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Abstract

Nested multi-step stochastic correction offers a possibility to improve updating algorithms for numerical simulat
lattice gauge theories with fermions. The corresponding generalisations of the two-step multi-boson (TSMB) algorithm
as some applications with hybrid Monte Carlo (HMC) algorithms are considered.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

The main task in numerical Monte Carlo simu
tions of lattice gauge theories with fermions is to ev
uate the (ratio of ) fermion determinants appearing
the Boltzmann weight for the gauge fields. The id
of the stochastic (“noisy”) correction[1] is to prepare
a new proposal of the gauge configuration during
dating by some approximation of the determinant ra
and accept or reject the change based on a stoch
estimator. This “stochastic correction step” takes c
of the deviation of the approximate determinant ra
from the exact one.

In multi-boson updating algorithms[2] it is natural
to introduce a stochastic correction step in order to c
rect for the deviations of the applied polynomial a
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proximations. In special cases it is possible to perfo
the correction by an iterative inverter[3]. More gener-
ally, the correction step can be based on success
better polynomial approximations, as in the two-s
multi-boson (TSMB) algorithm[4]. A suitable way
to obtain the necessary polynomial approximatio
is to use a recursive scheme providing least-squ
optimisation [5,6]. Based on this stochastic corre
tion scheme, the TSMB updating algorithm has be
successfully applied in several numerical simulat
projects both in supersymmetric Yang–Mills theo
(see[7] and references therein) and in QCD (see,
instance,[8–11]).

In the present Letter we generalise the idea
stochastic correction into a scheme of nested s
cessive corrections based on polynomial approxi
tions with successively increasing precision. (A si
ilar “multi-level Metropolis” scheme has been pr
posed in Refs.[12,13].) In the next section we conside

https://core.ac.uk/display/82245902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:montvay@mail.desy.de
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


74 I. Montvay, E. Scholz / Physics Letters B 623 (2005) 73–79

is
ti-
rid

re-

is
m.
of
er-

t
ith
se
d or

of
gn.
ole
alt
o-
the

n

n
tors

ef-

ral
oun

p-

c-
n-
i-

ken
ta-

uce

g
e

es.

ual
ath
is
bal
or a
set

ne
to
all

est

as
multi-step multi-boson algorithms. The last section
devoted to different possibilities for combining mul
step stochastic correction with variants of the hyb
Monte Carlo (HMC) updating algorithm[14]. In par-
ticular, optimised HMC algorithms based on mass p
conditioning [12,15] and polynomial hybrid Monte
Carlo (PHMC) algorithms[16] are considered.

2. Multi-step multi-boson algorithms

The multi-step multi-boson (MSMB) algorithm
a generalisation of the TSMB updating algorith
Therefore, let us briefly recapitulate the basics
TSMB. Let us assume that the determinant of the H
mitian fermion matrixQ = Q† is positive, at leas
on most of the gauge configurations occurring w
non-negligible weight in the path integral. In this ca
the sign of the determinant can either be neglecte
taken into account by reweighting on an ensemble
configurations obtained by updating without the si
(If the sign of the determinant plays an important r
then there is a “sign problem” which cannot be de
with by a straightforward Monte Carlo simulation pr
cedure.) Without the sign the determinant factor in
Boltzmann weight of the gauge configurations is

(1)|detQ|2α = (
detQ2)α

,

where in case ofNf mass-degenerate Dirac-fermio
flavours we haveα = 1

2Nf . (Note that for a Majo-
rana fermionα = 1

4.) Of course, for several fermio
flavours with different masses there are several fac
as in(1). Applying determinant break-up [17,18] one
writes

(2)
(
detQ2)α = [(

detQ2)α/nB
]nB ,

with some positive integernB . In what follows we
always consider a single determinant factor with an
fective powerα:

(3)
(
detQ2)α

, α = Nf

2nB

.

If there are several such factors in the path integ
then each of them can be separately taken into acc
in the same way.

The basic ingredient of TSMB is a polynomial a
proximation

(4)P(x) � x−α, x ∈ [ε,λ],
t

where the interval[ε,λ] covers the eigenvalue spe
trum of Q2 on gauge configurations having a no
negligible weight in the path integral. The determ
nant factor in the Boltzmann weight can then be ta
into account with Lüscher’s multi-boson represen
tion. Assuming that the roots of the polynomialP(x)

occur in complex conjugate pairs, one can introd
the equivalent forms

P
(
Q2) = r0

n∏
j=1

[
(Q ± µj )

2 + ν2
j

]

(5)= r0

n∏
j=1

(
Q − ρ∗

j

)
(Q − ρj ),

wheren is the degree ofP(x) and the roots arerj ≡
(µj + iνj )

2 with ρj ≡ µj + iνj . With the help of com-
plex boson (pseudofermion) fieldsΦjx one can write(
detQ2)α

∝
n∏

j=1

det
[(

Q − ρ∗
j

)
(Q − ρj )

]−1

(6)

∝
∫

[dΦ]exp

{
−

n∑
j=1

∑
xy

Φ+
jy

[(
Q − ρ∗

j

)
(Q − ρj )

]
yx

Φjx

}
.

In representation(6) the complex boson fieldsΦjx ,
j = 1,2, . . . , n carry the indices of the correspondin
fermion fields. For instance, in QCD with Wilson-typ
fermions there are colour and Dirac-spinor indic
Since the multi-boson action in(6) is local, similarly
to the gauge field action, one can apply the us
bosonic updating algorithms like Metropolis, heatb
or overrelaxation. In fact, the multi-boson action
Gaussian hence for the multi-boson fields a glo
heatbath update is also possible which creates, f
fixed gauge field, a statistically independent new
of boson fields.

The polynomial approximation in(4) is not exact.
In order to obtain an exact updating algorithm o
has to correct for its deviation from the function
be approximated. One can easily show that for sm
fermion masses in lattice units the (typical) small
eigenvalue ofQ2 behaves as(am)2 and for a fixed
quality of approximation within the interval[ε,λ] the
degree of the polynomial is growing asn ∝ ε−1/2 ∝
(am)−1. In general, the polynomial approximation h
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to be precise enough in order that the deviations in
pectation values be smaller than the statistical err
In practical applications, for instance in QCD simu
tions, this would require very high degree polynomi
with n of the order 103–104. (For numerical exam
ples showing the convergence rate of the polynom
approximations see[6].) Performing numerical sim
ulations with such a highn is practically impossible
(and would be in any case completely ineffective). T
way out is to perform the corrections stochastically

For improving the approximation in(4) a second
polynomial is introduced:

(7)P1(x)P2(x) � x−α, x ∈ [ε,λ].
The first polynomialP1(x) gives a crude approxima
tion as in(4) with P1(x) ≡ P(x). The second polyno
mial P2(x) gives a good approximation according to

(8)P2(x) � [
xαP1(x)

]−1
.

During the updating processP1 is realized by
multi-boson updates whereasP2 is taken into accoun
stochastically by anoisy correction step. For this, after
preparing a new set of gauge fields[U ′] from the old
one [U ] by local updates, one generates a Gaus
random vector having a distribution

(9)
e−η†P2(Q[U ]2)η∫ [dη]e−η†P2(Q[U ]2)η ,

and accepts the change of the gauge field[U ] → [U ′]
with probability

(10)min
{
1,A

(
η; [U ′] ← [U ])},

where

A
(
η; [U ′] ← [U ]) = exp

{−η†P2
(
Q[U ′]2)η

(11)+ η†P2
(
Q[U ]2)η}

.

One can show[4] that this update procedure satisfi
the detailed balance condition and hence creates
correct distribution of the gauge fields. (See the pr
for the more general case of MSMB given below
(20)–(23).)

The Gaussian noise vectorη can be obtained from
η′ distributed according to the simple Gaussian dis
bution

(12)
e−η′†η′∫ ′ −η′†η′
[dη ]e
by setting it equal to

(13)η = P2
(
Q[U ]2)−1/2

η′.

In order to obtain the inverse square root on the rig
hand side of(13), one can proceed with a polynomi
approximation

(14)P̄2(x) � P2(x)−1/2, x ∈ [ε̄, λ].
Note that here the interval[ε̄, λ] can be chosen dif
ferently, usually withε̄ < ε, from the approximation
interval[ε,λ] for P2.

The polynomial approximation in(7) can only be-
come exact in the limit when the degreen2 of the
second polynomialP2 is infinite. Instead of investi
gating the dependence of expectation values onn2 by
performing several simulations, it is also possible
fix some high value ofn2 for the simulation and per
form another correction in themeasurement of expec-
tation values by still finer polynomials. This is done
reweighting the configurations. (A similar reweigh
ing procedure is applied in the PHMC algorithm
Ref. [16].) Thismeasurement correction is based on a
further polynomial approximationP ′ with polynomial
degreen′ which satisfies

(15)lim
n′→∞

P1(x)P2(x)P ′(x) = x−α, x ∈ [ε′, λ].
The interval[ε′, λ] can be chosen by convenience,
instance, such thatε′ = 0, λ = λmax, whereλmax is
an absolute upper bound of the eigenvalues ofQ2. (In
case ofε′ = 0 the approximation interval is strictl
speaking(ε′, λ]. An absolute upper bound for th
eigenvalues ofQ2 exists because the commonly us
fermion matrices are bounded from above.) In pr
tise, instead ofε′ = 0, it is more effective to takeε′ > 0
and determine the eigenvalues belowε′ and the corre-
sponding correction factors exactly. For the evalua
of P ′ one can usen′-independent recursive relation
[5], which can be stopped by observing the requi
precision of the result. After reweighting the expec
tion value of a quantityA is given by

(16)〈A〉 = 〈Aexp{η†[1− P ′(Q2)]η}〉U,η

〈exp{η†[1− P ′(Q2)]η}〉U,η

,

whereη is a simple Gaussian noise likeη′ in (12).
Here 〈· · ·〉U,η denotes an expectation value on t
gauge field sequence, which is obtained in the t
step process described before, and on a sequen
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independentη’s. The expectation value with respect
the η-sequence can be considered as a Monte C
updating process with the trivial actionSη ≡ η†η. The
length of theη-sequence on a fixed gauge configu
tion can, in principle, be arbitrarily chosen. In pract
it has to be optimised for obtaining the smallest po
ble errors with a given amount of computer time.

The polynomial approximations in(4), (8), (14)and
(15) can be obtained in a recursive scheme provid
least-square optimisation[5,6]. Numerical methods to
determine the polynomial coefficients can be ba
either on arbitrary precision arithmetics[19] or on
discretisation of the approximation interval[20]. The
expansion in appropriately defined orthogonal poly
mials is an important ingredient, both in determini
the polynomial coefficients and in the application
the polynomials of the squared fermion matrixQ2 on
a vector.

Least-square optimisation corresponds to minim
ing the L2-norm of the deviation. An often used a
ternative is to minimise theL∞-norm which is equiv-
alent to the minimisation of the maximal relative d
viation. In general, the goal is to obtain the small
possible deviation of the expectation values with
smallest possible polynomial degree. The experie
with the least-square optimisation in TSMB has be
rather satisfactory because it gives the best overa
of the lattice action with a given polynomial degre
(For numerical examples comparingL2- with L∞-
optimisation see Ref.[6].) The often stated advantag
of minimising the upper limit of the relative deviatio
of the lattice action is relativised by the fact that the
viation of the expectation values from the correct o
is in general a complicated function of the deviation
the lattice action.

The multi-step multi-boson (MSMB) updating al-
gorithm is a straightforward generalisation of TSM
updating. Instead of the two-step approximation in(7)
we now consider a sequence of polynomial appro
mations of arbitrary length:

(17)P1(x)P2(x) · · ·Pk(x) � x−α, x ∈ [εk, λ].
Here the subsequent polynomials define approxi
tions with increasing precision according to

(18)

Pi(x) � [
xαP1(x) · · ·Pi−1(x)

]−1
(i = 2,3, . . . , k).
The first polynomialP1 is realized during updating b
local updates as in TSMB. The higher approximatio
P2, . . . ,Pk are implemented by a sequence of nes
noisy correction steps as in(9)–(11). The necessar
Gaussian distributions of noise vectors can be obta
by appropriate polynomials, similarly to(14):

(19)
P̄i(x) � Pi(x)−1/2 (i = 2,3, . . . , k), x ∈ [ε̄k, λ].

The proof of thedetailed balance condition for
MSMB goes essentially in the same way as for TSM
The aim is to reproduce with the firsti correction steps
the canonical distribution of the gauge field

w(i)[U ] = e−Sg [U ]

× {
detP1[U ]detP2[U ] · · ·detPi[U ]}−1

(20)(i = 1,2, . . . , k),

where the short notationPi[U ] ≡ Pi(Q[U ]2) is used
and Sg[U ] denotes the action for the gauge fie
Let us assume that detailed balance holds for
first (i − 1) steps, that is the transition probabili
P(i−1)([U ′] ← [U ]) satisfies

P(i−1)

([U ′] ← [U ])e−Sg[U ]

× {
detP1[U ] · · ·detPi−1[U ]}−1

= P(i−1)

([U ] ← [U ′])e−Sg[U ′]

(21)× {
detP1[U ′] · · ·detPi−1[U ′]}−1

.

The transition probability of theith step is a produc
of P(i−1)([U ′] ← [U ]) with the acceptance probabilit
P(i)a([U ′] ← [U ]):
P(i)

([U ′] ← [U ])
(22)= P(i−1)

([U ′] ← [U ])P(i)a

([U ′] ← [U ]).
It is easy to show that ifP(i)a([U ′] ← [U ]) is defined
according to(9)–(11)with P2 replaced byPi then the
acceptance probability satisfies

P(i)a

([U ′] ← [U ]){detPi[U ]}−1

(23)= P(i)a

([U ] ← [U ′]){detPi[U ′]}−1
.

From this immediately follows that the transition pro
ability of the ith stepP(i)([U ′] ← [U ]) satisfies the
detailed balance condition(21) with (i − 1) replaced
by (i).
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An alternative way to prove that the described p
cedure creates the correct distribution of the ga
fields is to consider the fieldsη as additional pseudo
fermion fields in the Markov chain with the lattic
action given by the exponent in(9).

The advantage of the multi-step scheme compa
to the two-step one is that the lower approximatio
can be chosen to be less accurate and consequ
have lower polynomial degrees and are faster to
form. The last approximations, which are very prec
and need high polynomial degrees, can be done
frequently. The last polynomialPk can already be cho
sen so precise that, for some given statistical er
the measurement correction withP ′ becomes unnec
essary.

An easy generalisation of the multi-step scheme
scribed until now is to require the correct function
be approximated in(17) only in the last step and a
low for functions easier to approximate in the previo
steps. This means that(18) can be generalised, for in
stance, to

Pi(x) � [
(x + ρi)

αP1(x) · · ·Pi−1(x)
]−1

(24)(i = 1,2, . . . , k),

with positiveρi andρk = 0. This has a resemblanc
to the “mass preconditioning” as introduced for HM
algorithms in Refs.[12,15]. The advantage of(24) is
that forρi > 0 one can decrease the degree of the p
nomial Pi(x) and at the same time, ifρi/ρi−1 is not
much smaller than 1, the acceptance in theith correc-
tion step remains high enough.

There are other multi-step approximation schem
conceivable: for instance, one can takePi(x) � x−α/k

(i = 1, . . . , k) which corresponds to the determina
breakup in(2). Similarly, “mass preconditioning” ca
also be considered as a generalisation of determi
breakup.

We performed several tests with the MSMB alg
rithms in some of the simulation points of Ref.[11]
with the Wilson fermion action for two flavours o
quarks and the DBW2 gauge action[21] for the colour
gauge field. In particular, on an 83 · 16 lattice atβ =
0.55, κ = 0.188,µ = 0 (simulation point(c) in [11]
with a bare quark mass in lattice unitsamq � 0.015)
a three-step algorithm was tuned for obtaining b
ter performance. (Hereµ denotes the “twisted mass
which is actually set equal to zero in these runs.)
y

another test run on a 163 · 32 lattice we have cho
sen a point where a detailed simulation has been
formed recently with both the TSMB and HMC a
gorithm [22], namely atβ = 0.74, κ = 0.158,µ = 0
with a bare quark mass in lattice unitsamq � 0.024.
In a three-step algorithm the following paramet
were chosen:nB = 2, n1 = 60, n2 = 200, n̄2 = 300,
n3 = 800, n̄3 = 900. (The degree of the polynom
als Pi and P̄i is denoted byni and n̄i , respectively.)
The second correction step was called after perfo
ing 10 update cycles involving the first correction. T
integrated autocorrelation for the average plaquett
these test runs were typically aroundτ int

plaq � 10 full
update cycles including the second correction.

The simulation costs in these runs turned out
be, even with a moderate effort put in parameter t
ing, by about a factor of 1.5 lower than in the co
responding well-tuned TSMB runs. The gain com
from the lower cost of the first correction compar
to the correction step in TSMB. The cost of the s
ond correction does not contribute much to the
cost because it is done infrequently. For instance
the 163 · 32 lattice the TSMB run had the param
tersnB = 4, n1 = 34, n2 = 720, n̄2 = 740. (Note that
the cost of the correction is mainly determined by
productnB(n2 + n̄2) which is 5840 in TSMB and only
1000 in the first correction of MSMB.)

3. Multi-step correction for HMC

The first (updating) step producing a new gau
field configuration can also be replaced by hyb
Monte Carlo trajectories[14]. In this step some ap
proximation of the fermion determinant can be us
and after a few trajectories one can perform a s
chastic correction step. The rest within a multi-s
correction scheme is the same as in MSMB updati

A possible application of multi-step stochastic c
rections is to perform a HMC update with a ma
preconditioned fermion matrix which corresponds
ρ1 > 0 in Eq. (24) and correct for the exact determ
nant (that is,ρ1 = 0) stochastically. The polynomia
for the stochastic corrections are defined in the sa
way as in(24).

Another possibility is to start by an update step
in polynomial hybrid Monte Carlo (PHMC)[16]. In
order to generate the correct distribution of pseu
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ep-
fermion fields at the beginning of the trajectory o
needs a polynomial as in(19)also fori = 1:

(25)P̄1(x) � P1(x)−1/2, x ∈ [ε,λ].
In order to avoid very high degree first polynomia
P1(x), which would cause problems with roundin
errors in the calculation of the fermionic force[23],
one should use determinant break-up (see Eq.(2)).
The ordering of the root factors in the expression
the fermionic force[16] is best done according to th
procedure proposed in[5]. Again, the stochastic cor
rection steps can be performed during the update
cording to the procedure described in Section2.

Besides decreasing the polynomial degrees in
PHMC update step, another advantage of applying
terminant breakup is that both magnitude and varia
of the quark force is decreased approximately prop
tional ton

−1/2
B .

In some test runs on 83 ·16 lattices the performanc
of the PHMC algorithm with stochastic correctio
turned out to be promisingly good. In particular, w
performed simulations with the parametersβ = 0.55,
κ = 0.184,0.186,0.188, µ = 0 corresponding to th
points (a), (b) and (c) in Ref. [11] with bare quark
masses in lattice unitsamq � 0.071,0.039,0.015, re-
spectively. The PHMC trajectories were created
applying the Sexton–Weingarten–Peardon integra
scheme with multiple time scales[24,25]. Gains up
to factors of 5 were observed in comparison with
costs of the TSMB runs. The origin of this better p
formance is that the integrated autocorrelations
shorter, whereas the costs for one update cycle are
ilar to TSMB (see Table 3 of[11]). These numbers als
show that in these points PHMC with stochastic c
rection is better than MSMB.

4. Summary

In summary, multi-step stochastic correction is
useful and flexible tool which can be implemented
both multi-bosonic and hybrid Monte Carlo updati
algorithms. In the present Letter we reported on fi
tests with the multi-step multi-boson (MSMB) an
stochastically corrected polynomial Monte Carlo
gorithm which look promising. In our test runs on re
atively small lattices and with moderately small qua
-

masses the PHMC algorithm with stochastic corr
tion is faster than MSMB. Of course, further tests
larger lattices and at smaller quark masses are
essary before applying these updating algorithm
large scale simulations. The relation between the
factors of MSMB versus PHMC may also be differe
depending on the lattice volume and quark mass.

Based on our experience with the TSMB algorith
we expect the computational costs of our multi-s
stochastic correction schemes to increase only slig
faster than linear with the number of lattice sites. T
differs from the multi-level Metropolis scheme pr
posed in Refs.[12,13] where the volume dependen
is quadratic.

An important feature of both the MSMB and
the PHMC algorithm with multi-step stochastic co
rection is that they are applicable for odd numbers
flavours, too, provided that there is no sign probl
with the fermion determinant. The same holds for
rational hybrid Monte Carlo (RHMC) algorithm[26]
where multi-step stochastic correction might also
useful.

The main advantage of the stochastic correctio
several steps compared to a single stochastic co
tion is that the costly last correction has to be do
infrequently. This feature becomes increasingly m
important for large lattices at small fermion mass
where the cost of the last correction increases pro
tional to the inverse quark mass in lattice units.
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