
applying the Sexton—Weingarten—Peardon integration
scheme with multiple time scaldg4,25] Gains up
to factors of 5 were observed in comparison with the
costs of the TSMB runs. The origin of this better per-
formance is that the integrated autocorrelations are

I. Montvay, E. Scholz/ Physics Letters B 623 (2005) 7379

masses the PHMC algorithm with stochastic correc-
tion is faster than MSMB. Of course, further tests on
larger lattices and at smaller quark masses are nec-
essary before applying these updating algorithms in
large scale simulations. The relation between the cost
factors of MSMB versus PHMC may also be different
depending on the lattice volume and quark mass.

Based on our experience with the TSMB algorithm,
we expect the computational costs of our multi-step
stochastic correction schemes to increase only slightly
faster than linear with the number of lattice sites. This
differs from the multi-level Metropolis scheme pro-
posed in Refs[12,13] where the volume dependence
is quadratic.

An important feature of both the MSMB and of
the PHMC algorithm with multi-step stochastic cor-
rection is that they are applicable for odd numbers of
flavours, too, provided that there is no sign problem
with the fermion determinant. The same holds for the
rational hybrid Monte Carlo (RHMC) algorithif26]
where multi-step stochastic correction might also be
useful.

The main advantage of the stochastic correction in
several steps compared to a single stochastic correc-
tion is that the costly last correction has to be done
infrequently. This feature becomes increasingly more
important for large lattices at small fermion masses
where the cost of the last correction increases propor-
tional to the inverse quark mass in lattice units.
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