
Object Oriented Concepts Identification from

Formal B Specifications

Akram Idani, Yves Ledru1

Laboratoire Logiciels, Systèmes, Réseaux - IMAG
Université Joseph Fourier

Grenoble, France

Abstract

This paper addresses the graphical representation of static aspects of B specifications, using UML
class diagrams. These diagrams can help understand the specification for stakeholders who are
not familiar with the B method, such as customers or certification authorities. The paper first
discusses some rules for a preliminary derivation of a class diagram. It then studies the consistency
of the concepts preliminarily identified from an object oriented point of view. A formal concept
analysis technique is used to distinguish between consistent classes, attributes, associations and
operations. The proposed technique is to incrementally add operations to the formal specification
which automatically result in evolution of the class diagram.

Keywords: B, UML, integrated methods.

1 Introduction

Formal methods are nowadays the most rigorous way to produce software.
They provide techniques to ensure the consistency of a specification and to
guarantee that some piece of code implements a given specification. Several
industries involved in safety critical activities, like the railway industry, have
perceived the benefits of such approaches and significant developments like the
Paris Meteor subway have been partially performed using formal methods[1].
Still, while formal methods provide solutions to the verification problem (“do

1 Email: {Akram.Idani, Yves.Ledru}@imag.fr

Electronic Notes in Theoretical Computer Science 133 (2005) 159–174

1571-0661© 2005 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.08.063

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82245882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
mailto:Akram.Idani@imag.fr
mailto:Yves.Ledru@imag.fr
http://creativecommons.org/licenses/by-nc-nd/3.0/

the system right”), the validation problem (“do the right system”) remains a
major challenge for formal methods engineers.

One of the difficulties is to make sure that the various stakeholders of a
critical project (developers, customers, certification authorities) agree on the
meaning of the formal specification. Usually, there is a cultural gap between
formal methods, with their mathematical concepts and notations, and the
usual techniques of the various stakeholders in such a project (graphical for-
malisms and natural language documents). There is thus a significant risk that
errors such as misinterpretation of the requirements and specification docu-
ments lead to erroneously validate the specification, and hence to produce the
wrong system.

In order to bridge this gap, several research teams have proposed ap-
proaches to integrate formal and graphical specifications [14,15]. A possible
integration strategy is to give graphical syntax to existing notations, e.g. in
the early 90s Dick and Loubersac [5] proposed a graphical syntax for VDM.
Another approach is to design industrial languages which integrate formal
concepts. This approach underlies the development of several UML notations.
For example, UML State Transition diagrams are deeply influenced by several
state machine languages, and in particular Statecharts[9]. Also the Object
Constraint Language [23] includes concepts from model-based specification
languages such as Z[20].

A significant effort has been devoted by the research community in or-
der to establish links between UML and formal methods. In particular, sev-
eral approaches provide translations from annotated UML diagrams to formal
methods [6,11,13,16,18,19]. These approaches aim to take advantage of for-
mal methods tools while remaining integrated in a standard industrial process
based on UML.

This paper investigates the reverse approach: using graphical notations,
such as UML diagrams, as a way to document formal developments. It starts
from the fact that several significant formal developments are mainly based
on formal methods. For example, the B method has been used in industrial
railway[1] and smart card[4] applications. Such critical applications must usu-
ally be accepted by independent certification authorities that are not necessar-
ily expert in formal methods. Therefore, it makes sense to construct graphical
views from the formal developments as an additional documentation. It is
expected that these more intuitive representations will be easier to accept by
certifiers.

The graphical representations could be build using two kind of tools:

(i) Tools that extract the static aspects of the B specifications. For example
[21] defined some rules to automatically derive an UML class diagram

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174160

from formal B specifications. In the same context, [7] presents some
heuristics which lead to construct interactively simpler diagrams.

(ii) Tools that represent the behaviour of the specifications. [2] is the first
proposal for the derivation of a visual representation of the behaviour of
a given B specification. This behaviour is described using finite Labelled
Transition Systems (LTS). Starting from a user-guided choice of signifi-
cant states, proof techniques are used to explore all the valid transitions
of the system. The resulting LTS can then be further reused to verify
temporal logic properties by model-checking. In the same context [22,8]
proposed some derivation rules for the generation of statecharts from B
specifications. Finally, in [17] a tool assisting the animation of B specifi-
cations is presented, it also helps in the construction of state transitions
diagrams. In these diagrams states are valuations of B variables and
transitions are some operation call.

This paper studies the first kind of tools which extract a structural view
from existing formal specifications in order to ease their understanding and
maintenance. The extraction of structural information is a classical problem
in the software maintenance community. In fact, understanding how an ap-
plication is organized is a major factor when maintaining it especially when
its structure is complex and documentation is unavailable or outdated. Most
of program comprehension techniques aim to give a modular restructuring of
software which eases its maintenance. We believe that similar techniques can
be applied to formal specifications.

This paper proposes a two-step approach to the construction of a class
diagram from a B specification.

• The initial step (Sect. 2) applies generation rules to the B specification to
translate B concepts into elements of a class diagram. It is close to existing
approaches such as [21,7].

• While the first step is only concerned with the variables of the B specifi-
cation, the second step (Sect. 3) also takes into account the operations. A
concept dependance technique is used to help locate the appropriate class
for each operation.

Section 4 further studies the robustness of the class diagram to evolutions of
the B specification. Finally, Sect. 5 draws the conclusions and the perspectives
of this work.

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174 161

2 Generation of a preliminary class diagram

UML class diagrams and B share similar concepts such as the encapsulation of
operations and variables, or the notion of association. This motivates several
researches to translate one language into the other. This section will highlight
how this overlap of concepts can be exploited to automatically translate B
specifications into a UML class diagram.

The approaches traducing UML diagrams into B formal specifications give
different rules for the traceability between graphical and formal concepts. For
example, in [11,12] a class c is translated into a given set Sc and a variable
set Vc and an invariant property which is: Vc ⊆ Sc.

As the derivation is made automatically, we think that it may be judicious
to reason similarly and to derive an UML diagram from information given
by the formal B specification. For example a given set Se in a formal B
specification may be seen as an abstraction of a set of objects and may be
translated as an UML class.

2.1 A simple example

The AccessControl specification is that of the control of the access of autho-
rized users to the resources in a network. The corresponding B specification
is given in the example 2.1.

Example 2.1

MACHINE AccessControl
SETS

USERS ; RESOURCES ; ADDRESSES
VARIABLES

Permitted, Assigned , IpAdress, Unused
INVARIANT

Permitted ∈ USERS ↔ RESOURCES ∧
IpAddress ∈ ADDRESSES � RESOURCES ∧
Assigned ∈ USERS �→ RESOURCES ∧
Assigned ⊆ Permitted ∧
Unused ⊆ RESOURCES ∧
Unused ∩ ran(Assigned) = ∅

INITIALISATION

Permitted, Assigned := ∅, ∅ ||
IpAddress, Unused := ∅, ∅

OPERATIONS

Add Permission(user, resource) =
PRE

user ∈ USERS ∧
resource ∈ RESOURCES ∧
(user �→ resource) 	∈ Permitted

THEN

Permitted :=
Permitted ∪ {user �→ resource}

END

st ← List USERS(resource) =
PRE

resource ∈ RESOURCES
THEN

st := dom(Permitted � {resource})
END;

Assign Resource(user, resource) =
PRE

user ∈ USERS ∧
resource ∈ RESOURCES ∧
(user �→ resource) ∈ Permitted ∧
user 	∈ dom(assigned)

THEN

Assigned :=
Assigned ∪ {user �→ resource}

END

END

This specification features three abstract sets which are USERS, RE-

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174162

SOURCES and ADDRESSES. The network resources are essentially comput-
ers identified by their IP addresses (variable IpAddress). Users must have a
permission to access to a given resource (variable Permitted). A user can only
use one resource at a time. The variable Assigned means that a user is using
a resource. Finally, the subset of RESOURCES called Unused gives the set
of unused resources. We consider three basic operations:

• Add Permission(user,resource): gives the permission to a given user to ac-
cess to a resource;

• List USERS(resource): lists the users having the permission to access a
given resource;

• Assign Resource(user,resource): assigns a user to a resource for which he
has permission.

2.2 Rules for a derivation of a class diagram

This section will propose some preliminary rules for the derivation of a class
diagram directly from the variables and constants of the B specification. We
will try to identify an analogy between B and object oriented concepts.

2.2.1 Classes

In the Object Oriented paradigm a class represents an abstraction of entities
with common characteristics. It represents a set of concrete objects which are
called instances. The formalization of the existence of objects can be done
independently from the structure of objects themselves. It just requires a set
of objects identities. This is typically the concept of sets in B which allow us
to identify them as an abstract representation of some concrete elements.

Rule 1: Sets in the B specification correspond to classes in the UML
specification.

For example, we identified for the machine of the example 2.1 three classes
which are USERS and RESOURCES and ADDRESSES corresponding respec-
tively to the abstract sets declared in the SETS clause.

2.2.2 Associations

An association is a bidirectional connection expressing a relationship between
classes. It is an abstraction of the possible links existing between objects
instances of classes. As we translated abstract sets into classes, associations
will be every relation existing between these sets.

Rule 2: Relations in the B specification correspond to associations in the
UML specification.

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174 163

In Fig. 1, Permitted and Assigned appear as associations between USERS

and RESOURCES.

In UML some constraints should be expressed on a relation or a group
of relations. For example in the AccessControl machine invariant properties
define a constraint between the two relations Permitted and Assigned. This
constraint could be seen as the traditional subset constraint between two col-
lections (also called roles).

USERS RESOURCES

Permitted

Assigned

�
{subset}

Fig. 1. Visualization of the include constraint

2.2.3 Roles

The extremity of an association defines a role which is a pseudo-attribute
of the source class. In the B specifications there are no concepts being able

USERS RESOURCES
Permitted

re peus pe

Fig. 2. Identification of roles in a derived class diagram

to be traceable into a role. We choose then to identify manually roles as a
combination of the two first characters of the identified source class name and
its association name.

2.2.4 Multiplicity

The multiplicity in UML is a constraint on the number of links which may
exist between objects. Specializations of B relations correspond to various
multiplicity constraints.

Rule 3: Multiplicities are derived from the B specification using the fol-
lowing table:

Relation type Symbol A B Relation type symbol A B

Relation A ↔ B * * Partial surjection A �� B 1..* 0..1

Partial A �→ B * 0..1 Total surjection A � B 1..* 1

Total A → B * 1 Partial bijection A ��� B 1 0..1

Partial injection A �� B 0..1 0..1 Total bijection A �� B 1 1

Total injection A � B 0..1 1

2.2.5 Inheritance

Having the equivalence between a set and a class, the subset concept can be
translated into a subclass. Similarly with the class generalization mechanism,

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174164

the set inclusion defines a conceptual sub-collection of a set of objects.

Rule 4: a subset in the B specification is translated as a specialized class
in the UML diagram.

SET A ⊆ SET B

SET A

SET B

Fig. 3. Formal and Object Oriented Concepts matching for sublasses

2.3 Discussion

Applying the previous rules we obtain the diagram of fig. 4.

USERS RESOURCES

ADDRESSES Unused

Assigned

Permitted

* 0..1

* *

1

0..1

re as

IpAddress

us as

re pe us pe
ad ip

re ip

�

{subset}

Fig. 4. Preliminary derived class diagram for the AccessControl specification

Although we believe that Fig. 4 gives a readable diagram for the Access-
Control specification, we are afraid that the systematic application of the rules
given in this section will not scale up for realistic B specifications. In partic-
ular, every set of values, including sets of basic types such as INTEGER or
STRING result in corresponding classes.

For example, if the specification contains a string variable called Name and
defined such that: Name ∈ USERS → STRING, we will obtain a structure
expressed by fig.5.

USERS STRINGName* 1

Fig. 5. Basic class diagram representing data structure

Intuitively name should be an attribute of the considered class. In order to
distinguish between class candidates and attribute candidates, Sect. 3 will take
into account the operations of the B specification that access these attributes
or classes.

Still we believe that this first step gives comparable or better results than
the existing approaches.

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174 165

The rules given in [21] generate classes for every machine, set, and rela-
tion of the B specification. Moreover, these classes are linked by numerous
associations. Only boolean and integer variables become attributes of these
classes. This results in many more classes than our approach and hence in
more complex diagrams.

In [7] classes are derived with respect to a simple rule which identifies the
domain of a relation as a class if it corresponds to an abstract set. Applying
this rule on the example 2.1 we obtain two classes corresponding to the sets
USERS and ADDRESSES without association (Fig. 6). The relations Per-

mitted and Assigned and IpAddress are then considered as attributes typed
by their codomains RESOURCES. The empirical rules given by [7] lead to
an incomplete class diagram which doesn’t show unused resources because
RESOURCES is not identified as a class.

USERS

Permitted : {RESOURCES}

Assigned : RESOURCES

Add Permission(r:RESOURCES)
Assign Resources(r:RESOURCES)

ADDRESSES

IpAddress : RESOURCES

Fig. 6. Class diagram for the AccessControl Machine generated using the rules of [7]

3 Taking operations into account

The previous section has identified a set of class candidates. In this section,
we will try to sort out these candidates into potential classes or attributes. In
order to evaluate the pertinency of a class candidate, a concept dependance
context will be built which relates the class candidates to the operations of
the specification.

Our study is focused on the dependance between B operations and data
identified in the preliminary class diagram. First, we study the relationship
between B operations and classes and associations of the preliminary class
diagram in order to determine their pertinence from an object oriented point
of view. Then, we decide about the distribution of those elements over the
pertinent class diagram entities. Finally, we add the other data of the B
specification as attributes of the definitely identified classes.

We can informally define pertinency as follows:

• The pertinency of an operation vs a class measures if it makes sense to
associate this operation as a method of the class.

• A class is pertinent if all its methods are pertinent. A class without methods
has a low pertinency.

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174166

• An association is pertinent if it links pertinent classes.

Pertinency is thus defined on basic of operation pertinency. In order to
measure operation pertinency, we use a concept dependance graph. Elements
of the preliminary structure and operations form a context called concept
dependance context. In the defined context we consider only concepts from the
preliminary class diagram which are manipulated by the operations. Concepts
correspond thus to either classes or associations.

The dependance between the B operations and the preliminary identified
concepts is formalized as a bipartite graph G. This graph is a representation
of a concept dependance context which is formally expressed as follows:

Definition 3.1 A concept dependance context G = (C,O,I) consists of
two sets C and O and a binary relation I between C and O (with dom(I) = C).
The elements of O are the operations of the considered B specification and the
elements of C are the preliminary identified concepts corresponding to some
formal elements in the specification. A concept c (c ∈ C) is in relation I with
an operation o (o ∈ O) if and only if o uses the formal data corresponding to
c.

The definition of a concept dependance context requires a more precise
definition of the “use” of a concept by an operation. In the B method we can
identify three kinds of “uses”:

(i) Modification: the operation accesses and modifies formal data corre-
sponding to the concept

(ii) Reading: Performing the operation requires read access to the formal
data corresponding to the concept

(iii) Precondition access: the precondition of the operation refers to the formal
data corresponding to the concept.

We have chosen to treat only concepts which appear explicitly in the spec-
ification of operations. Therefore, “uses” is defined in our approach as an ex-
plicit reference to the considered concept. For example, the concept USERS

is not treated in relation with the operation List USERS because it doesn’t
appear explicitly in its body.

Definition 3.2 For a set A ⊆ C of concepts we define:

Op(A) = {o | o ∈ O ∧ ∀c · (c ∈ A ⇒ (c,o) ∈ I)}

The set of operations common to the concepts in A.

Definition 3.3 For a concept dependance context G we define the maximal
concept part such that:

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174 167

c ∈ max(G) ⇔ ∀ s · (s ∈ C - {c} ⇒ Op({c}) �⊆ Op({s}))

Where max(G) is the set of all maximal concept parts of G.

Example 3.4 The concept dependance context G issued from the AccessCon-
trol specification can be represented by a conceptual bipartite graph. This
graph simply means that there are no arcs between a concept and another
concept, and no arcs between an operation and another operation. All arcs go
from a concept to an operation. The considered graph is defined by the set of
concepts C={USERS, RESOURCES, Permitted, Assigned}, the set of opera-
tions O={Add Permission, List USERS, Assign Resource}, and a matching
corresponding to the incidence function I given in Fig. 7. Although AD-
DRESSES, Unused and IpAddress were identified as preliminary concepts in
Fig. 4, they don’t appear in Fig 7 because they are not “used” by any of the
operations. Please notice that the set of concepts includes both classes and
associations.

In this example, RESOURCES and Permitted are maximal parts; max(G)
is thus equal to {RESOURCES, Permitted}.

Fig. 7. Bipartite graph of the concept dependance context issued from the AccessControl machine

We can now define the notion of pertinency for a class or an association:

Definition 3.5 A class c (c ∈ C) is pertinent iff c ∈ max(G).

Definition 3.6 An association a (a ∈ C) between two classes c1 and c2

({c1,c2} ∈ C) is pertinent iff {c1,c2} ∈ max(G) and Op(a) ⊆ Op(c1) ∪ Op(c2).

Pertinent concepts will become the classes and the associations of our
class diagram. The remaining classes and associations which appeared on the
preliminary class diagram and are not pertinent will become attributes of the
pertinent classes.

Rule 5: The class diagram features all pertinent classes and associations.

Rule 6: A non pertinent class c1 (c1 ∈ C) becomes an attribute or an
attribute type in a class c2 (c2 ∈ C) iff c2 ∈ max(G) and Op(c1) ⊆ Op(c2).

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174168

From the definition of non pertinent classes, we know that at least one c2

exists. If several pertinent classes can have c1 as an attribute, the choice is
left to the analyst.

Similar rules are given for associations and operations:

Rule 7: A non pertinent association a (a ∈ C) becomes an attribute in a
class c (c ∈ C) iff c ∈ max(G) and Op(a) ⊆ Op(c). The identified attribute
will then be typed by one extremity of the association a.

Rule 8: An operation o (o ∈ O) becomes a method in a class c1 (c1 ∈ C)
iff c1 ∈ max(G) ∧ (o ∈ Op(c1) ∨ (∃ c2 · (c2 ∈ C ∧ c2 ∈ Attributes(c1) ∧ o ∈
Op(c2))))

In our example, we have max(G) = {RESOURCES, Permitted}. This set
of maximal parts only includes a single class (RESOURCES). Following our
rules, it becomes the only class of our class diagram (Fig. 8). The remaining
concepts of Fig. 7 become attributes or types of this class. Since the three
operations of the B specification use RESOURCES, they become methods of
this class.

Although Permitted was a maximal part, it is not a pertinent association
because it does not satisfy definition 3.6. Also, following rule 6, USERS can
either become an attribute or a type. Since it is a constant set, we felt it
should be modelled as a type.

Some concepts of the preliminary diagram (ADDRESSES, IpAddress, Un-
used) no longer appear in the resulting diagram. Actually, since our rules
are based on usage of these concepts by operations, concepts which do not
participate to the behaviour of the B machine do not appear in the resulting
diagram.

RESOURCES

Permitted : USERS

Assigned [*] : USERS

Add Permission(s : USERS)

List USERS():Set(USERS)

Assign Resource(s : USERS)

Fig. 8. Pertinent class diagram from the AccessControl Machine

Comparison with other approaches.

The approach of [21] systematically groups operations of the B machine in
the class corresponding to the machine. In the section 4, we will see that our
method does not always result in grouping all operations in a single class. We
feel that this ability to share operations amongst several classes is definitely
needed when B machines get larger.

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174 169

Fig. 6 results from the applications of the rules of [7] to the AccessCon-
trol example. In fact, it is impossible from this class diagram to find the list
of users of a resource (operation List USERS). Such an operation could not
be a method of the class USERS because it refers to several instances of this
class. It must rather be a method of a class RESOURCES. Unfortunately, RE-
SOURCES only appears as a type in fig. 6. The figure generated by applying
our method (figure 8) is therefore more correct.

We feel thus that the second step of our approach, which takes operations
into account to evaluate the pertinency of classes, results in improvements
over existing methods.

4 Incremental development of the B specification and

its impact on the B graphical representation

This section will investigate the robustness of the graphical representation
when evolving the B specification. We introduce in the AccessControl machine
an operation which gives the resources assigned to a user. The introduction
of this operation into the previous context modifies the graph representation
of concept dependance context as follows:

Fig. 9. A new concept dependance context adding the operation List Resources

Having this new context, the maximal concept parts becomes equal to
{USERS, RESOURCES, Permitted}. The two first concepts identified as
preliminary classes are identified now as pertinent. The class which will en-
capsulate the shared operations (Add Permission and Assign Resource) can
be either USERS or RESOURCES, we choose arbitrarily to put them in the
class USERS. The relations Permitted and Assigned become two pertinent
associations because Op(Permitted) ⊆ Op(USERS) ∪ Op(RESOURCES) and
Op(Assigned) ⊆ Op(USERS) ∪ Op(RESOURCES). Fig. 10 shows the result-
ing class diagram.

Let us now add three other operations:
- Change IP(ip,resource): changes the IP address of a resource;

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174170

Fig. 10. An evolved class diagram for the AccessControl specification

- Deassign Resource(resource): deassigns the resource and adds it to the
unused set;

- Disconnect(unused): disconnects an unused resource by deleting its
IpAddress.

These operations will change the representation of the new context as
follows:

Fig. 11. The complete context representation of the AccessControl specification

The concept dependence context showed by the figure 11 has the following
properties:

• max(G) = {RESOURCES, USERS, Unused, Permitted} leading to select
RESOURCES, USERS, and Unused as classes for the new diagram.

• Op({ADDRESSES}) ⊆ Op({RESOURCES}) which shows the non per-
tinency of the class ADDRESSES and turns it into a type of the class
RESOURCES ;

• Op({IpAddress}) ⊆ Op({RESOURCES}) which shows the non pertinency
of the relation IpAddress as an association and turns it into an attribute of
the class RESOURCES.

Finally, the resulting class diagram is given in Fig. 12

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174 171

USERS RESOURCES
Permitted �

{subset}

Assigned

*

0..1

*

*

Add Permission(d: RESOURCES)
Assign Resource(d: RESOURCES)

List users():Set(USERS)

us asre as

us pere pe

List Resources():Set(RESOURCES)

IpAddress : ADDRESSES

DeassignResource()

Unused

Disconnect()

Change IP()

Fig. 12. The Final pertinent class diagram for the AccessControl Machine

5 Conclusion and perspectives

Although formal methods provide excellent techniques for the precise descrip-
tion of systems, understanding these descriptions is often restricted to experts.
This paper has presented a technique that helps build a graphical representa-
tion of the static aspects of B specifications. These diagrams are expected to
be more intuitive and readable than the original formal specification.

This paper has proposed a two-step approach to the construction of a class
diagram from a B specification. The first step applies systematic transforma-
tion rules to the B specification and produces a preliminary class diagram
whose goal is to identify candidate concepts. The second step relates these
concepts to the B operations and keeps the most pertinent ones. This second
step is original with respect to existing approaches such as [7,21]. We have
led several case studies with the three approaches, including the one presented
in this paper. In each case, we felt that our approach gave at least as good
results as the other ones.

Still, our approach suffers several limitations:

• The major limit of the resulting diagram is that it gives a less complete
information than that which could be expressed in a formal specification.
Other views, such as the dynamic views constructed by [2,17], are needed
to provide a complete graphical documentation of the B specification.

• The starting point of our approach is a single B machine. Further work is
needed to address specifications which feature several machines, or which
involve refinements.

• We only exploit a subset of the primitives of UML class diagrams. Con-
structs such as associative classes, aggregation and composition could prob-
ably enrich our approach.

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174172

• Further experimentations are needed to help us understand how our ap-
proach scales up.

In the coming months, we intend to address several of these limitations.
We also plan to experiment with alternate reverse-engineering methods which
address concept formation.

The successful integration of formal methods with existing graphical nota-
tions is important for the long-term success of formal methods. Industry will
not abandon its current practices, but it is willing to augment and enhance
them.

We believe that approaches like ours are a modest contribution to bridge
the gap between current industry practices and the proposals of the formal
method community.

References

[1] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. METEOR: A successful
application of B in a large project. In J.M. Wing, J. Woodcock, and J. Davies, editors,
Proceedings of FM’99: World Congress on Formal Methods, number 1709 in Lecture Notes in
Computer Science, pages 369–387. Springer, 1999.

[2] D. Bert and F. Cave. Construction of Finite Labelled Transition Systems from B Abstract
Systems. In Integrated Formal Methods, volume 1945 of Lecture Notes in Computer Science.
Springer-Verlag, 2000.

[3] J.C. Bicarregui. Formal methods into practice: case studies in the application of the B method.
IEE Proceedings on Software Engineering, 144(2):119–133, April 1997.

[4] L. Casset. Development of an embedded verifier for java card byte code using formal methods.
In FME’02, Formal Methods Europe, volume 2391 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[5] J. Dick and J. Loubersac. Integrating structured and formal methods: A visual approach to
VDM. In A. van Lamsweerde and A. Fugetta, editors, Proceedings of European Software
Engineering Conference (ESEC ’91), volume 550 of Lecture Notes in Computer Science.
Springer-Verlag, pages 37–59, October 1991.

[6] S. Dupuy, Y. Ledru, and M. Chabre-Peccoud. Vers une intégration utile de notations semi-
formelles et formelles : une expérience en UML et Z. L’objet, numéro thématique Approches
formelles à objets, 6(1), 2000.

[7] Houda Fekih, Leila Jemni, and Stephan Merz. Transformation des spécifications B en des
diagrammes UML. In AFADL : Approches Formelles dans l’Assistance au Développement de
Logiciels, 2004.

[8] A. Hammad, B. Tatibouet, J.C. Voisinet, and Wu Weiping. From a B specification to
UML statechart diagrams. In 4th International Conference on Formal Engineering Methods
(ICFEM’2002), LNCS 2495, pages 511–522, China, 2002.

[9] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8(3), 1987.

[10] A. Idani. Documentation graphique des projets B. Rapport de DEA, Univ. Joseph Fourier,
Grenoble, France, 2003.

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174 173

[11] R. Laleau and A. Mammar. An overview of a method and its support tool for generating
B specifications from UML notations. In International Conference on Automated Software
Engineering (ASE2000). IEEE CS Press, 2000.

[12] Régine Laleau and Fiona Polack. Coming and going from UML to B: A proposal to support
traceability in rigorous IS development. In ZB’2002 – Formal Specification and Development
in Z and B, pages 517–534, 2002.

[13] K. Lano. Formal object-oriented development. Springer, 1995.

[14] K. Lano and S. Goldsack. Intregrated Formal and Object-Oriented Methods: The VDM++
Approach. In A.Bryant and L.Semmens, editors, Method Integration Workshop, Electronic
Workshop in Computing, Leeds, Mars 1996. Springer-Verlag.

[15] K. Lano, H. Houghton, and P. Wheeler. Integrating Formal and Structured Methods in Object-
Oriented System Development. In Formal Methods and Object technology, chapter 7. Springer,
1996.

[16] Hung Ledang and Jeanine Souquières. Contributions for modelling UML state-charts in B. In
Integrated Formal Methods, Third International Conference, IFM 2002, volume 2335 of Lecture
Notes in Computer Science, pages 109–127, 2002.

[17] Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro Araki, Stefania
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 2003.

[18] Emil Sekerinski. Graphical design of reactive systems. In B’98: The 2nd International B

Conference, Recent Advances in the Development and Use of the B Method, volume 1393 of
Lecture Notes in Computer Science. Springer-Verlag, 1998.

[19] C. Snook and M. Butler. Using a graphical design tool for formal specification. In Proceedings
of the 13th Annual Workshop of the Psychology of Programming Interest Group, 2001.

[20] J.M. Spivey. The Z notation - A Reference Manual (2nd Ed.). Prentice Hall, 1992.

[21] B. Tatibouet, A. Hammad, and J.C. Voisinet. From an abstract B specification to UML
class diagrams. In 2nd IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT’2002), Marrakech, Morocco, December 2002.

[22] B. Tatibouet and J.C. Voisinet. Generating statecharts from B specifications. In
16th International Conference on Software and Systems Engineering and their applications
(ICSSEA’2003), CNAM - Paris, France, December 2003.

[23] J. Warmer and A. Kleppe. The Object Constraint Langage: Precise Modeling with UML.
Addison Wesley, Reading, Mass., 1999.

A. Idani, Y. Ledru / Electronic Notes in Theoretical Computer Science 133 (2005) 159–174174

	Introduction
	Generation of a preliminary class diagram
	A simple example
	Rules for a derivation of a class diagram
	Discussion

	Taking operations into account
	Incremental development of the B specification and its impact on the B graphical representation
	Conclusion and perspectives
	References

