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Abstract

This work examines the overall thermoelastic behavior of solids containing spherical inclusions with surface effects.
Elastic response is evaluated as a superposition of separate solutions for isotropic and deviatoric overall loads. Using a
variational approach, we construct the Euler–Lagrange equation together with the natural transition (jump) conditions
at the interface. The overall bulk modulus is derived in a simple form, based on the construction of neutral composite
sphere. The transverse shear modulus estimate is derived using the generalized self-consistent method. Further, we show
that there exists an exact connection between effective thermal expansion and bulk modulus. This connection is valid not
only for a composite sphere, but also for a matrix-based composite reinforced by many randomly distributed spheres of the
same size, and can be viewed as an analog of Levin’s formula for composites with surface effects.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Surface stress in solids is defined as a configurational force that is work-conjugate to surface strain with
respect to the free surface energy. A review of this subject was given by Cammarata (1994). Our objective
in this work is to assess the overall thermoelastic behavior of solids containing spherical nano-inclusions with
the surface stress effects. Elastic properties of both matrix, inclusions and inclusion surfaces are isotropic.
Therefore, the overall or effective elastic response of the composite is also isotropic. This response is derived
as a superposition of two separate solutions under isotropic and deviatoric overall strain states. We first derive
the energy potential of the system incorporating the surface effects for each of the two deformation modes.
0020-7683/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Using variational approaches, we construct the Euler–Lagrange equations together with the interface jump
conditions. The interface conditions are characterized by continuities of displacements across the interface,
together with a jump condition in traction. The mathematical framework allows us to resolve the field solu-
tions of the boundary value problems. As in the method of composite spheres assemblages (Hashin, 1962), or
neutral inhomogeneities (Milton, 2002), a representative volume element of a composite sphere is adopted for
determination of the overall bulk modulus in simple closed form. Under uniform overall deviatoric strain, we
derive an estimate of the effective shear modulus by the generalized self-consistent method (Christensen and
Lo, 1979). The critical part of deviatoric deformation is the derivation of the jump conditions in traction. The
effective shear modulus is derived in the form of a quadratic algebraic equation.

Under a uniform temperature change, we prove an exact thermo-mechanical linkage. This connection is
valid for a general composite medium containing many spheres of the same size. The spheres can be arbitrarily
distributed in the matrix or arranged in a preferred manner. In particular, we show that a uniform strain field
is created in the composite by application of a certain combination of external isotropic strain and uniform
change in temperature, or piecewise uniform eigenstrains in the phases. Mechanical unloading to zero overall
strain then reveals existence of an exact size-dependent connection that provides the effective thermal expan-
sion coefficient as a simple function of the bulk modulus. This connection can be viewed as generalization of
Levin’s (1967) formula for the system with surface effects.

Related studies include Sharma et al. (2003) who employed the variational approach to derive the elastic
field in a spherical inhomogeneity loaded by overall isotropic strain and uniform local eigenstrain. Yang
(2004) derived the effective bulk and shear moduli of composites containing spherical nano-cavities at dilute
concentrations, in which the surface effect is simply simulated by a constant residual tension. Sharma and
Ganti (2004) derived closed-form expressions for the Eshelby tensor for spherical and cylindrical inclusions
with surface effects. A recent study (Duan et al., 2005) generalized several micromechanical averaging proce-
dures for estimating effective elastic moduli of composites by incorporating the surface/interface stress effect.
The interface conditions associated with the bulk and shear deformations are directly extracted from a gen-
eralized Young–Laplace equation by Povstenko (1993). Here we start from the simple shear deformation,
using a variational approach, the interface jump conditions were derived from the natural transition condition
at the interface.

The plan of the paper is as follows. In Section 2, we derive the free energy of the system under the two over-
all uniform strain states. Section 3 shows that a uniform expansion field can be generated by application of
certain magnitudes of uniform overall strain and temperature change. We construct an exact connection
between the effective thermal expansion coefficient and the bulk modulus. The effective bulk and shear moduli
are derived in Section 4. Numerical calculations in Section 5 illustrate the effect of surface stresses on local
fields and overall moduli.

2. Interface conditions with surface effect

Two independent interface stresses have been reported in the literature: one is associated with coherent inter-
face in which the tangential strains are equal on both sides of the phases, the other allows that different tangen-
tial strains may occur at the interface (Brooks, 1952). In the present study we are concerned with the former
situation in which no atomic bonds are broken in the spherical interface. We will adopt the spherical coordinate
system (r,h,u) in the formulation. Interface stresses and strains can be described as (2 · 2) symmetric tensors in
the tangent plane (components normal to the surface are excluded). Development of the ideas underlying the
concept of surface or interface stress in solids was pioneered by Shuttleworth (1950), Herring (1951), Gurtin
and Murdoch (1975) and Cahn (1980). A more extensive treatment, allowing for displacement jumps and their
gradients, with corresponding conjugate forces, was developed by Gurtin et al. (1998). Of interest here are
coherent interfaces which preserve continuity of displacements and of the interior strain tensor components
in the tangential plane. Under such circumstances, the surface stress tensor rs

ab is related to the deformation
dependent surface energy GðeabÞ by (Cammarata, 1994; Nix and Gao, 1998)
rs
ab ¼

oG

oes
ab

þ s0dab; ð1Þ
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where es
ab is the (2 · 2) surface strain tensor, dab is the Kronecker delta for surfaces and the constant s0 is the

residual surface tension. Eq. (1) can be interpreted as modeling the surface between the a spherical inhomo-
geneity and the matrix as an elastic skin, or interfacial thin layer that is stretched over the bulk of two sides. In
general the interface properties are anisotropic, e.g. dependent on crystallographic directions. Here in the se-
quel, the interface is taken as elastically isotropic. The effect of residual tension s0 is not considered here, but
will be revisited in the future. The surface moduli can then be characterized by the surface Lame constants ks

and ls as (Sharma et al., 2003; Sharma and Ganti, 2004)
rs
ba ¼ 2lse

s
ba þ kse

s
ccdba: ð2Þ
Conventional summation rules apply unless otherwise stated. The surface moduli ks, ls have the dimensions of
N/m which is different from the standard Lame constants (N/m2). Note that the Greek indices take on values
of interfacial components a, b, c = h and u.

Determination of a constitutive equation of a free surface often requires extensive atomistic simulations.
Here we rely on the continuum-based derivation by Miller and Shenoy (2000), and assume that the surface
(interface) constitutive relation between the two distinct regions (the inclusion and the matrix) can be charac-
terized by Eq. (2). In this paper we will assume that the surface moduli are known a priori. Nevertheless, we
mention that this interface constitutive behavior is in fact contributed by the surface effects from the inclusion
side as well as from the matrix part, which is intrinsically homogeneized in a certain way on a nanoscale. Given
the surface properties of the inclusion and matrix, we propose in Appendix A a simple approach to simulate
the effective surface moduli between the two different regions.

The inclusion and the matrix are both elastically isotropic, characterized by the constitutive relation:
rk
ij ¼ Kk �

2

3
lk

� �
dije

k
mm þ 2lke

k
ij � 3akKkDT ; ð3Þ
where the index k = i, m denotes the inclusion and the the matrix respectively, K is the bulk modulus, l is the
shear modulus, a is the thermal expansion coefficient, dij is the Kronecker delta, DT is the uniform temperature
change and the indices i, j takes on values of 1, 2, 3. Within the framework of small infinitesimal deformation,
the strain components eij are related to the displacement fields ui as eij = (ui,j + uj,i)/2.

2.1. Spherically symmetric deformation

We consider a composite sphere consisting of a spherical core (inhomogeneity) fitting inside a concentric
spherical shell (matrix), with a core radius a and exterior radius b. Suppose now that the composite sphere
is subjected to a hydrostatic deformation on the outer boundary of the matrix
urjr¼b ¼ e0r; ð4Þ

together with a uniform temperature change DT. Due to symmetry, the deformation is independent of the cir-
cumferential and azimuthal directions, h and u. That is uk

r ¼ ukðrÞ, uk
h ¼ 0 and uk

u ¼ 0. We can then derive the
free energy of the composite sphere, incorporating the surface effects, as (Sharma et al., 2003)
P ¼
Z a

0

Z 2p

0

Z p

0

Wf r2 sin ududhdr þ
Z b

a

Z 2p

0

Z p

0

Wmr2 sin ududhdr þ
Z 2p

0

Z p

0

Wsa2 sin ududh; ð5Þ
where the bulk and surface elastic energy densities are functions of r, expressed as
Wkðr; ukðrÞ; u0kðrÞÞ ¼
1

2
rk

ijðek
ij � akdijDT Þ; WsðusÞ ¼

Z es
ij

0

rs
ij des

ij; ð6Þ
and the prime denotes derivatives with respect to r. The displacement fields need to fulfill the prescribed
boundary condition (4). By setting the variation of the free energy to be zero, i.e., dP = 0, we obtain the
Euler–Lagrange equation
r2 d2uk

dr2
þ 2r

duk

dr
� 2uk ¼ 0; ð7Þ
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together with the interface conditions
uiðrÞjr¼a ¼ umðrÞjr¼a; rm
rr � ri

rr ¼
2rs

hh

r

����
r¼a

: ð8Þ
This framework is valid for a composite sphere with isotropic constituents and the surface relation (2) together
with the thermal effects. Note that in the absence of thermal effects the interface conditions remain the same.
The governing field (7), together with the interface conditions (8) and the boundary condition (4), will allow us
to determine the field solutions.

2.2. Transverse shear deformation

Next we consider a transverse shear deformation, in which the boundary condition, ux = cx, uy = �cy,
uz = 0, is prescribed on the matrix boundary r = b. Here b could be infinity. In terms of spherical coordinates,
it is equivalent to ur = cr sin2ucos2h, uu = cr sinucosucos2h, uh = �cr sinu sin2h, where c is the maximum
value of shear strain. The displacement fields of the composite sphere under the condition can be expressed
as (Christensen and Lo, 1979):
uk
r ¼ U kðrÞ sin2 u cos 2h; uk

u ¼ V kðrÞ sin u cos u cos 2h; uk
h ¼ W kðrÞ sin u sin 2h; ð9Þ
where Uk(r), Vk(r) and Wk(r) are unknown functions of r. The non-vanishing strain components are:
ek
r ¼

dUk

dr
sin2 u cos 2h; ek

u ¼
1

r
cos 2hðUk sin2 uþ V k cos 2uÞ;

ek
h ¼

cos 2h
r
ð2W k þ U k sin2 uþ V k cos2 uÞ; 2ek

ru ¼
sin 2u

2
cos 2h

2

r
U k �

1

r
V k þ

dV k

dr

� �
;

es
uu ¼ ek

uuða;u; hÞ; es
hh ¼ ek

hða;u; hÞ; es
hu ¼ ek

huða;u; hÞ;

2ek
hu ¼ �

2

r
V k cos u sin 2h; 2ek

rh ¼ sin u sin 2h
dW k

dr
� W k

r
� 2U k

r

� �
;

ð10Þ
and the corresponding stresses can be derived from (3). Again the interface between the inclusion and the ma-
trix is endowed with a deformation dependent interfacial energy. The free energy of the composite system P
was given in (5), without considering the temperature term in (6). Note that, in contrast to the axisymmetric
loadings, the strain energy density now depends on the radial direction r as well as on h and u. Setting dP = 0
and allowing that the variations dUk(r), dVk(r) and dWk(r) be arbitrarily varied, one finds the Euler–Lagrange
equations (three dependent variables with one independent variable, see Hildebrand (1965)
oF k

oU k
� o

or
oF k

oU 0k

� �
¼ 0;

oF k

oV k
� o

or
oF k

oV 0k

� �
¼ 0;

oF k

oW k
� o

or
oF k

oW 0
k

� �
¼ 0; ð11Þ
where
F kðr;U k;U 0k; V k; V 0kÞ ¼
Z 2p

0

Z p

0

r2Wk sin ududh; with Wkðr; h;uÞ ¼
1

2
rk

ije
k
ij: ð12Þ
We mention that the strain components and the corresponding stresses can be found from (10) and (3). After
some tedious algebra, the integral Fk can be integrated as
F k ¼
2p
15
f4Uk½2ð2kk þ 5lkÞU k � ð2kk þ 3lkÞðV k � 5W kÞ þ rð4kkU 0k þ lkV 0k � 5lkW 0

kÞ�

þ 4r2ðkk þ 2lkÞU 02k þ V k½3ð2kk þ 7lkÞV k þ 20lkW k � 2rð2kkU 0k þ lkV 0kÞ�

þ r2lkV 02k þ 5W k½ð6kk þ 13lkÞW k þ 2rðkkV 0k � lkW 0
kÞ� þ 5r2lkW 02g; ð13Þ
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where k and l are Lamé’s constants. Upon substitution of (13) into (11), we find the system of governing
equations
2
1� mk

1� 2mk
U 00k þ

2

r
U 0k �

2

r2
U k �

3

r
V 0k þ

3

r2
V k

� �
þ � 6

r2
Uk þ

3

r
V 0k þ

3

r2
V k

� �
¼ 0;

2
1� mk

1� 2mk

2

r
U 0k þ

4

r2
Uk �

6

r2
V k

� �
þ � 2

r
U 0k þ V 00k þ

2

r
V 0k

� �
¼ 0;

V k þ W k ¼ 0;

8>>>>><>>>>>:
ð14Þ
where mk denotes the Poisson’s ratio for phase k. We note that the system, (14), is the same as that of the com-
posite system with perfectly bonded interface (Christensen and Lo, 1979). Of course, the system of equations
(14) can also be derived by substituting (9) into the equilibrium equations.

To proceed, we note that the functions Um, Vm and Wm need to comply with the boundary conditions,
which imply that dUm = dVm = dWm = 0 at r! b. In addition, to avoid rigid body translation we set
Ui = Vi = Wi = 0 at r = 0. Also we require that the minimizing functions U, V and W need to be continuous
at the interface r = a
UiðaÞ ¼ U mðaÞ; V iðaÞ ¼ V mðaÞ; W iðaÞ ¼ W mðaÞ: ð15Þ

The remaining boundary terms of dP becomes
oF i

oU 0i
dU i þ

oF i

oV 0i
dV i þ

oF i

oW 0
i

dW i

� �����
r!a

� oF m

oU 0m
dU m þ

oF m

oV 0m
dV m þ

oF m

oW 0
m

dW m

� �����
r!a

þ dF s ¼ 0; ð16Þ
where
F s ¼ a2

Z 2p

0

Z p

0

Z es
ij

0

rs
ij des

ij sin ududh

¼ a2

Z 2p

0

Z p

0

1

2
ðks þ 2lsÞððes

uuÞ
2 þ ðes

hhÞ
2Þ þ kse

s
uues

hh þ 2lsðes
uhÞ

2

� �
sin ududh: ð17Þ
Eq. (16) is exactly the natural transition conditions in theory of variation (Hildebrand, 1965, p. 129). Upon
substitution of (13) into (16), we find the interfacial jump conditions
r̂m
rrðrÞ � r̂i

rrðrÞjr!a ¼
2ðks þ lsÞð2U s � 3V sÞ

r

����
r!a

; ð18Þ

r̂m
ruðrÞ � r̂i

ruðrÞjr!a ¼ �2
½ksð2U s � 3V sÞ þ lsð2U s � 5V sÞ�

r

����
r!a

; ð19Þ

r̂m
rhðrÞ � r̂i

rhðrÞjr!a ¼ 2
½ksð2U s � 3V sÞ þ lsð2U s � 5V sÞ�

r

����
r!a

; ð20Þ
where the hat quantities, independent of u and h, are given by
rk
rrðr; hÞ ¼ r̂k

rrðrÞ
sin2 u cos 2h

a
; rk

ruðr; hÞ ¼ r̂k
ruðrÞ

sin u cos u cos 2h
a

;

rk
rhðr; hÞ ¼ r̂k

rhðrÞ
sin u sin 2h

a
:

ð21Þ
Note that V = �W and r̂k
rh ¼ �r̂k

ru. Thus in resolving the boundary value problem, only U and V can be trea-
ted as unknowns and the interface conditions involved are (15)1,2, (18) and (19). Conditions (18), (19) can be
further simplified as
rm
rrðrÞ � ri

rrðrÞjr!a ¼
rs

uu þ rs
hh

r

����
r!a

; ð22Þ

rm
ruðrÞ � ri

ruðrÞjr!a ¼
1

r

oðrs
hh � rs

uuÞ
ou

�
rs

uu þ rs
hh

r
cot u

����
r!a

: ð23Þ
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Similar expressions can also be found in a recent paper (Wang et al., 2005), which are deduced from the gen-
eralized Young–Laplace equation for an orthogonal curvilinear system (Duan et al., 2005b). When setting
ks = ls = 0, the mathematical framework will recover the known equations for perfect bonding.

3. Exact size-dependent connection between bulk modulus and thermal expansion coefficient

For two-phase composites with particle reinforcements, it is well known that there exist exact connections
between the overall bulk modulus and the effective thermal expansion coefficient (Levin, 1967; Benveniste and
Dvorak, 1990). Here, we will show that for a composite medium consisting of many spherical inclusions of the
same size with surface effects (ks,ls) prevailing along the interfaces, an analogous type of exact connection also
exists. The spherical inclusions can be arbitrarily distributed in the matrix, or arranged in a periodic manner.
In the former situation the overall behavior of the composite will be effectively isotropic.

Let us now consider that a representative volume V of the composite medium, which will be used to char-
acterize the overall behavior of the composite. We first prove that under a certain loading path that includes a
uniform temperature change h0, a hydrostatic deformation field
ux ¼ e0x; uy ¼ e0y; uz ¼ e0z; ð24Þ

is admissible in the entire composite medium. Note that (24) implies that each sphere in the composite is now
subjected to a uniform hydrostatic deformation
err ¼ ehh ¼ euu ¼ e0: ð25Þ

When (24) prevails, then the interface condition (8)1 is automatically fulfilled. The remaining condition to be
satisfied is (8)2. To proceed, we note from (25) and (2) that rs

h ¼ 2ðks þ lsÞe0. Thus condition (8)2 can be writ-
ten as
Ki � Km þ
4ðks þ lsÞ

3a

� �
e0 ¼ ðKiai � KmamÞDT : ð26Þ
This algebraic condition (26) implies that when the external deformation e0 and the temperature change DT

are properly adjusted, then a homogeneous deformation (25) does exist in the whole composite medium.
Next, we derive the average stress and strain of the composite. The overall thermoelastic behavior of the

composite with interface stress is elastically isotropic. The overall properties consists of the effective bulk mod-
ulus K*, the effective shear modulus l* and the effective thermal expansion coefficient a*. The average stresses
and average strains are related by the relation
�rr

�ru

�rh

0B@
1CA ¼

K� þ 4

3
l� K� � 2

3
l� K� � 2

3
l�

K� þ 4

3
l� K� � 2

3
l�

SYM K� þ 4

3
l�

0BBBBBB@

1CCCCCCA
�er � a�DT

�eu � a�DT

�eh � a�DT

0B@
1CA;

�rru ¼ 2l��eru; �rhu ¼ 2l��ehu; �rrh ¼ 2l��erh;

ð27Þ
where the overbar denotes the volume average of the composite. The volume averages of composites with var-
ious types of inperfect interfaces were derived by Benveniste and Miloh (2001). In our case, the average fields
can be recorded as
�eij ¼ ci�e
i
ij þ cm�em

ij ;

�rij ¼ ci�r
i
ij þ cm�rm

ij �
ci

V i

Z
C
ðri

ir � rm
irÞnrxj dC;

ð28Þ
where Vi is the volume of the inclusion, n is the outward normal of the interface, C denotes the interface and ci

is the volume fraction of the inclusion. Since the strains and the stresses are spatially uniform inside the
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inclusion, the fields are exactly equal to their average quantities. Further, noting that the field is purely
hydrostatic, the surface integral can be evaluated as
ci

V i

Z
C
ðri

ir � rm
irÞnrxj dC ¼ �ci

4ðks þ lsÞ
a

e0: ð29Þ
Now use of the uniform field (25) into (28) will provide
X
k¼i;m

ckKkðe0 � akDT Þ þ ci
4ðks þ lsÞ

3a
e0 ¼ K�ðe0 � a�DT Þ: ð30Þ
Upon the substitution of condition (26), we can find the exact condition that links the effective bulk modulus
K* and the effective thermal expansion coefficient a*:
a�K� �
P

k¼i;m
ckakKk

 !

K� �
P

k¼i;m
ckKk

 !
� ci

4ðksþlsÞ
3a

¼ aiKi � amKm

Ki � Km þ 4ðksþlsÞ
3a

: ð31Þ
This equality can be viewed as a generalization of Levin’s formula (1967) to the considered composite system
with surface effects. It is noted that with the knowledge of effective properties K*, one can uniquely determine
the coefficient a*.

4. Effective elastic properties

In this section we will derive the effective bulk modulus K* using the concept of neutral inhomogeneities
(Milton, 2002, Chapter 7). The idea of neutral inhomogeneity is mathematically equivalent to that of compos-
ite sphere assemblages (CSA) (Hashin, 1962). We mention that for perfect bonding of interfaces (i.e., without
surface effect), the effective bulk modulus of the CSA has the same form as that predicted by the Mori–Tanaka
method and lies within variational bounds (Benveniste, 1987). For the effective transverse shear l*, the CSA
does not satisfy consistency conditions, hence the generalized self-consistent method of Christensen and Lo
(1979) will be employed to derive the effective transverse shear modulus.

4.1. Effective bulk modulus K*

We first consider the composite sphere is under the loading (4). The admissible displacement fields, by solv-
ing (7), can be written as
ui
r ¼ Ar; um

r ¼ Br þ C
r2
; ui

u ¼ um
u ¼ 0; ui

h ¼ um
h ¼ 0; ð32Þ
where the coefficients A, B, C are constants that can be determined from the boundary and interface condi-
tions, (4) and (8). Next we consider a homogeneous sphere of the same size as the composite sphere, with
the bulk moduli being denoted by K*. Under the same boundary condition (4), we wish to adjust the values
of K* so that the radial stress at r = b is the same with that of the composite sphere. The effective bulk modulus
K* can then be exactly derived as
K� ¼ Km þ ci

Ki � Km þ
4ðks þ lsÞ

3a

1þ cm
Ki � Km

Km þ 4
3
lm

þ 4ðks þ lsÞ
3a Km þ 4

3
lm

� � ! : ð33Þ
When setting ks = ls = 0, it is seen that the formulae for K* recovers the known classical expression for the
perfect bonding situation (Hill, 1963). Using a different procedure, Duan et al. (2005a, Eq. (39)) derived an-
other equivalent form of (33).
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4.2. Effective shear modulus l*

For the transverse shear loading, it is not possible to find a neutral composite sphere. A commonly adopted
procedure in micromechanics literature to assess the transverse shear modulus is through the generalized self-
consistent method. This model assumes that the inclusion is first surrounded by some matrix material, and
then embedded in an effective medium with unknown effective shear modulus. The auxiliary boundary value
problem to be solved is that of a composite sphere with a spherical core with a matrix shell embedded in the
unknown effective medium (designated by *), and subjected at the remote boundary to a transverse shear
boundary condition uxjr!1 = cx, uyjr!1 = �cy, uz = 0. Under the deformation, the corresponding solutions
to (14) have the forms
U i
r ¼ A1r � 6mi

1� 2mi
A2r3; U i

h ¼ A1r � 7� 4mi

1� 2mi
A2r3; ð34Þ

U m
r ¼ B1r � 6mm

1� 2mm
B2r3 þ 3B3r�4 þ 5� 4mm

1� 2mm
B4r�2; ð35Þ

U m
h ¼ B1r � 7� 4mm

1� 2mm
B2r3 � 2B3r�4 þ 2B4r�2;

U �r ¼ D1r þ 3D3r�4 þ 5� 4m�

1� 2m�
D4r�2; U �h ¼ D1r � 2D3r�4 þ 2D4r�2; ð36Þ
and U k
u ¼ �Uk

h. The coefficient D1 is specified directly by the condition of uniform shear strain at infinite dis-
tance from the origin. Next we consider a homogeneous comparison medium, with effective shear modulus l*,
subjected to the same boundary condition. This will give the referenced field
u�r ¼ D1r cos 2h sin2 u; u�h ¼ D1r cos 2h sin u cos u; u�u ¼ D1r sin 2h sin u;

r�r ¼ 2l�D1 cos 2h sin2 u; r�rh ¼ 2l�D1 cos 2h sin u cos u; r�ru ¼ �2l�D1 sin 2h sin u:
ð37Þ
To proceed, we employ the Eshelby’s formula (1961) for the strain energy of the system
Z 2p

0

Z p

0

ðr�r ur þ r�rhuh þ r�ruuu � rru�r � rrhu�h � rruu�uÞb2 sin ududh ¼ 0: ð38Þ
Upon a substitution of the field quantities into the identity (38), it can be proven analytically through the
software Mathematica that D4 = 0. This condition is the same with the classical perfect bonding situation.
To find l*, Christensen and Lo (1986) suggested that one may set D4 = 0 in (36) at the outset, this will re-
move the dependence of m* and only the unknown shear modulus l* will enter the field solutions. So in total
there are eight constants, A1, A2, B1, B2, B3, B4, D3, l*, that will be determined from the eight interface
conditions:
ui
rjr¼a ¼ um

r jr¼a; um
r jr¼b ¼ u�r jr¼b; ui

hjr¼a ¼ um
h jr¼a;

um
h jr¼b ¼ u�hjr¼b; rm

r jr¼b ¼ r�r jr¼b; rm
rhjr¼b ¼ r�rhjr¼b;

ð39Þ
and the interface jump conditions (18) and (19). In the continuity conditions, we have invoked the conditions
that uk

h and uk
u and, also rk

rh and rk
ru, are dependent. For completeness, we have listed the system of equations in

Appendix B. Note that the system is not exactly a linear algebraic set. But the system can be first expressed as a
(7 · 7) linear set plus one additional constraint. The equations listed in (A.4) and (A.5) are exactly the eight
interface conditions of (39). The unknown shear modulus l* can be found in the form of a linear quadratic
algebraic equation. In the absence of the surface effects, we have checked analytically that our equations ex-
actly agree with that of Christensen and Lo (1979). In the presence of surface effects, there is agreement with
the self-consistent estimates obtained by Duan et al. (2005a). Note that the thermal expansion coefficients have
no effect on the overall elastic moduli, but may contribute an overall transformation (thermal) strain or
eigenstrain.
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5. Discussions and numerical results

Simple, explicit formulae have been derived for the effective bulk modulus and the thermal expansion coef-
ficient. Interestingly, we find that if we regard
Fig. 1.
calcula
elastici
Ki þ
4ðks þ lsÞ

3a
! eK i ð40Þ
as the bulk modulus of a replacement inclusion eK i, then formulae (31) and (33) follow exactly the same form
as those of the classical results (without interface effects). Therefore, to see if the surface effect is significant,
one may simply evaluate the quantity 4(ks + ls)/(3a) and compare the value with that of Ki. It should be men-
tioned that substitution (40) holds only for the overall moduli K* and a* and does not apply to phase bulk
moduli. In numerical demonstrations, the free surface properties, generally vary with different crystallographic
orientations, are taken from the papers (Sharma and Ganti, 2004; Miller and Shenoy, 2000). Two different sets
of surface properties corresponding to the crystallographic directions [100] and [111] of Al are recorded. The
parameters are: surface A, ks = 3.48912 N/m, ls = �6.2178 N/m for [100] crystallographic direction and sur-
face B, ks = 6.842 N/m, ls = �0.3755 N/m for [111] direction. Surface A has the surface elastic modulus
Ks = 2(ks + ls), equal to �5.457 N/m, while surface B has Ks = 12.932 N/m. We mention that in most cases
the surface energy is positive, but the surface moduli can be negative (see for instance, Gurtin et al., 1998, p.
1105). Discussions on negative surface energy in a multicomponent system can be found in Lodziana et al.
(2004) and Marthus et al. (2005). For comparison with classical results, we shall use the index C to denote
the surface for classical perfect bonding solutions (without interface stress). We mention that the surface mod-
uli can be non-positive. Since the typical value of the bulk modulus is of the order of GPa, thus the surface
term can take effect only if the radius of the inclusion is in the order of nanometer (nm). When compared with
the perfectly bonded interface, surface A conditions are seen to render a negative value of and thus reduce the
overall bulk modulus. Surface conditions B have an opposite effect.

The numerical calculations illustrate the role of surface effects in an aluminum matrix containing nano-size
cavities with surface effects on the cavity boundary at r = a, with Ki = li = 0. In particular, we evaluate the
transverse shear modulus and the linear coefficient of thermal expansion of a cavitated matrix. The matrix
properties are those suggested by Duan et al. (2005a), with Km = 75.2 GPa, mm = 0.3, am = 9.3 · 10�6 1/�C.
Under hydrostatic loading, the field solutions for this problem can be derived from (7) and (8). Detailed results
appear in the papers by Sharma and Ganti (2004) and Sharma et al. (2003) and will not be repeated here.
Under transverse shear deformation prescribed here as uxjx!1 = D1x, uyjr!1 = �D1y, uz = 0, we develop
the details of the solution in Appendix C. The maximum hoop stress rhh occurs at the points u = p/2,h = 0
or p on the boundary of the cavity. Fig. 1 shows the ratio of maxrhh at r = a versus the corresponding quantity
maxrhh for a spherical cavity in an unbounded matrix containing under a remote transverse shear deformation. The surface A is
ted based on the surface property of Al [100], surface B uses the surface moduli of Al [111] and the index C denotes the classical
ty solution without surface effect.



950 T. Chen et al. / International Journal of Solids and Structures 44 (2007) 941–955
without the surface effects (denoted as max rC
hh). For surface A, the stress concentration increases as the cavity

becomes small. Surface B reverses the trend. Fig. 2 presents the ratio l�=l�C as a function of cavity radius a (in
nm) for cavity volume fraction ci = 0.3. The effective bulk moduli shown in Sharma and Ganti (2004) show a
similar trend. The surface effect becomes negligible when the radius of the cavity is larger than 50 nm. Fig. 3
shows the effect of cavity radius on the ratio a�=a�C of the modified to classical expansion coefficients. In Fig. 4,
we vary the volume fraction of the spherical cavities to assess its influence on the effective l* for two different
surface properties. Two different radii of the cavity are selected, a = 5 nm and a = 20 nm. When the size of the
inclusions is small, the surface effects become pronounced. Fig. 5 plots the value of a�=a�C versus the volume
fraction of spherical cavities with two different radii of the cavity and two different surface properties.

In summary, we have illustrated the effect of surface stresses on local filed and overall moduli of a solid
containing nano-sized cavities. Variational procedures were used to construct the governing system together
with the interface conditions. Hydrostatic and deviatoric deformations are considered separately. Simple
expressions for evaluations of the effective bulk modulus and thermal expansion coefficient are derived. We
have presented a proof of an exact size-dependent connection between the effective thermal expansion coeffi-
cient and the effective bulk modulus. This result is valid for a general composite containing many spheres of
the same radius, not just restricted to a composite sphere. The proof is based upon the existence of a uniform
isotropic deformation field in the whole composite medium, created by specific mechanical and transformation
loads. The transverse shear modulus is derived using the generalized self-consistent method.
Fig. 2. The value of l�=l�C versus the radius of the spherical cavity a (nm) for the volume fraction ci = 0.3 using the generalized self-
consistent method. The value l�C denotes the effective shear modulus of a medium containing spherical cavities without surface effect.

Fig. 3. The value of a�=a�C versus the radius of the spherical cavity a (nm) for the volume fraction ci = 0.3. The value a�C denotes the
effective thermal expansion coefficient of a medium containing spherical cavities without surface effect.



Fig. 5. The value of a�=a�C versus the volume fraction ci of the spherical cavity for a = 5 nm and a = 20 nm. The value a�C denotes the
effective thermal expansion coefficient of a medium containing spherical cavities without surface effect.

Fig. 4. The values of l*/lm and l�C=lm versus the volume fraction ci for a medium containing spherical cavities of sizes a = 5 nm and
a = 20 nm with surface properties A or B. The l�C=lm line was computed for a porous medium without surface effects.
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Appendix A

Let us consider two distinct regions, designated as materials 1 and 2, separated by a spherical boundary.
Suppose that the spherical boundary of each region is a free surface, the surface stress and strain relations
can be characterized as
ðrs
baÞ
ð1Þ ¼ 2lð1Þs ðes

baÞ
ð1Þ þ kð1Þs ðes

ccÞ
ð1Þdba; ðA:1Þ

ðrs
baÞ
ð2Þ ¼ 2lð2Þs ðes

baÞ
ð2Þ þ kð2Þs ðes

ccÞ
ð2Þdba; ðA:2Þ
where the subscripts a, b = h and u are defined in Section 2. Here ls and ks are surface moduli as stated in
Section 2 and are assumed to be known, calculated from atomistic simulations or by other approaches. Since
the two materials are different, in general we have lð1Þs 6¼ lð2Þs , kð1Þs 6¼ kð2Þs .
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Now suppose that the two materials are bonded together by a coherent interface, which enforces displace-
ment continuity. This assures the surface strains will be identical on both sides of the interface C
ðes
baÞ
ð1ÞjC ¼ ðes

baÞ
ð2ÞjC � es

ba: ðA:3Þ
We mention that the surface strains were also referred to as interior part of strain in the context of interfacial
discontinuity (Hill, 1983; Laws, 1975).

Bringing the two surfaces in contact is bound to change their properties. In the present work, we view the
two surfaces 1 and 2, as well as their interface, as infinitely thin membranes. We assume that the ’’overall’’
stress in the joined interface is simply the volume average of rs

ab in materials 1 and 2
rs
ba ¼ w1ðrs

baÞ
ð1Þ þ w2ðrs

baÞ
ð2Þ
; with w1 þ w2 ¼ 1; ðA:4Þ
and that this stress supersedes those of the two free surfaces in (A.1) and (A.2), and thus applies to both joined
surfaces. This result and the magnitudes of w1 and w2 should be further justified by atomistic simulations. As
pointed out by a referee, such simulations have been performed by Girifalco and Good (1957) and Kitazaki
and Hata (1972).

Appendix B

Here we outline the system of algebraic equations for the solution of effective shear modulus l* through the
generalized self-consistent method. Without loss of generality we can set D1 = 1. The system of equations can
be first written as a linear algebraic set:
½A�7�7½x�7�1 ¼ ½b�7�1; ðB:1Þ
where
xT ¼ ½A1; eA2;B1; eB2; eB3; eB4; eD3�; ðB:2Þ
bT ¼ ½0; 0; 1; 1; 5l�; 0; 0�; ðB:3Þ
with eA2 ¼ A2a2, eB2 ¼ B2b2, eB3 ¼ B3=a5, eB4 ¼ B4=a3, eD3 ¼ D3=b5. The non-vanishing components of A are
A11 ¼ 1; A12 ¼ �
6mi

1� 2mi
; A13 ¼ �1; A14 ¼

6mm

1� 2mm
c2=3

i ; A15 ¼ �3; A16 ¼ �
5� 4mm

1� 2mm
;

A21 ¼ 1; A22 ¼ �
7� 4mi

1� 2mi
; A23 ¼ �1; A24 ¼

7� 4mm

1� 2mm
c2=3

i ; A25 ¼ 2; A26 ¼ �2;

A33 ¼ 1; A34 ¼ �
6mm

1� 2mm
; A35 ¼ 3c5=3

i ; A36 ¼
5� 4mm

1� 2mm
ci; A37 ¼ �3;

A43 ¼ 1; A44 ¼ �
7� 4mm

1� 2mm
; A45 ¼ �2c5=3

i ; A46 ¼ 2ci; A47 ¼ 2;

A53 ¼ 5lm; A54 ¼ 21 km � lm
1þ 2mm

1� 2mm

� �
; A56 ¼ � 6km þ

2lmð7� 11mmÞ
1� 2mm

� �
ci;

A61 ¼ 2 �li þ
ks þ ls

a

� �
; A62 ¼ �21ki þ

36mmlm

1� 2mm
� 6

ks þ ls

a
7� 8mi

1� 2mi
; A63 ¼ 2lm;

A64 ¼ 21km �
36mmlm

1� 2mm

� �
c2=3

i ; A65 ¼ �24lm; A66 ¼ � 6km þ
4lmð5� 4mmÞ

1� 2mm

� �
;

A71 ¼ �li þ
ks þ 3ls

a
; A72 ¼

7þ 2mi

1� 2mi
li �

21� 24mi

1� 2mi

ks

a
� 35� 32mi

1� 2mi

2ls

a
; A73 ¼ lm;

A74 ¼ �
7þ 2mm

1� 2mm
lmc2=3; A75 ¼ 8lm; A76 ¼ 2lm

1þ mm

1� 2mm
:

ðB:4Þ
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The unknown vector x can be solved in terms of a linear function of l* through a symbolic algebriac soft-
ware (e.g. Mathematica). The solutions of eB2, eB3, eB4, eD3 can then be substituted into the 8th condition for the
solution of l*:
�40c5=3
i lm

eB3 þ 19Km þ
4

3
lm

� �eB2 � 8cið3Km þ lmÞeB4 þ 40l� eD3 ¼ 0; ðB:5Þ
which will lead to a linear quadratic equation for l*.

Appendix C

Here we consider the boundary value problem of a spherical cavity in an unbounded matrix under a remote
transverse shear deformation uxjx!1 = D1x, uyjr!1 = �D1y, uz = 0. Along the boundary of the cavity (r = a)
surface effects are considered. From (36), we can write the displacement field in the matrix as
ur ¼ D1r þ 3
D3

r4
þ 5� 4m

1� 2m
D4

r2

� �
sin2 u cos 2h;

uu ¼ D1r � 2
D3

r4
þ 2

D4

r2

� �
sin u cos u cos 2h;

uh ¼ � D1r � 2
D3

r4
þ 2

D4

r2

� �
sin u sin 2h;

ðC:1Þ
where the remote displacement boundary conditions are satisfied and the unknown coefficients D3 and D4 are
to be determined from the jump condition of traction at r = a. The stresses rrr and rru corresponding to (C1)
can be derived in the forms
rrr ¼ �6k
D4

r3
þ 2l D1 � 12

D3

r5
� 2

5� 4m
1� 2m

D4

r3

� �	 

sin2 u cos 2h;

rru ¼ l D1 þ 8
D3

r5
þ 2

1þ m
1� 2m

D4

r3

� �
sin 2u cos 2h:

ðC:2Þ
The two jump conditions (18) and (19) can be expanded as (in the absence of s0)
12 lþ ks þ ls

a

� �
D3

a5
þ 9K þ 4lþ 6K

l
ks þ ls

a

� �
D4

a3
¼ lþ ks þ ls

a

� �
D1;

4 2lþ 3
ks þ ls

a
þ ls

a

� �
D3

a5
þ 3K þ 6K

l
ks þ ls

a
� 4ls

a

� �
D4

a3
¼ �lþ ks þ 3ls

a

� �
D1:

8>>><>>>: ðC:3Þ
The linear algebraic set of equations allows us to determine the coefficients D3 and D4 as
D3

a5
¼ D1

N1

D
;

D4

a3
¼ D1

N2

D
; ðC:4Þ
where
D ¼ det

12 lþ ks þ ls

a

� �
9K þ 4lþ 6

K
l

ks þ ls

a

4 2lþ 3
ks þ ls

a
þ ls

a

� �
3K þ 6

K
l

ks þ ls

a
� 4

ls

a

0BBB@
1CCCA; ðC:5Þ

N1 ¼ det

lþ ks þ ls

a
9K þ 4lþ 6

K
l

ks þ ls

a

�lþ ks þ 3ls

a
3K þ 6

K
l

ks þ ls

a
� 4

ls

a

0BB@
1CCA; ðC:6Þ
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N2 ¼ det

12 lþ ks þ ls

a

� �
lþ ks þ ls

a

4 2lþ 3
ks þ ls

a
þ ls

a

� �
�lþ ks þ 3ls

a

0BBB@
1CCCA: ðC:7Þ
In the absence of the surface effects, ks = ls = 0, namely the boundary of the cavity is traction free, the coef-
ficients have the simple forms
D3

a5
¼ �D1

3K þ l
9K þ 8l

;
D4

a3
¼ D1

5l
9K þ 8l

: ðC:8Þ
The stress concentration on the cavity surface can be evaluated through the hoop stresses
rhh ¼ �2l cos 2h D1 � 2
D3

r5
þ 2

D4

r3

� �
� 5

D3

r5
þ 3

D4

r3

� �
sin2 u

	 

; ðC:9Þ

ruu ¼ 2l cos 2h D1 � 2
D3

r5
þ 2

D4

r3

� �
� D1 � 7

D3

r5
� D4

r3

� �
sin2 u

	 

: ðC:10Þ
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