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Abstract

We use the first coefficient of the HOMFLY polynomial to find a necessary condition for a knot to
be freely periodic. In particular forp = 3 we obtain a simple but powerful criterion. As an application
we show that some knot cannot have a certain free period. 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

An old question asked by Fox is: which knots may be fixed by ap-periodic transforma-
tion ϕ of the three sphereS3? According to the type of the fixed point setC of ϕ and its
relationship to the knot, Fox distinguished eight cases. Each one corresponds to one kind
of symmetry. By the positive solution of the Smith conjecture, we know that ifC is an
unknotted circle thenϕ is conjugate to a rotation by a 2π/p angle. A link which is fixed
by ϕ and disjoint fromC is said to bep-periodic. However, if the action defined byϕ has
no fixed point, thenK is called ap-freely periodic knot. It has long been conjectured that
if the groupZ/pZ acts freely onS3 then the action is topologically conjugate to a free
linear action [9]. Equivalently ifϕi (for i = 1,2, . . . , p − 1) has no fixed point then there
exists an integers coprime withp such thatϕ is conjugate to the lens transformationϕp,s
defined as follows:

ϕp,s :S3 −→ S3

(z1, z2) �−→ (
e2iπ/pz1,e

2isπ/pz2
)
.

A link which is fixed byϕp,s is said to be a(p, s)-lens link.
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Fig. 1.

The new invariants of periodic knots have been subject of extensive literature. Several
relationships between the Jones polynomials of ap-periodic link and its factor link
were proved by Murasugi [6]. Traczyk [10,11] used the first coefficient of the HOMFLY
polynomial to find simple but powerful criteria for testing a knot for possible periods.
Tarczyk’s criteria were extended by Yokota [12] to the1

2(p − 1) first coefficients of the
HOMFLY polynomial. Przytycki [7] studied the Vassiliev–Gusarov invariants of periodic
knots. However, the new invariants of freely periodic knots received no attention -to my
knowledge- until now.

The HOMFLY polynomial is an invariant of oriented links which can be defined
uniquely by the conditions

P©(v, z)= 1,

v−1PL+(v, z)− vPL−(v, z)= zPL0(v, z),

whereL+, L− andL0 are three oriented links which are identical except near one crossing
where they look like in Fig. 1.

2. Statement of the main results

If K is a knot, then we havePK(v, z) = ∑
i�0P2i,K(v)z

2i , whereP2i,K(v) ∈ Z[v±2]
(see [5]). Letp be a prime. Throughout this paper we denote byFp the field with p
elements and byPK(v)p the polynomialP0,K(v) with coefficients reduced modulop.
If n andm are two integers, then we denote byT (n,m) the torus link of type(n,m). Our
main theorem is the following:

Theorem 1. Let p be an odd prime ands = ±1. If K is a (p, s)-lens knot then
PK(v)p ∈ Λp,s , whereΛp,s is the Fp[v±2p]-module generated by thePT (β,βs±p)(v)p ,
for 1 � β � p− 1.

The moduleΛp,s is easy to handle for small values ofp. In fact the Jones formula for the
HOMFLY polynomial of torus knots can be used here to compute the generators ofΛp,s .
Forp = 3 andp = 5 the result takes a nice and simple form.

Corollary 2. If K is a freely periodic knot with period3, then we have:

PK(v)3 ∈ F3
[
v±6].
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Corollary 3. If K is a (5,±1)-lens knot, thenPK(v)5 = ∑
a2iv

2i with: a10k+4 = 2a10k+2

anda10k+6 = 2a10k+8, for all k ∈ Z.

Applications. The following theorem [3] provides a combinatorial description of dia-
grams of lens links. Its proof uses a much more delicate analysis than that of the obvious
version of periodic knots used previously by many authors.

Theorem 4. A linkK of S3 is a (p, s)-lens link if and only if there exists an integern �= 0
and ann-tangleT such that:

K = ̂T p
(
σ1σ2 · · ·σn−1

)ns
.

(1) Let K be the closure ofT 5(σ1σ2σ3)
4 whereT is the 4-tangle as in the following

picture:

By the previous theoremK is a (5,1)-lens knot. A simple computation of the
HOMFLY polynomial shows thatPK(v)5 = 4v16 + 2v18.

(2) Hartley [4] used the Alexander polynomial to find a criterion for free periodicity.
This criterion does not decide whether the knot 927 is freely 3-periodic or not. We
have:P927(v)p = v−2 − 2 + v4 /∈ F3[v±6] and by Corollary 2, 927 is not freely
3-periodic. A simple application of this corollary excludes the possibility of free
period 3 for all but 12 among the 84 prime knots with less than 9 crossings. The
remaining knots are given by the following list:

51,71,82,810,821,93,96,926,938,941,948,949.

The range of the given criterion can be expanded by applying it to appropriate cables
of the 12 remaining knots. Indeed, the application given by Traczyk in the case of
periodic knots (see [11]) indicates that prospects are good (in our case) for getting
stronger results using cablings. In the case of(5,±1)-lens knots, Corollary 3 rules
out 60 among the 84 knots. So, it remains undecided for 24 knots (this means that
the methods of this paper do not apply to 24 knots).

3. Proof of Theorem 1

The proof of Theorem 1 will be done in two steps. In the first one we show that the
techniques used by Traczyk for periodic knots can be adapted to our case to reduce the
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problem to torus knots. In the second step we study theFp[v±2p]-module generated by the
polynomial of torus knots of typeT (n,ns +p). We show that this module is of finite type
and we obtain a finite set of generators.

3.1. Reduction to torus knots

In this section we shall prove the following proposition.

Proposition I. Let p be a prime, s an integer such thatgcd(p, s) = 1 andK a (p, s)-
lens knot. Then we have: PK(v)p ∈Λ′

p,s whereΛ′
p,s is theFp[v±2p]-module generated by

PT (n,ns+p)(v)p for all integersn coprime withp.

Proof. Let T be anm-tangle. We denote byT+, T− andT0 three tangles which are the
same except near one crossing where they are as in Fig. 1. We denote byΩm the central
braid(σ1σ2 · · ·σm−1)

m. LetD be a(p, s)-lens diagram. ByD+,D− andD0 we denote the

diagrams of the linkŝT p
+Ωs

m, T̂ p
−Ωs

m andT̂ p
0 Ω

s
m. We shall prove Proposition I by induction

on the number of crossings of the diagramD. If D has no crossings, then it is trivial and
PD(v)p = 1 ∈ Λ′

p,s . Now, we suppose thatPD′(v)p ∈ Λ′
p,s for all (p, s)-lens diagram

with less crossings thanD. Using the fact that the braidΩs
m is central we can prove the

following lemma (see also [7]). ✷
Lemma 1. Letp be a prime, then we have:

v−pPD+(v, z)− vpPD−(v, z)= zpPD0(v, z) modp.

Note that ifD+ is a knot, thenD− is also a knot. HoweverD0 is a link with 2 or
p + 1 components. In the case ofp + 1 componentsD1,D2, . . . ,Dp+1, it is obvious that
one componentD1 is a (p, s)-lens knot, while the otherp componentsD2, . . . ,Dp+1

are permuted cyclically by the lens action. In the same way as in [11] we can prove the
following lemma:

Lemma 2. If D0 has two components, then:

v−pPD+(v)p − vpPD−(v)p = 0.

If D0 hasp+ 1 components, then:

v−pPD+(v)p − vpPD−(v)p − v2λ(v − v−1)pPD1(v)p
(
PD2(v)p

)p = 0.

In the previous lemmaλ denotes the total linking number of the linkD0. The key
observation in the proof of Proposition I is given by the following lemma.

Lemma 3. PD+(v)p ∈Λ′
p,s if and only ifPD−(v)p ∈Λ′

p,s .

Proof. The proof is obvious ifD0 has two components. IfD0 hasp+ 1 components, then
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PD+(v)p = v2pPD−(v)p + vpv2λ(v − v−1)pPD1(v)p
(
PD2(v)p

)p

= v2pPD−(v)p + (
v2)λ(v2 − 1

)p
PD1(v)p

(
PD2(v)p

)p
.

It is easy to see that(1 − v2)p(PD2(v)p)
p belongs toΛ′

p,s . The componentD1 has less
crossings thanD, and by the induction hypothesisPD1(v)p ∈ Λ′

p,s . Now, we shall prove
thatp divides the linking numberλ. We have

λ=
∑

1�i<j�p+1

λi,j =
∑

1<j�p+1

λ1,j +
∑

2�i<j�p+1

λi,j .

We know that all the integersλ1,j are equal, so
∑

1<j�p+1λ1,j = pλ1,2. In the other
hand the componentsDi are cyclically permuted byϕp,s . Then the linking number ofDi

andDj is equal to the linking number ofϕlp,s(Di) andϕlp,s(Dj ) for all 1 � l � p − 1.
Finally p divides

∑
2�i<j�p+1λi,j and the lemma is proved.✷

In the rest of this paper we denote byD+ ↔ D− the transformation that consists of
modifying p crossings to go from the diagramD+ (respectivelyD−) to D− (respec-
tively D+). Forn ∈ N∗, letBn be then-braid group.

Lemma 4. Every(p, s)-lens diagram may be transformed into a(p, s)-lens closed braid
by a series of operationsD+ ↔D− without increasing the number of crossings.

Proof. More details about the arguments used to prove this lemma can be found in [10].
Here we follow the proof briefly. First, assume that the tangleT contains an arc(XY ) with
its two ends lying in the same side of the tangle. Assume also that there is no other arc of
the same type with the two ends lying both betweenX andY . By a series of operations
D+ ↔ D−, this arc may be transformed into an arc lying above the rest of the tangle
(see Fig. 2). By reversing self crossings,(XY ) may be isotoped into an arc without self
crossings. Of courseD+ ↔D− means that we do the same thing for each copy ofT . Now,
we can push our arc(XY ) from T to the next copy ofT . Obviously, we can omit all arcs
of type(XY ) by this procedure to transform them-tangleT into ann-braidB. Note that
when we push arcs of type(XY ) throughout(σ1σ2 · · ·σm−1)

ms , this braid is transformed
into a central braid with less strings to finally get(σ1σ2 · · ·σn−1)

ns (see Fig. 3). ✷

Fig. 2.
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Fig. 3.

Lemma 5. Let B be an n-braid. The (p, s)-lens knot ̂Bp(σ1σ2 · · ·σn−1)ns may be
transformed into the torus knotT (n,ns + p) by a series of operationsD+ ↔D−.

Proof. As ̂Bp(σ1σ2 · · ·σn−1)n is a knot, the permutation induced byB, i(B) is an
n-cycle. Hence, there exists ann-braid α such thati(αBα−1) = i(σ1σ2 · · ·σn−1) =
(n,1,2, . . . , n− 1). LetB ′= αT α−1, we have:

K = ̂(
α−1B ′α

)p
(σ1σ2 · · ·σn−1)ns

= ̂α−1B ′pα(σ1σ2 · · ·σn−1)ns

= ̂α−1B ′p(σ1σ2 · · ·σn−1)nsα because(σ1σ2 · · ·σn−1)
ns ∈ center ofBn

= ̂B ′p(σ1σ2 · · ·σn−1)ns .

Therefore we can assume without loss of generality thati(B)= (n,1,2, . . . , n− 1). Now
we can use operationsD+ ↔D− to put the first string ofB above the rest of the braid. Then
to put the second string above strings 2,3, . . . , n. Obviously, this procedure transformsB
into (σ1σ2 · · ·σn−1). FinallyK is transformed into the torus knotT (n,ns + p). ✷
3.2. The moduleΛ′

p,s

In this section we shall prove that in the cases = ±1, the moduleΛ′
p,s is of finite type

and we obtain a family of generators. More precisely we prove the following proposition:

Proposition II. Letp be a prime,n an integer such thatgcd(p,n)= 1 ands = ±1. Then
PT (n,ns+p)(v)p ∈ Λp,s whereΛp,s is theFp[v±2p]-module generated byPT (β,βs±p)(v)p
for 1 � β � p− 1.

Proof. Let us first considers = 1 as a special case. We will deal with the cases = −1
later. The proof is done by induction onn, note here thatn = pα + β , whereα ∈ N and
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1� β � p− 1. In fact we will prove by induction onα thatPT (pα+β,pα+β±p)(v)p ∈Λp,1.
It is obvious that the induction is true forα = 0. Now assume that for all 0�m� α−1 we
havePT (pm+β,pm+β±p)(v)p ∈ Λp,1. Note that if we write Lemma 2 in the case whereD
is the torus knotT (n,n±p), the componentD1 is a torus knot of typeT (r, r ±p), where
r � α−1. Then by induction we havePD1(v)p ∈Λp,1. Thus we conclude in the same way
as in the proof of Proposition I that:PD+(v)p ∈Λp,1 if and only if PD−(v)p ∈Λp,1.

Therefore

P ̂(σ1σ2···σn−1)
p(σ1σ2···σn−1)

n(v)p ∈Λp,1

⇐⇒ P ̂
(σ−1

1 σ2···σn−1)
p(σ1σ2···σn−1)

n
(v)p ∈Λp,1

⇐⇒ P ̂
(σ−1

1 σ−1
2 ···σn−1)

p(σ1σ2···σn−1)
n
(v)p ∈Λp,1

...

⇐⇒ P ̂
(σ−1

1 σ−1
2 ···σ−1

n−1)
p(σ1σ2···σn−1)

n
(v)p ∈Λp,1.

Recall that for all integersn > 0 we have

(σ1σ2 · · ·σn−1)
n = (σn−1σn−2 · · ·σ1)

n.

Consequently

P ̂(σ1σ2···σn−1)
p(σ1σ2···σn−1)

n(v)p ∈Λp,1 ⇐⇒ P ̂(σ1σ2···σn−1)
−p(σ1σ2···σn−1)

n(v)p ∈Λp,1,

this means thatPT (n,n−p)(v)p ∈ Λp,1. Using the well known fact thatT (n,n − p) =
T (n− p,n) and the induction hypothesis we conclude thatPT (n,n+p)(v)p ∈Λp,1.

For the cases = −1, let us consider the involution:

f : Fp

[
v±1] −→ Fp

[
v±1]

v �−→ v−1,

and denote byΛ̄p,1 the modulef (Λp,1). From the cases = 1 we havePT (n,n−p)(v)p =
PT (n,−n+p)(v−1)p ∈ Λp,1. Thus PT (n,n−p)(v)p ∈ Λ̄p,1. It is obvious thatΛ̄p,1 is the
module generated by elements of type

PT (β,β−p)
(
v−1)

p
= PT (β,−β+p)(v)p, for all 1� β � p − 1.

PT (β,β+p)
(
v−1)

p
= PT (β,−β−p)(v)p, for all 1� β � p − 1.

This proves thatΛ̄p,1 =Λp,−1 and completes the proof of Proposition II.✷
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