Note

The Rotor Effect Can Alter The Chromatic Polynomial

S. Foldes

Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

Communicated by the Editors
Received October 27, 1977

Let G be a finite graph with vertex set $V(G)$, let θ be an automorphism of G, let $J \subseteq V(G)$ be an orbit of θ, let v be vertex in J, and let $P \subseteq \mathcal{P}(J)$ be a partition of J into disjoint nonempty sets. Then (G, θ, J, v, P) is called a rotor of order $\text{Card } J$.

Let $G(P)$ denote the graph obtained from G by contracting each block B of P, together with the edges joining vertices of B among themselves, to a single vertex. To the rotor (G, θ, J, v, P) we associate a function $\phi: J \to J$ called reflection, given by $\phi(\theta(v)) = \theta^{-i}(v)$. Then $\phi(P)$ is another partition of J, denoted P'. The rotor effect is the transformation that associates $G(P')$ to $G(P)$.

It is known that $G(P)$ and $G(P')$ have the same number of spanning trees [2, 4]. Moreover, for rotors of order at most 5, the dichromate is unaltered by the rotor effect [3]. It was hoped that this result could be extended to rotors of any order k, thereby implying a fortiori that not only the number of spanning trees but also the chromatic polynomial is unchanged by the rotor effect. We are going to give a counterexample for any $k > 5$.

Let us recall that if the chromatic polynomial $P(G, \lambda)$ of a graph having n vertices is not 0, then the coefficient of λ^{n-1} in $P(G, \lambda)$ is the number of adjacent pairs of vertices of G, id est

$$\text{Card } \{\{x, y\} \subseteq V(G) | \exists \text{ at least 1 edge joining } x \text{ and } y\}.$$

This number can be called the adjacency number of G. We denote it by $a(G)$.

For $k > 5$ let us define the graph G_k as follows. $V(G_k)$ has $2k$ elements, partitioned into 2 disjoint sets I and J, each containing k elements indexed by the integers modulo k: $I = \{x_i | i \in \mathbb{Z}_k\}$, $J = \{v_i | i \in \mathbb{Z}_k\}$. Each x_i is adjacent with exactly 3 vertices: v_i, v_{i+1} and v_{i+2}. No two vertices of J are adjacent. G_k has no loops or multiple edges. G_8 is pictured in Fig. 1.

Let θ be the automorphism of G_k defined by $\theta(x_i) = x_{i+1}$, $\theta(v_i) = v_{i+1}$.

237
Let P be the partition of J in which $\{v_0, v_1, v_3\}$ is a block and the other blocks consist of single vertices. Consider the rotor (G_k, θ, J, v_0, P).

If $k = 6$, then x_0 is adjacent to all the three vertices of $\{v_0, v_1, v_3\}$. x_3 is adjacent to v_3 and v_0. All other vertices are adjacent to at most 1 vertex in $\{v_0, v_1, v_3\}$. On the other hand, no vertex is adjacent to all the three vertices of the reflected block $\{v_0, v_5, v_3\}$ of P'. x_5 is adjacent to v_0 and v_5; x_3 is adjacent to v_0 and v_3; x_0 is adjacent to v_0 and v_4. All other vertices are adjacent to at most 1 vertex in $\{v_0, v_5, v_3\}$. Since no two vertices of $\{v_0, v_1, v_3\}$ or of $\{v_0, v_5, v_3\}$ are adjacent, and all other blocks of P or P' are singletons, it follows that

$$a(G_6(P)) = a(G_6) - (3 - 1) - (2 - 1) = 18 - 2 - 1 = 15,$$

while

$$a(G_6(P')) = a(G_6) - 4(2 - 1) = 18 - 4 = 14.$$

If $k > 6$, the situation is even simpler. As above, x_0 is adjacent to every vertex in $\{v_0, v_1, v_3\}$. All other vertices are adjacent to at most 1 vertex of this block. On the other hand, no vertex is adjacent to all the three vertices of the reflected block $\{v_0, v_{k-1}, v_{k-3}\}$. x_{k-1} is adjacent to v_0 and v_{k-1}; x_{k-3} is adjacent to v_0 and v_{k-3}; x_{k-4} is adjacent to v_{k-1} and v_{k-3}. All other vertices are adjacent to at most 1 vertex in $\{v_0, v_{k-1}, v_{k-3}\}$. We have

$$a(G_k(P)) = a(G_k) - (3 - 1) = 3k - 2,$$

while

$$a(G_k(P')) = a(G_k) - 3(2 - 1) = 3k - 3.$$
For any $k > 5$, $a(G_k(P)) \neq a(G_k(P'))$. Since the chromatic polynomials of $G_k(P)$ and $G_k(P')$ are not 0, they must be different. We have therefore the following

Theorem. Let k be any integer > 5. There is a rotor of order k for which the chromatic polynomial is altered by the rotor effect.

References