-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com _—
SCIENCE@DIREGT” JOURNAL OF

Algebra

Journal of Algebra 284 (2005) 771-800 N
www.elsevier.com/locate/jalgebra

Unruffled extensions and flathess
over central subalgebras

Kenneth A. Brown

Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK
Received 21 June 2004
Available online 10 December 2004
Communicated by J.T. Stafford

Abstract

A condition on an affine central subalgel#af a noetherian algebra of finite Gelfand—Kirillov
dimension, which we call hengnruffledness, is shown to be equivalent in some circumstances to the
flatness ofA as aZ-module. Unruffledness was studied by Borho and Joseph in work on enveloping
algebras of complex semisimple Lie algebras, and we discuss applications of our result to enveloping
algebras, as well as beginning the study of this condition for more general algebras.
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1. Introduction

1.1. Let A be a noetherian algebra, finitely generated over the uncountable alge-
braically closed fieldk, and letZ be a finitely generated subalgebra of the centrd of
such that the nonzero elementsfare not zero divisors im. The central problem ad-
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dressed in this paper is: Can we findigasheckable conditions to ensure thatis a flat
Z-module? It turns out that of crucial importance here is the size of the fadtarsA,
asm ranges across the maximal idealszfOf course, the question asked above can and
should be approached locally, one maximal ideakddt a time; but a global form of our
main result 5.1 states:

Theorem. Let A and Z be as above, and suppose that A is Cohen—Macaulay and that Z
is smooth, with mA # A for all maximal ideals m of Z. Then A isaflat Z-moduleif and
onlyif Z isunruffledin A.

Several terms in the above statement need some explanation, which we give in the next
two paragraphs, before turning to motivation and applications.

1.2. Our results and proofs are couched in the setting of algebras of finite Gelfand—
Kirillov dimension, denoted GK-dig(—), which we assume exists for all-modules and
satisfies various standard desirable properties as listed in Section 2dratleg 4 (M) of
a finitely generated-moduleM is defined to be the least integesuch that E)Q(M, A)
is non-zero, or-cc if No such integer exists; we will simply writg(M) when the algebra
A is clear from the context. The algebfais Cohen—Macaulay if

GK-dimg(A) = j (M) + GK-dimg (M)

for all non-zero finitely generated-modulesM. (Here and throughout, “module” will
mean “left module” when no other qualifitan is given; so the above definition should
strictly speaking be “left Cohen—Macaulay.”) To say tiais smooth simply means thaZ
has finite global (homological) dimension, or equivalently that its maximal ideal space
is smooth.

1.3. Let A andZ be as in Section 1.1, and let be a maximal ideal of. Denote the
field of fractions ofZ by Q(Z). ThenZ is said to baunruffled at m in A if

GK-dim(A/mA) = GK-dimgz) (A ®z Q(2)); 1)

andZ isunruffledin A (or A is unruffled over Z) if (1) holds for all maximal ideals of Z.

The concept, although not the name, is due to Borho and Joseph [4, 5.8], who showed there
that every prime factor of the enveloping algebra of a complex semisimple Lie algebra is
unruffled over its centre. Indeed, following the suggestion of [4, 5.8], a secondary aim
of this paper is to begin to investigate the significance of the unruffled hypothesis on an
algebra and a central subalgebra. Our reason for proposing the adjective “unruffled” is a
result of Borho [6], which shows that the crucial feature of an unruffled extelsiom is

that GK-dim.(A/mA) is constant asm ranges througlg. Because Borho’s discussion is

set in the specific context of enveloping algebras, we shall derive a version of his result as
Lemma 2.3. To do so in the proper generality, we need to recall in Section 2.2 some ideas
about generic ideals of algebras over uncountable fields, which go back to work of Borho
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from the 1970s [5, Section 4]. The setting of this material in a general setting may have
some independent interest.

In Section 2.4 we discuss a humber of examples and non-examples of unruffled exten-
sionsZ C A, and explain how our main result collapses to a well-known theorem when
is commutative.

1.4. PairsZ C A of algebras satisfying the hypotheses of Section 1.1 arise naturally
and frequently. For example, a flat family of deformations of an affine noetherian algebra
B may be exhibited as a pa# C A of algebras as in Section 1.1, withymA = B for
some particular maximal ideal of Z, the deformations oB being the algebrad /m’A
got by varyingm acrossZ. Flatness of the family correspondsAddeing a flatZ-module,
so the theorem reveals that, at least in the presence of mild hypothegesmtZ, this is
equivalent to constancy of the GK-dimensions of the deformed algebras.

A second major source of motivating examples is the concept of a stratification of
the prime or primitive spectrum of an algebRainto “classically affine strata.” The
most clearcut examples are given by quantwspace [14], and more generally when
R = 0,4(G) is the quantised coordinate ring of a semisimple gréupat a generic pa-
rameterg [16,17]. In these examples, the primitive spectryrof R is the disjoint union
of finitely many locally closed subsetg,, and each straturm,, is homeomorphic to a
torus. The homeomorphism is afforded by inductior> mA,,, whereA,, is a localisa-
tion of a factor ofR andm is a maximal ideal o,,, the Laurent polynomial algebra which
is the centre ofd .

In a parallel mechanism, many naturally occurring alge®agich are finite modules
over their centres have maximal ideal spectra which can be stratified into finitely many
Azumaya strata ([10, Section 5], [11]) — including, for example, quantised coordinate rings
at a root of unity and symplectic reflection algebras in the Pl case. The point we want to
make here is not so much that the results of the present paper can contribute anything to an
understanding of Azumaya stratifications — they can’t! — but rather that some aspects of the
Azumaya stratified setting may point towards phenomena which are more generally true.
(Recall, for example, that an Azumaya alges always projective over its centre.)

A third class of primitive ideal stratifications provides one of our main motivations.
Namely, letR be the enveloping algebra(g) of a finite-dimensional complex semisimple
Lie algebra with adjoint groujds. In a series of papers Borho [6-9], and latterly Borho
and Joseph [4] have studigd the space of primitive ideals &, by defining and studying
“generalised Dixmier maps” from subsetsgif/ G to subsets of . The subsets in question
are thesheets (of g*/ G, respectively ofy ). The most desirable scarno — sometimes valid,
sometimes not — is that a she®tin x should (roughly speaking) consist of the inverse
images inR of the ideals of a certain prime factor ring which are generated by the
maximal ideals of the centrgé of A. For a more detailed description of this theory and the
relevance of our results to various questions of Borho and Joseph, see Section 6.3.

1.5. In Section 6 we discuss a number of applications of the main Theorem in 5.1. In
Section 6.1 we show that a GK-dimension inequality of Smith and Zhang [28], which is
used in the proof of Theorem 5.1 and which is well known to be strict in general, is in
fact an equality in the presence of the Cohen—Macaulay hypothesis. In Section 6.2 we de-
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rive yet another proof of the theorem of Kostant that the enveloping algebra of a complex
semisimple Lie algebra is free over its centre, and develop this into a necessary and suffi-
cient criterion for arbitrary eveloping algebras. As already mentioned, in Section 6.3 we
explore the relevance of Theorem 5.1 for Borho and Joseph’s work on sheets of primitive
ideals. Finally, in Section 6.4 some preliminary results are proved about the behaviour of
the unruffled property under factoring by a centrally generated prime ideal; and on the way
some information is produced about how the Cohen—Macaulay property behaves under
factorisation.

1.6. Asalready indicated, Section 2 contains a discussion of the unruffled property and
information about ideals in general positiorecHon 5 contains the statement and proof of
the main theorem, and Section 6 contains applications. The method of proof of the main
theorem is homological, and exploits a notion of depthZetA-bimodules which are fi-
nitely generated agl-modules. The necessary theory is set up in Section 3, and some
technical lemmas on depth in the presence of the unruffled hypothesis are proved in Sec-
tion 4. The final short section, Section 7, lists some questions and suggestions for further
work arising from the results described in this paper.

2. Unruffled extensions
2.1. Sanding hypotheses

We will assume throughout this paper thitatlenotes an affine noetherian algebra over
the algebraically closed fieltl, and thatZ is an affine subalgebra of the centreAfWe
assume thaZ is a domain whose nonzero elements are not zero divisoss s will
be the case if, for examplel is prime. We writeQ(Z) for the field of fractions ofZ.

The maximal ideal spectrum &f will be denoted byZ. The Gelfand—Kirillov dimension
over k, denoted GK-dim(—), will be assumed to exist for all-modules, and to have

the usual desirable properties of being exact and partitive, and taking values in the non-
negative integers, as discussed in [20], for example. Let the Gelfand—Kirillov dimensions
of A andZ ben andd, respectively.

2.2. ldealsin general position

As explained in Section 1.3, in this subsection and the next we recall some ideas of
Borho [5]. In this subsection we assume that

k is uncountable and thealgebraA of Section 2.1 is finitely related  (2)

That is, we assume that there exist a fkeglgebraF’ = k(f1, ..., f;) of finite ranks and
a finitely generated idedlof F with F/I = A. Letry, ..., r, be a set of generators fér
and fori =1, ..., m write

r(i)

ri :ZX,‘]@j
j=1
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where®; are words in the free generatofs ..., f; of F and;; € k. Similarly, choose
elementsy, ..., z, of F whose images il generateZ, and write

e(s)

s = Z MsuWu
u=1

fors=1,...,r, wherey, are words inf1, ..., f; andug, € k. Let ko be the prime sub-
field of k and setk’ = ko(Aij, psu: 1 <i <m, 1< j<r@@), 1<s<r, L<u<e(s)),
a countable subfield df. SetF’ =k'(f1,..., f;) andl’ =) _"_; F'r; F/, so we can define

Al =F/I;

and setZ’ to be thek’-subalgebra oft’ generated by the images A1 of z1, ..., z-. Thus
A= A" ® k,sothatd’ is a prime noetherian affing-algebra. ClearlyZ = Z’' ®y k. (In
the case wherg = Z(A), we can simply také’ = ko(A;;) andZ’ = Z(A").)

An idealm of Z is said to ben general positionif mN Z’ = 0. Versions of the following
results, with similar proofs, were obtained by Borho ([5, 4.5c¢], [6, 2.2, 2.3]) for the case
when A is a prime factor of a complex semisimple Lie algebra, and with the stronger
hypothesis thaP (Z) A is a simple ring for point 3 of the proposition below in this sectton.

Lemma. If p isa primeideal of Z in general position then the set
{me Z: pCm, mingeneral position}
isdensein V(p) ={me Z: p Cm}.

Proof. We may assume thatis not maximal, so tha¥’(p) is an uncountable set. On the
other hand, sinc€’ is countable, the set

S=J Vp+:2)

z€Z'\p

is a countable union of closed proper subset¥@f), and so does not covet(p) by [3,
3.11]. If V(p) \ S were not dense then we would have covevrén) by a countable union of
proper closed subsets, again contradicting [3, 3.11) &0\ S must be dense iW(p). O

Proposition. Retain the hypotheses and notation introduced in Section 2.1and in (2), and
let Q(Z") denote the quotient field of Z'.

1 Infactthereis a problem with part of the argument in&]. Contrary to what is said there, itis not true that,
for an idealp of Z in general positionZ’ \ 0 consists of regular element®dulo(pA), even wherp is semiprime,
as the examplel = Z = C[X], A’ = Z’ = Q[X], p = (X(X — 7)) makes plain. Once this is realised, it is not
hard to see that [6, Proposition 2.2(1)] is false, and that the best one can say is (using [6, Proposition 2.2(2)]) that
if p is semiprime with all primes o minimal overp in general position, thepA is semiprime.
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1. AZZ@, A,
and hence

Q(ZNAZ= Q(ZNZ ®gz) Q(Z)HA'. 3)

In particular, Q(Z’)A is a free module over Q(Z')Z, with basis including {1}, so
0(Z)Z isadirect summand of Q(Z')A.

2. Assumethat A issemiprime. If p isaprimeideal of Z in general position, then pA is
asemiprime ideal.

3. Assume that A is prime and that Q(Z) is the centre of the simple artinian Goldie
quotient ring Q(A). If pisaprimeideal of Z in general position, then pA isa prime
ideal.

4. Assumethat Q(Z)A issimple (so A isprime). If m isamaximal ideal of Z in general
position, then mA isa maximal ideal.

Proof. 1. By the associativity of the tensor product,
AZkQu A ZkQuZ @7 A=Z®y A (4)
Localising these isomorphismsthe central regular elemengs \ 0 of A, we find
QZNA=Q0(Z)®z7 A= Q(Z)®z (ZR7z AN = Q(ZNZ Q7 A
=(Q(Z"YZ ®gz) Q(Z)) @z A= Q(Z)Z ®¢z) Q(Z)A .

SinceQ(Z')A’ is a free module over the fiel@(Z’), the last statement in point 1 is im-
mediate from the above isomorphisms.

2. Suppose that is semiprime, and thatis a prime ideal o¥Z in general position. By
(3) and the freeness statement in point 1,

Q(ZNAp= Q(Z)p ®o(z) Q(ZNHA, (5)

and the elements dt’ \ 0, being regulamodulo(p), are regulamodulo(p A): for notice
that, using the last part of point 1,

0(Z)ApNZ=Q(ZWNZ=p.

Factoring (3) by (5), and abusing notation slightly by writi@gZ")(A/pA) for the par-
tial quotient ring ofA/pA with respect to the satZ’ + pA/pA) \ O4/pa, We obtain the
isomorphism in

O(ZN(A/pA) = Q(ZN)(Z/p) ®o(z)) Q(Z)A' S Q(Z/p) ®(z)) Q(ZHA.  (6)

The inclusion in (6) again follows by freeness @{Z')(A/pA) over Q(Z')(Z/p)), and
shows that

Q(Z/p) ®ozy Q(Z") A’ is a partial quotient ring ofi /pA. 7
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SinceQ(Z")A’ is semiprime, S0 t00 iI8)(Z/p) Qo2 Q(Z")A’, by [12, 3.4.2]. But, from
(6), we see thaD(Z/p) ®o(z Q(Z')A’ is generated oveA/pA by central elements.
HenceA /p A must also have no non-zero nilpotent ideals, as required.

3. Suppose now that is prime and thap is as in 2. Suppose th@i(Z) is the centre of
Q(A). ThenQ(Z’) is the centre oD (A"), since, by (3),

0(A) = Q(Z) ®g(z) Q(A).

So by [25, proof of 7.3.9D(Z /p) ® oz, Q(A’) is simple, and hence, being noetherian, it
has a simple artinian quotient ring by Goldie’s theorem [23]. Phais prime now follows
from (7).

4. Suppose now that is a maximal ideal oZ in general position. Since N Z’ =0,
the mapZ — Z/m induces a homomorphism fro@(Z’)Z to k, so Q(Z') € k and we
can form the tensor produkt® o7y Q(Z")A’. Thus (6) simplifies to

A/mA = Q(Z')(A/mA) =k ®g(z) Q(ZNA'. 8)
Suppose now thaD(Z)A is simple. From (4)Q(2)A = Q(Z) Qg(z/) Q(Z")A’, so that

Q(Z"H A’ is also simple. Simplicity ofdA/mA follows from this by (8) and [25, proof of
7.3.9]. O

2.3. Generic constancy of GK-dimension

As already explained, the following result was obtained by Borho and Joseph for factors
of enveloping algebras, with the same proof. It seems reasonable to suspect the truth of a
stronger result — namely, that the set of unruffled maximal idealgd of A contains a
non-empty Zariski-open subset 8t

Lemma [4, 5.8]. Keep the hypotheses on Z and A from Sections 2.1 and 2.2 (but there
is no need to assume that Q(Z)A is simple). Let m be a maximal ideal of Z in general
position. Then

GK-dimg(A/mA) = GK-dimg(2)(Q(2) ®z A).

Proof. Associativity of the tensor product yields

Q(2) ®g(z) Q(ZNA"= Q(Z) ®g(z) Q(Z) @z A'=(Q(2) ®7z Z) @z A’
=0(Z2)®z A. 9
From (8) we get
GK-dimy (A/mA) = GK-dimg 2/ (Q(Z)A") = GK-dimgz)(0(2) ®g(z/) Q(Z)A")
= GK-dimg(2)(Q(2) ®7 A),

where the final equality is given by (9).0
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2.4. Unruffled and ruffled examples

Recall that, where nothing is said to the aamy, hypotheses of Section 2.1 are assumed
to hold throughout.

2.4.1. The case where A is afinitely generated Z-module

It is clear that ifA is a finitely generated&-module, thenA is unruffled overZ. One
only needs to note that i is a maximal ideal ofZ thenmA is a proper ideal, which can
be seen by inverting the regular elemertsm in A and appealing to Nakayama's lemma.

2.4.2. Prime factors of semisimple enveloping algebras are unruffled over their centres

If A=U(g)/P is a prime factor of the enveloping algebra of a finite-dimensional
complex semisimple Lie algebgg then A is an unruffled extension of its centre by [4,
Corollary 5.8]. The existing proof of this fact is rather deep, depending as it does on the
description of P as induced from a rigid primitive ideal of the enveloping algebra of a
Levi subalgebré of a parabolic subalgebra gfcombined with an irreducible subset of the
centre off.

2.4.3. The commutative case

Suppose that all the assumptionsSafction 2.1 hold, but in additioA is commutative
and Cohen—Macaulay, sb is now an arbitrary affine subalgebra af Routine local—
global yoga applied to [13, Theorem 18.16b and Corollary 13.5] easily yields our main
result in this commutative settintf: m is a smooth point of Z, then Z isunruffledin A at
mifandonlyifmA#£Aand Ay, :=AQ®z Z,, isaflat Z,,-module.

An instructive example to consider here is the subalgebtaC|x, xy] of the commu-
tative polynomial algebrat = C[x, y]. One easily confirms that, for a maximal ideal
of Z, A is aflatZy-module if and only ifm # (x, xy), while m is unruffled inA if and
only if m # (x,xy — A), for A € C.

If one assumes, in addition to the commutativityAfthat A is a finitely generated -
module, then, noting 2.4.1, one recoversifrdheorem 1.1 the familiar fact [13, Corollary
18.17] that a commutative affine Cohen—Macgudamain is projective over any smooth
subring over which it's a finitely generated module.

2.4.4. Enveloping algebras of solvable Lie algebras are not always unruffled over their
centres
Let g be the complex solvable Lie algebra with basiy, z, 7, such that

[t,x]:x, [I:Y]Z_Y: [th]:_Zv

and all other brackets are 0. Lét= U(g) and letZ be the centre ofi. ThusA = R[¢; §]
where R = C[x, y, z] is a commutative polynomial algebra adds a derivation. One
calculates easily th& is contained inR, so thatZ consists of thé-invariants inR. Since
8 acts semisimply oR, with the eigenvectar’ y/ z¢ having eigenvalug— j — ¢, it follows
that

7= {ZCxiyjze: i=j +E} =Clxz, xy],
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a polynomial algebra in two variables. Faorb € C, let m, ;, denote the maximal ideal
(xy —a,xz — b) of Z. Itis routine to check that

GK-dimg(A/my p) =2

for (a, b) # (0, 0), while A/mg o maps ontdCly, z][z; §], so that
GK-dimg (A /mo ) = 3.

ThusZ is not unruffled inA atmg .

2.4.5. Left noetherian PI-rings are not always unruffled over their centres
Letr ands be indeterminates, and define

A [ K eThs] ke ]
- 0 kel |

wherek[t, 71, 5] is a rightk[7]-module via the embedding of the second algebra in the
first. ThusA is a left noetherian affine Pl algebra, but is not semiprime and is not right
noetherian. Sex to be the centre ofA, which is easily checked to be the set of scalar
matrices and so isomorphic #4¢]. Thus Z \ 0 consists of regular elements af and
0(Z) = k(t), with

10, 0 =[HOP) KO

Thus

GK-dimQ(z)(A &z Q(Z)) =1

Consider the maximal ideal

t O
1n=[0 I}Z

of Z. One easily calculates thdt/mA = k, so that
GK-dim(A/mA) = 0.

SoZ is not unruffled inA atm.

2.5. Inequalitiesfor unruffled extensions

In the presence of flatness, the following lemma shows that the strict inequality of
GK-dimensions in Example 2.4.5 is tloaly direction in which unruffledness can fail.
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But Example 2.4.3 (witim = (x, xy)) shows that the flathess hypothesis in the lemma is
needed.

Lemma. Let A and Z be as in Section 2.1, and let m € Z. Suppose that A, is a flat
Znw-module. Then

GK-dimi (A/mA) < GK-dimgz)(A ®7z 0(Z)). (10)

Proof. DenoteQ(Z) by Q. LetV be a finite-dimensiondl-vector space which generates
A as ak-algebra. So the imagé of V in A/mA [respectively the image df in A ®7 Q]
generategl /mA [respectivelyA ® z Q] as ak- [respectivelyQ-] algebra. It will therefore
be enough to show that, for ali> 1,

dime (V') < dimg(QV*). (11)

Suppose then that, . . ., u, are elements o’ such thatX:;-=lq]'Mj =0, whereg; € 0,
not all zero. We claim thaiy, ..., i, arek-linearly dependent elements uf. It is clear
that this will prove (11).

Multiplying by a suitable element af and discarding those; for whichg; =0, we
get

t
2z =0.
j=1

with eachz; a non-zero element of. Fix a maximal ideain of Z. Choosel > 1, ¢
minimal such that there exisfswith z; ¢ m*. (Note that exists by the Krull Intersection
Theorem [13, Corollary 5.4 being a noetherian domain.) Thus

Y (zj+m)(u; +mA)=0 (12)
j=1

in A/mA, with not all thez; + m‘ equal to 0. Lety, ..., y, be ak-basis form‘~!/m¢,
and writez; +m*=Y""_, y,1;., for ;, € k. Thus (12) gives

Z(Z Vrkjr + m’z) (uj+m‘A)=0.

J

That is,
o <ZA,, +mf)(u, +mfA)=0. (13)
r j

Now the linear independence ¢f,} in m‘~1/m¢ overk implies, thanks to the flatness
hypothesis, linear independencef{gf} in m‘~1A/m¢A over A/mA. Hence (13) shows
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that, for eachr,

t
Z)»jruj emA.
j=1

For somer, there existg with A ;. # 0. So the result is proved.O

3. Homological equipment
3.1. Depth

We need to extend the standard notion of depth from commutative algebra. The classical
definition (as in, for example, [13, p. 425]gbins with a commutate noetherian ringR,
an ideall of R, and a finitely generate®-moduleM with M1 # M, and defines thdepth
of I on M to be the length of a maximal/-sequence of elements &f (Recall that an
M-sequenceis a sequenceéxs, ..., x,} of elements ofR such thaty; is not a zero divisor
onM/ Z’j;llij, fori =1,...,n; thelength of the M-sequence is then.) Crucial to
the usefulness of this definition is [13, Theorem 17.4], which guarantees that any two such
maximal M -sequences have the same length, and that this number can be read off from an
appropriate Koszul complex.

We extend the above definition by allowing tRemodule M to be not necessarily fi-
nitely generated, but we still insist thét/ £ M, and we requiré/ to be anS—R-bimodule
with S a left noetherian ring antl a finitely generated-module. With this definition, the
analogue of [13, Theorem 17.4], which we state below and prove in Section 3.4, remains
true. Write R for the direct sum of: copies ofR. For elementsy, .. ., x, of the com-
mutative noetherian rin@, we denote byK g (x1, ..., x,), or by K (x1, ..., x,) when the
ring is clear from the context, the Koszul complex

2 i i+1 n
0—>R—>R(”)—>/\R(”)—>~.—>/\R(”)&AR(”)_)...Q/\R(”)_M),

with X = (x1, ..., x,) € R™ anddx(a) =X A a [13, pp. 423-424].

Theorem. Let R, I, S and M be as stated above, and supposethat 7 = >/ ; x;R. Let r
be a non-negative integer. If

H/ (M ®g K(x1,...,x2)) =0
for j <r,while
H" (M Qg K(x1,...,x,)) #0,

then every maximal M-sequencein I haslengthr.
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3.2.Lemma. Let R, S and M be as stated in Section 3.1, with M # 0.

1. The set of zero divisors of R on M is equal to the union of a finite set of prime ideals
of R.

2. If I isanideal of R which consists of zero divisors on M, then there exists a prime
ideal p of R with I Cp,and 0#m € M, withmp =0.

Proof. SinceM is anS—R-bimodule and is left noetherian, it has by [23, Proposition 4.4.9]
an affiliated series of prime idedls,, . . ., pm} as anR-module, in the sense of [23, 4.4.6],
such that no element &t \ ((J;_; pi) is a zero divisor oM. Thus

IC| )pi

s

1

1

By the prime avoidance property [13, Lemma 3.3] there exists < j < m, such that
I Cp;. Since{m € M: mp; = 0} is a non-zero submodule 8f, the lemma is proved. O

3.3. For the most part the proof of Theorem 3.1 follows the classical approach as in
[13, Section 17.3, proof of 17.4 ]. Thus [1Broposition 17.9 and Corollaries 17.10. 17.11]
do not involve the moduld/ and so apply unchanged here. But we require an improved
version of [13, Corollary 17.12].

Proposition. Let R, I, S and M beasin Section 3.1, with I = Y7, x; R. Suppose that r
isa non-negativeinteger and that x4, . . ., x, isan M-sequence. Then

H' (M ®g K(x1,...,%,)) = :m eM: ml C ZMxi}/ZMxi. (14)
i=1 i=1

Hence, for j < r,

H/ (M ®g K(x1,...,x,)) =0, (15)
andif {x1, ..., x,} isamaximal M-sequencein I then

H' (M Qg K(x1,...,x,)) #0. (16)

Proof. We prove (14) by induction on; for r = 0, the statement follows from the defin-
ition of the Koszul complex. Now suppose that- 0, with the result proved for smaller
values ofr. We use here induction om, starting fromn = r. In this starting case, (14)
states thatd” (M ®gr K (x1,...,x,)) = M/MI, which is clear from the definition of the
Koszul complex.
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Suppose now that > r, and the result is known for thisand smaller values of. By
the induction orr, we have

r—1 r—1
H Y M ®r K(x1,..., %)) = :m eM: ml C ZMxi}/ZMxi =0,
i=1

i=1

sincex, is not a zero divisor o/ Zf;ll Mx;. Thus the exact sequence of [13, Corollary
17.11])yields

H' (M ®g K(x1..... 1))

Xn X

= ker(H’(M Qr K (x1, ...,xnfl)) =5 Hr(M Qr K(x1, ...,x,,,l))). a7

Write N = {m € M: m(>"—{ x;R) € YI_; Mx;}. Then

{meM: mlgzMx,»}/zMx,:ker«N/ngi) &% (N/ng,)).

(18)

Comparing (17) with (18) proves the induction step for (14).

Sincex 41 is not a zero divisor oM/ Z}’:l Mx; for j <r, (15) follows at once from
(14). To prove (16), suppose thty, ..., x,} is a maximalM-sequence in. Then[ is
contained in the set of zero divisors #fy Y ;_; Mx;. By Lemma 3.2 there exisis € M,
m¢ Yy iy Mx;, suchthainl €Y ;_; Mx;. So (16) follows from this and (14).O

3.4. Proof of Theorem 3.1

Let y1,...,ys be a maximalM/-sequence inf. By hypothesisy is the least integer
Jj such thatH/ (M ®g K(x1,...,x,)) # 0. Now r is also the least integer for which
H/(M ®p K(x1,..., x4, ¥1,...,¥5)) Z 0, by [13, Corollary 17.10]. Sincé/I # M by
hypothesis, Proposition 3.3 shows that r, proving the theorem. O
3.5. Definition of depth

Let R,S,I and M be as in Section 3.1. Define ttaepth of I on M, denoted
depth(Z, M), to be the length of a maximal/-sequence in. Theorem 3.1 shows that
this definition makes sense.

3.6. Grade versus depth

We need a noncommutative variant of one of the standard commutative characterisations
of depth, as given in [13, Proposition 18.4], for example.
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Proposition. Let S be a noetherian ring with a noetherian central subring R and let J be
an ideal of S with J = (J N R)S. Let N be an S—S-bimodule, finitely generated on each
side, with R acting centrallyon N and NJ # N. Thenthedepthof /N R on N isequal to
the least non-negativeinteger » such that Extg(S/J, N) # 0.

Proof. Assume thatS, R, N andJ are as stated. We prove the theorem by induction on
depth(J N R, N) =t. Suppose first that= 0. Then it is immediate from Lemma 3.2 that
Homg(S/J, N) # 0, as required.

Now assume that > 1 and that the result is proved for smaller values of the
depth. Letx € J N R be a regular element oN. We haveJ(N/xN) # N/xN, and
deptiJ "R, N/xN) =t —1 by Theorem 3.1. So, by induction, F-ST&(S/J, N/xN) #0,
but EfoS(S/J, N/xN)=0foralli <r—1. Applying Homg(S/J, —) to the exact sequence

O—)NX—X>N—>N/xN—>O,
we get for eacly > 1 the exact sequence
0— Ext}"'(S/J, N) — Ext, *(S/J, N/xN) — Ext(S/J, N) — 0,

where the first and last terms are 0 becauEmg(S/J, N) =0 foralli. Hence we deduce
that Efo(S/J, N)=0fori <t, and Exg(S/J, N) #0, asrequired. O

3.7. Measuring the flat dimension

The following result is standard and easy for finitely generated modules over a com-
mutative noetherian ring [13, Theorem 6.8], but is false for infinitely generated modules
without some additinal hypothesis, as can be seen by takinig be a polynomial ring in
two variables and/ to be the field of fractions of the factor by a height one prime.

Lemma. Let A and Z be asin Section 2.1 and suppose that & is an uncountablefield. Let
M be afinitely generated A-module which hasfinite flat dimension t+ asa Z-module. Then

t =max{r: Tor,(V, M) #0, V aZ-module, dim (V) < oo}
=maxX{r: Tory(Z/m, M) #0, me Z} =max{r: Tor; (Z/m, My) #0, me Z}.

Proof. The second equality is an easy consequence of the long exact sequence of Tor, and
the third is clear sincen Tor, (Z/m, M) = 0. Sincer is finite by hypothesis, it is an upper
bound for the right side of the first equality. Moreover, the long exact sequence of Tor also
shows easily that there exists a prime idealf Z with Tor/,(Z/p, M) # 0. Choosep to

be maximal among such primes, and suppose for a contradictiop thatot a maximal

ideal. Lety € Z \ p, with y + p not a unit. The exact sequence

0— Z/p -5 Z/p— Z/p+yZ—0
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yields

Tor’Z+1(Z/p +yZ, M) —> Tor,(Z/p, M) X Torl,(Z/p, M) — Tor,(Z/p+ yZ, M),

in which the two outer terms are zero by our hypotheses @mdp. Thus multiplication
by y is a bijection on To§(Z/p, M); in other words, Td§(Z/p, M) is a vector space
over the quotient fieldD(Z/p) of Z/p. But sincek is uncountable ang is not maxi-
mal, dim(Q(Z/p)) is uncountable. Hence djriTor,, (Z /p, M)) is also uncountable. This,
however, is impossible, since TaiZ/p, M) is a finitely generated module over the count-
able dimensionat-algebrad. O

4. Unruffled technicalities

4.1. We shall assume throughout Section 4 tHatind Z satisfy the hypotheses of
Section 2.1 (so in particular they have GK-dimensierendd, respectively). Recall that
the definitions of the Cohen—Maday property and of the gradg M) of an A-moduleM
are given in Section 1.2.

Lemma. Let A and Z be asin Section 2.1 and assume that A is Cohen—Macaulay. Let m
be a smooth point of Z, and suppose that mA # A and that

GK-dimi (A/mA) < GK-dimgz)(A ®7z 0(Z)). (19)
Then
GK-dimy(A/mA)=n —d, (20)
and Z isunruffled in A at m.
Proof. The Cohen—Macaulay property dfimplies that
n = GK-dimg(A/mA) + j(A/mA), (21)

and we note that the validity of (21) is unaffected by inverting the powers of any element of
Z\min A, by [20, Proposition 4.2] and the fact that Exi /mA, A) is annihilated bym
for all j. Similarly, our desired conclusion (20) is clearly unaffected by such a localisation.
So we invert inA the powers of an elementof Z \ m, chosen so that in the localised ring
Z[x~1, m is generated by a regular sequefiee . . ., x4).

By [28, Corollary 2],

n = GK-dimg (A) > GK-dimgz)(A ®z Q(2)) +d. (22)
By (19) and (22),

n — GK-dimg(A/mA) > d. (23)
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By (21) and (23),
J(A/mA) >d. (24)
In view of Proposition 3.6, we can rewrite (24) as
depthim, A) > d. (25)

On the other hand, the Koszul compl&x (x1, ..., xg) gives aZ-free resolution oZ /m,
and applying- ®z A to this we see that

HY(Kz(x1,...,x2) ®7 A) = A/mA #0.
Thus Theorem 3.1 implies that
depthiim, A) <d. (26)
From (25) and (26), and Proposition 3.6 we find that equality holds in (24); that is,
j(A/mA) =d, and substituting this value in (21) gives (20).
Moreover, substituting (20) in (22) yields
GK-dimg(A/mA) > GK-dimg(z)(A ®z Q(Z)), (27)

so that, given (19)Z is unruffled inA atm. O

4.2.Lemma. Let Z and A beasin Section 2.1, and suppose that Z is unruffledin A. For
everyprimep of Z,pANZ =p.

Proof. The unruffled hypothesis forcesA N Z = m for every maximal ideai of Z. If p
is a prime ideal oz then

pCpANZC()mANZ: pSmeZ)=(|(m pSme Z}=p,
the last equality holding sincg is affine overk [13, Theorem 4.19]. O
4.3. The next result extends one direction of the equality in Lemma 4.1 from maximal
to prime ideals oZ. We will improve both inequalities below to equalities in Theorem 6.4,
providedZ is smooth and (2) holds.
Lemma. Let A and Z beasin Section 2.1, and suppose that A is Cohen—Macaulay. Let p
be a primeideal of Z of height £ which is not in the singular locus, and suppose that Z is

unruffledin A at the smooth points of Z. Then

GK-dimg(A/pA) >n — ¢ (28)
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and
J(A/pA) < L. (29)

Proof. SinceA is Cohen—Macaulay of Gelfand—Kirillov dimensian (28) and (29) are
equivalent; we prove (28). Suppose we invertdipA the powers of an element of

Z \ p; if z is not a zero divisomodulo(pA) then GK-dim (A /pA) is unchanged by this
localisation, [20, Proposition 4.2], while if is a zero divisor then GK-dip{A/pA) may
decrease when we inveftSo in proving (28) we may invert a suitable element of the ideal
defining the singular locus and so arrange thas smooth. We argue by induction on

t :=GK-dimg(Z/p)=d — ¢. (30)

The starting point = 0 is given by Lemma 4.1.
Suppose thatis greater than 0, and that we have shown that

GK-dimg(A/qA) >n— (L +1) (31)
for all primesq of height(¢ + 1). We apply Lemma 3.2(1) witl = A/pA, which is a
non-zero module by Lemma 4.2. The same lemma in fact tells us thgt@fin=p, and
sinceZ/p is an affinek-algebra of infinitek-dimension, Lemma 3.2(1) ensures that there

existsx € Z with x 4+ p a non-unit ofZ /p such thatc + pA is not a zero divisor i /pA.
So by [20, Proposition 5.1(e)],

GK-dimi(A/pA 4+ xA) < GK-dimy (A/pA). (32)
ButpA+xA=(p+x2Z)A, and GK-dim(Z/p +xZ) =t — 1 by the Principal Ideal The-
orem [13, Theorem 10.1 and Corollary 13.4]. Thus the induction hypothesis (31) coupled
with (32) yields (28). This proves the induction step and hence the lemma.

4.4. Example. Lemmas4.1and 4.3arein general falseif A isnot Cohen—Macaulay
Consider the Heisenberg gro&thon two generators,
H= <x, y: [[x, y],x] = [[x, yl, y] = 1).

Setz =[x, y] and letZ be the subalgebria(z) of the group algebrad = kH. ThusZ is
the centre ofA and clearlyA is a freeZ-module. By [20, Example 11.10],

GK-dimy (kH) = 4.
One can easily see that, for all maximal idealsf Z,
GK-dim(A/mA) = 2 = GK-dimgz)(A ®7z 0(2)).

Thus Lemma 4.1 fails here; clearlyis not Cohen—Macaulay, since, for all maximal ideals
mof Z, j(A/mA)=1.
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5. Themain theorem

5.1. After stating the result we shall prove the first part in Section 5.2 and the second
in Section 5.3. Clearly the final part follows from the first two.

Theorem. Let A and Z satisfy hypotheses of Section 2.1 and suppose that & is an uncount-

able field. Suppose that A is Cohen—Macaulay. Let I be the defining ideal of the singular
locusof Z.

1. If Z isunruffled in A at the smooth points of Z then A[¢~!] isa flat Z[¢~1]-module
for all non-zero elementsc of 1.

2. If misa smooth point of Z suchthat mA £ A and A, isaflat Z,,-module, then Z is
unruffledin A at m.

3. Supposethat Z is smooth and that mA # A for maximal idealsm of Z. Then A isa
flat Z-moduleif and only if Z isunruffledin A.

5.2. Proof of Theorem5.1.1
Letm be a smooth point af. We claim that, for ali > 0,
Tor, (Z/m, A) = 0. (33)
By [28, Corollary 2],
GK-dimy(A) > GK-dimgz,(Q(2) ®z A) + GK-dimi (Q(2)). (34)
Now the unruffledness afi coupled with (34) yields
GK-dimi(A) — GK-dim(A/mA) >d. (35)
SinceA is Cohen—Macaulay, (35) implies that
J(A/mA) >d. (36)

Now Proposition 3.6 shows that there exist elementis. ., x; in m forming a regular
sequence im. Set/ = Zle x; Z € m, so that, again by Proposition 3.6,

JAJIA)=d. (37)
We claim that
m is minimal overl. (38)

For suppose (38) is false, and jfebe a prime ofZ strictly contained inm with 7 C p, so
thatp has height with r < d. Then

GK-dimg(A/IA) > GK-dim(A/pA) >n—r >n—d+1, (39)
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where the second inequality is given by Lemma 4.3. But (37) and (39) contradict the fact
that A is Cohen—Macaulay, so (38) is true. LocaliseZdrat m, som’Z, C I, for some

t > 1. By [13, Corollaries 17.7 and 17.8(a)], . .., x4 constitute aZ,,-sequence irZ,

since thesd elements generate an ideal of the local rifyg containing aZ.,-sequence of
lengthd, namely therth powers of a regular sequence generatirif},,. Thus the Koszul
complexKz,. (x1, ..., xq) gives a freeZ,-resolution ofZ, /I, Sincexy, . .., x4 is areg-

ular sequence id, Proposition 3.3 shows th&tz  (x1, ..., xs) ®z,, Am has no homology
except at thel/th place. In other words,

Tory (Zw/Im, Am) =0

for all i > 0. Clearly this implies (33). It follows by Lemma 3.7 that,dfis any nonzero
element of the ideal defining the singular locusZofthenA[c¢~1] is a flatZ[¢~1]-module,
and so Theorem 5.1.1 is proved.

5.3. Proof of Theorem5.1.2

Suppose that is Cohen—Macaulay and let be a smooth point o such thainA # A
andAy, is a flatZ,,-module. Sinc&Z,, is regularmZ,, is generated by a regular sequence
x1,...,xq. Flatness of th&Z,,,-module A, ensures that, ..., x; is a regular sequence
generatingnAy,, as one can show easily using the Equational Criterion for Flatness [13,
Corollary 6.5 and Exercise 6.7]. Therefore

Jan(Am/mAR) =d (40)

by Proposition 3.6. Since ExtA/mA, A) is killed by m it follows from (40) that
ja(A/mA) =d. Hence, sinced is Cohen—Macaulay,

GK-dimg (A/mA) = GK-dimg (A) — d.
Combining this with the inequality (34) of Section 5.2 yields
GK-dimg(A/mA) > GK-dimQ(z)(Q(Z) Rz A).

The reverse inequality is supplied by Lemi&, so the proof of Theorem 5.1.2 is com-
plete.

5.4. Examples

5.4.1. Theorem5.1.1 failsto hold whenever A is any affine commutative domain which is
not Cohen—Macaulay

For, given such an algebr4, choose by Noether normalisation [13, Theorem 13.3]
a polynomial subalgebra over whichA is a finitely generated module. Sbis unruffled
in A by Example 2.4.1. The well-known charadsation of local commutative Cohen—
Macaulay algebras by freeness over locabsth subalgebras [13, Corollary 18.17] shows
that there must exist a maximal idealof Z such thatA,, is not a flatZ,,-module.
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5.4.2. Theorem5.1.2 failsin general if A isnot Cohen—-Macaulay (at least if A isonly
one-sided noetherian and is not semiprime)

TakeA, Z andm as in Example 2.4.5. Thusis a flatZ-module, but, as we have already
noted,Z is not unruffled inA at m. Notice thatA is not Cohen—Macaulay:(A/mA) +
GK-dimg(A/mA) =14+ 0=1 < 2= GK-dim(A).

6. Applications
6.1. The Smith—Zhang inequality

As noted in [28], the inequality (34), which is their Corollary 2, is in general strict;
in fact Example 4.4 is a case where equality fildowever, we can deduce easily from
Lemma 4.1 that the fact that this example is not Cohen—Macaulay is the key to the failure
of the equality in this case:

Corollary. Let A and Z be as in Section 2.1, and suppose that A is Cohen—Macaulay.
Suppose also that Z has at least one smooth maximal ideal for whichmA # A and

GK-dimi (A/mA) < GK-dimg(z)(A ®7 Q(Z)). (41)

For example, if A is finitely related and & is uncountable then this will be the case by
Lemma 2.3 Then

GK-dimy(A) = GK-dimgz),(0(2) ®z A) + GK-dimi (Q(2)). (42)

Proof. This is immediate from Lemma 4.1: for this shows that (41) is an equality, both
sides being equal te — d. This proves (42). O

Remark. The hypothesis that is Cohen—Macaulay in Corollary 6.1 can be relaxed a
little: it is only necessary to assume that there is a Cohen—Macaulay féctdrA with
GK-dimg (A”) = GK-dim(A), with the images of the nonzero elementsbihot zero
divisors inA’. The adaptations needed to the above argument are obvious.

6.2. Generalised Kostant theorem

Let A = U(g) be the enveloping algebra of a finite-dimensional complex Lie alggbra
and letZ be the centre oft, with Z = maxspe¢Z) as usual. Example 2.4.4 shows that it
is not always true that is a flatZ-module, even whe# is a polynomial algebra, as one
checks in this case by direct calculation or Ippaaling to Theorem 5.1.2. To state an extra
condition needed to ensure flatness, recall ghatts on the symmetric algebfa= S(g)
via the adjoint action, and sét= S(g)?. ThusS is the associated graded algebra of the

2 Forthe special case whereis a factor of an enveloping algebra, the inequality was proved in [27].
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filtered C-algebraA, and the canonical map fror to S is an isomorphism ofi-modules
which carriesZ to Y and has as inverse tlsgmmetrisation map [12, Proposition 2.4.10].

Theorem. Retain the above notation, and assumethat Z is affineand that mA £ A for all
maximal idealsm of Z. Let p* be the augmentationideal of Y, thatisy™ =gSNY.

1. Consider the statements:
(1) p* isa smooth point of ¥ andisunruffledin .
(2) Sy+ isaflat Yy+-module.
(3) Zisunruffledin A at m for all smooth pointsm of Z.
(4) Ay isaflat Z,-modulefor all smooth pointsm of Z.
Then

D @2= 0B < 4.

2. Suppose in addition that Z is smooth (which is equivalent to assuming that Z is a
polynomial algebra). If y* isunruffledin S then A isaflat Z-module.

Proof. 1. By [12, Theorem 10.4.5) and Z are isomorphic (although not in general via

the symmetrisation map); in particulaf,is affine since we are assuming thais. Since

S is a polynomial algebra and so in particular smoagthjs a smooth point of if Sy+ is

a flaty,+-module, since a finite,+ -projective resolution of the trivia§-module yields a

finite flat resolution of the unique simplg+-module. Thus the equivalence of (1) and (2)

follows from the commutative case of the Ma'heorem 5.1; see Example 2.4.3.
Suppose now that (1) and hence (2) hold. Since the associated graded &lgélrés

smooth,A is Cohen—Macaulay by [1, Theorem I1.2.1]. We claim that

GK-dimgz)(Q(2) ®z A) = GK-dimgy)(Q(Y) ®y ). (43)
By Corollary 6.1,
GK-dimgz)(Q(2) ®z A) = GK-dimy(A) — GK-dimy(2), (44)
and similarly (although in this case [13, Theorem 13.5] suffices),
GK-dimg(y)(Q(Y) ®y S) = GK-dim(S) — GK-dim (Y). (45)

But S andY are respectively the associated graded algebrdsasfd Z, so the right-hand
sides of (44) and (45) are equal by [20, Proposition 6.6], proving our claim.
Next, asS,+ is a flatY,+-module, Lemma 2.5 implies that

GK-dimgy)(Q(Y) ®y §) = GK-dimi (S/n*5). (46)

Now letm* = gA N Z, the augmentation ideal &. Letm be a smooth point of. Thus,
writing gr(—) for associated graded modules,

gr(mA) 2 gr(m)S =grm*)S=y*s. (47)
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Hence,
GK-dim; (/™ 8) > GK-dimi(A/mA). (48)
By (43), (46) and (48),
GK-dimg(z)(A ®z Q(Z)) > GK-dim(A/mA). (49)

ButmA # A, so Lemma (4.1) applies arilis unruffled inA atm. That s, (2)= (3). The
equivalence of (3) and (4) follows from the Main Theorem 5.1.

2. Suppose now that is smooth. Thus so also by [12, Theorem 10.4.5]. So the
result follows from (1)= (4) of the first part. O

Corollary (Kostant[12, Theorem 8.2.4]puppose that g is a finite-dimensional complex
semisimple Lie algebra. Let A = U(g) and let Z be the centre of A. Then A is a free
Z-module.

Proof. Retain the notation of the theorem. We check that the hypotheses of the second part
of the theorem are satisfied. Whgris semisimpleZ is a polynomial algebra on ratg
indeterminates [12, Theorem 7.3.8(ii)]. Local finiteness of the adjoint actignaf A
combined with the semisimplicity of finite-dimensiogamodules imply thati is a direct
sum of finitely generate@-modules, and smA # A for each maximal ideah of Z, by
Nakayama’s Lemma. The subvarietygh= g defined byy* S(g) is the cone of nilpotent
elements [12, Theorem 8.1i8, which has dimension digi(g) — rank(g) by [12, Theorem
8.1.3(ii)]. Son™ S(g) is unruffled inS(g). ThusA is a flatZ-module by the second part of
the theorem.

SinceA is a direct sum of finitely generated (and so project@enodules, and projec-
tive modules over the polynomial algelraare (stably) free, flagss implies freeness in
this case. O

6.3. Questions of Borho and Joseph

Let g be a finite-dimensional complex semisimple Lie algebra. In a series of papers [4,
6—8] Borho and Joseph have studied the primitive speciruoh U (g) by partitioning x
into sheets. By definition, sheet in x is an irreducible subsé¥ of x which is maximal
such that GK-dim(U (g)/ P) is constant forP € ) and the Goldie dimension @f (g)/ P
is bounded forP € ). In [4, Corollary 5.6] it is shown that every sheetjnhas the form
X (J, 3), where the latter is defined as follows.
Let h be a Cartan subalgebra gfand letp be a parabolic subalgebra gfwith h C p
and with Levi decompositiop =m & [, and let; be the centre of. Let J be a primitive
completely rigid ideal of/ (1); this means thaf is not almost inducetfrom any proper

3 A primitive ideal of U (1) is almost induced if it is a minimal prime over an ideal of the foﬁ;ﬂ(l’, ) fora
parabolic subalgebng of I.
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Levi subalgebra of. (See [4, 5.6] for details; for example, a primitive ideal of finite codi-
mension is completely rigid, but not conversely in general.)¥ar;*, definel, (J, 1) to

be the annihilator iU (g) of U(g) Qu ) (U()/J) ® C;), whereC,, denotes the one-
dimensionalU (p)-module with weighty, where we identify; with p/[p, p] in order to
view U (3)-modules ad/ (p)-modules. Then

X(J.3) ={I € x: I is minimal overl,(J, 1), » €3*}. (50)

Another way of describing/(/, 3) is as the set of minimal primitive ideals of the prime
factorA = U(g)/P of U(g), where

P= ﬂ Ip(J, 1).

rez*

Fix a weightv such that/ is the annihilator of the irreducible highest weidh¢()-module
L'(v). Here, we can take € 3, the Killing orthogonal toz in b, so that;* is a Cartan
subalgebra ofl, []. ThenP is the annihilator inJ (g) of U(g) ®u ) (L'(v) @ U(3)).

Thus, to study the sheets jnamounts to studying the collection of minimal primitive
ideals of the factors of/ (g) of the form A. In particular, with the notation we have in-
troduced above, the shegtJ, 3) consists precisely of (the inverse imaged/ity) of) the
prime ideals ofA which are minimal over an ideal generated by a maximal ided,dhe
centre ofA. As is implied by Proposition 2.2.4, fa dense set of those maximal ideals
m of Z, mA is in fact prime and hence primitive. However, typically there are exceptional
m for which this is not the case, and in an atfat to remedy this one passes to the larger
algebra

Z =AQRyz Z,
where Z is the integral closure of in its quotient field. It is still not always true that

I = (I N Z)A for every minimal primitive ideal of A [6, 4.6], but Borho proves in [7,
Section 9, Theorem] that, at least wheis the augmentation ideal &f (1), every minimal

primitive / of A satisfies
1=\ (INZA.

The analysis ofd and x (J, 3) would be greatly facilitated if a positive answer to the
following question from [18] were known. (See also the closely related questionin [4, 5.3,
Remark (b)].)

1. Question. Is A a freeZ-module?

As we have noted in Example 2.4 2 js unruffled, and the same argument from [4, 5.8]
shows that

A is unruffled overZ. (51)
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Thus it is clear from Theorem 5.1 that Question 1 is closely connected to
2. Question. With the above notation, id Cohen—Macaulay?

We do not know the answer to this question. We shall show here however that, at least
in an important special case, a positive answer to Question 2 implies a positive answer
to Question 1. Retain all the notation already introduced in this subsectiori¥ Lis¢
the normaliser of in the Weyl groupW of g, and letW, = {w € W: wv = v}. By [9,
Proposition 6.1b] or [4, mof of Propositim 8.6(b)],

Z=56"",

wherex denotes the shifted actiom, * A = w(A + p') — p’, and whereo’ = —%(sum of
roots ing/p)|;. Now assume that

W, is generated by reflections (52)
so that, by the Shepherd—Todd—Chevalley theorem,
Z is a polynomial algebra (53)

Theorem. Retain the notation introduced in this subsection. Assume (52). If A is Cohen—
Macaulay, then A isafree Z-module.

Proof. Assume (52) and that is Cohen—Macaulay. In view of (53) and (51), the hypothe-
ses of Theorem 5.1.3 are satisfied, so we can concludeitisa flatZ-module. Thanks

to the local finiteness and complete reducibility of the adjoint actiop @h U (g), Aisa
direct sum of finitely generatedi-modules, so that is a freeZ-module as claimed. O

Remarks. 1. Wheng = sl(n), W is always generated by reflections. Moreover, the com-
pletely rigid primitive ideal/ of U () will always in thes[(n) case be co-artinian [4, 6.10].
Thus if we are concerned only with sheets of completely prime primitive ideélgdf(n)),
thenJ will always be the augmentation ideal Bf(l), sov = 0, and (52) is satisfied.

2. There are some tentative indications that “many” prime factors of enveloping algebras
U (g) of semisimple Lie algebras may be Auslander—Gorenfsgid/or Cohen—Macaulay.
For example, ifP is a maximal ideal ot/ (g) thenU (g)/ P is Auslander—Gorenstein by
[29]. On the other hand, iP is a minimal primitive ideal then the same conclusion holds
by [22]. This latter result can be generalisedPiis any primitive ideal oU (g) for which
(a) gr(P) is prime and (b) the closuK® of the associated (nilpotent) orfdit of P is Goren-
stein, then standard filtered—graded arguments yield tiigt/ P is Auslander—Gorenstein
and Cohen-Macaulay. Sufficient conditions for (a) to hold can be read off from [2]; and
(b) always holds for the normalisation 6X by [15] or [24], and hence always holds f6r

4 The definition is recalled in Section 6.4.
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itself in type A [19]. One can then hope to lift such a property fréhg)/ P to the closure
of the sheet containing. But since we have only partial results in this direction we shall
not pursue this here.

6.4. Factors of unruffled algebras

Suppose thaZ and A satisfy (2.1), withZ unruffled inA, and P is (say) a prime ideal
of A. Is A/ P unruffled overZ/P N Z? The example below shows that the answer is no
even whend is commutative. However, it may be that positive results can be obtained in
special circumstances; for instance, thightibe one route to a more elementary proof of
[4, Corollary 5.8], that prime factors of the enveloping algebra of a complex semisimple
Lie algebrag are unruffled over their centres, since it is relatively easy to seelthgt
itself is unruffled over its centre, Theorem &2In this subsection we show that, at least
under some additional hypotheses, the unrdffieoperty is stable under factoring by an
ideal of A generated by a prime ideal gf. On the way we derive some useful subsidiary
results.

Example. Let A = C[x, y, z] and letZ be the subalgebr&[x, yz] of A. It is trivial to
check thatZ is unruffled inA; equivalently (by Theorem 5.1.3)% is a flatZ-module. But
if we factor by the prime idealx — z) A we get the ruffled Example 2.4.3.

Theorem. Assume that A and Z satisfy hypotheses of Section 2.1 and (2) of Section 2.2
Supposethat Z issmooth, and unruffledin A. Let p beaprimeideal of Z of height £. Then:

(1) Z/pisunruffledin A/pA.

Supposein addition that A is Cohen—Macaulay. Let F denote the field of fractions of Z /p.
Then:

(2) GK-dimp(A/pA®z/p F)=n —d,
(3) GK-dimi(A/pA)=n —¢.

Proof. The Main Theorem 5.1.3 implies thdtis a flat Z-module. Hence, by the Equa-
tional Criterion for Flatness [13, Corollary 6.5 and Exercise 6.7],

the elements of \ p are not zero divisors id /pA. (54)

In particular,Z/p C A/pA, and this pair of algebras satisfies the hypotheses of Section 2.1
and (2) of Section 2.2.

(1) SinceZ is unruffled in A, the GK-dimension of the factorsA /pA)/(mA/pA) is
constant asn ranges through the maximal ideals Bfwhich containp. Hence unruffled-
ness ofZ/p in A/pA follows from Lemma 2.3.

(2) This is immediate from (1) and Lemma 4.1.

(3) The desired result is true when= 0 and also, by (2), whep is a maximal ideal
of Z. SinceZ is an affine domain there is a chainQpo Cp1 C---Cpe=pC--- Chg
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of prime ideals ofz. By (54) and [20, Proposition 3.15], the GK-dimension of the factors
A/p; A goes down by at least one as we pass up each step of the chain. Since the difference
between the GK-dimensions df and of A /py A is exactlyd, the GK-dimension must go

down by exactly one at each step, as required.

Parts (2) and (3) of the theorem failithout the Cohen—Macaulay hypothesis, as is
shown by Example 4.3.

We can improve (3) of the theorem by showing thgp A is GK-homogeneous, but only
under the extra— presumably superfluous — hypothesigitlsahuslander—-Gorenstein. Re-
call that a Noetherian rin is Auslander—Gorenstein if the R-moduleR has finite (equal)
right and left injective dimensions, arRl satisfies the Auslander conditions; namely, for
every non-zero left or righR-moduleM and every non-negative integerevery non-zero
submoduleN of Ext‘k(M, R) satisfiesjr(N) > i. Details and further references can be
found in [21], for example.

Lemma. Let R beaNoetherian Auslander—Gorenstein k-algebra, let z bea central element
of R, and let V be a non-zero finitely generated R-module on which z acts torsion freely.
Then jr(V) = jp.-(V @& RIz71).

Proof. Itis clear from the behaviour of Ext-groups under_central localisationjifi@at) <
Jr-y(V ®r R[z~1]). To prove the reverse inequality, Sét= V/Vz, so that there is an
exact sequence

0—VE3V_—5V_—o

The part of the long exact sequence of Ext-groups arqued;jz (V) is thus
Extl,(V, R) —> Ext,(V, R) - Exth(V, R) — Ext, ™" (V, R).

Here, Exfg(\_/, R) =0 by [21, Theorem 4.3], sinc® is Auslander-Gorenstein, showing
that Ext(V, R) has no{z'}-torsion. Thusiz (V) > jr.-1;(V ®& R[z7]), as required. O

Proposition. Assume that A and Z satisfy hypotheses of Section 2.1and (2) of Section 2.2
Supposethat A is Auslander—Gorenstein and Cohen—Macaulay, and that Z is smooth, and
unruffledin A. Let p beaprimeideal of Z of height £. Thenthereexistsanelement z € Z\ p
suchthat (A/pA) [z~1] is Auslander—Gorenstein and Cohen-Macaulay of dimensionn — £.

Proof. SinceZ is smooth, there exists an elemerih Z \ p such thap[z~1] is generated
by aregular sequendes, ..., x;} in Z. Asin the proof of the lemmdys, ..., x/} isareg-
ular sequence im. Thus(A/pA)[z 1] is Auslander-Gorenstein by [21, 3.4, Remark (3)].

To prove the Cohen—Macaulay property, letbe a finitely generatedA /pA)[z1]-
module. By [26, Corollary 11.68],

Jeaspay—y (L) = jap—y(L) — £ (55)
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Fix a finitely generated-submodulé.g of L such thatL = Lo ® A[z~1]. Then
Ja-1(L) = ja(Lo) (56)
by the lemma above and, sindeis Cohen—Macaulay,
ja(Lo) =n — GK-dimg(Lo). (57)

Since GK-dim(Lo) = GK-dim (L) by [20, Proposition 4.2], from (55)—(57) it follows
that

and this combined with Theorem 6.4 proves the resut.

Corollary. Assume that A and Z satisfy hypotheses of Section 2.1 and (2) of Section 2.2
Supposethat A is Auslander—Gorenstein and Cohen—Macaulay, and that Z is smooth, and
unruffledin A. Let p bea primeideal of Z of height £. Then A /p A is GK-homogeneous of
dimension n — ¢, and has an artinian quotient ring.

Proof. Letz € Z \ p be the element afforded by the proposition. By (54)pA embeds

in (A/pA)[z~1], and it is easy to check by a small adjustment to the proof of [20, Propo-
sition 4.2] that it is enough to prove that the desired conclusions holdi forA[z~1].

Now the case of grade zero of the Cohen—Macaulay property implies GK-homogeneity of
(A/pA)[z~1]. That this implies the existence of an artinian quotient ringAgpA now
follows from [21, Theorem 5.3]. O

7. Questions

Some of the questions listed here have already been mentioned earlier; we record them
again for the reader’s convenience.

7.1. GK-dimension

Is there a generalisation of the Main Theorem to settings where GK-dimension is not
defined? In particular, is there a good waydefine the Cohen—Macaulay property in the
absence of GK-dimension?

Example 4.4, the Heisenberg group algebks, is not Cohen—Macaulay with the defi-
nition 1.2 used in this paper; nor is it Cohen—Macaulay with the definition using the Krull
dimension. Moreover, if one definé&sull unruffled extensions in the obvious way, using
the Krull dimension rather than the GK-dimension, ttéh is not Krull unruffled over its
centreZ. Nevertheless; H is free overZ, which of course is smooth and affine. Is there a
version of the Main Theorem incorporating this example? For example, perhaps the correct
setting is that of algebras for which there is an integer such thats(—) := u — ja(-)
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defines an exact finitely partitive dimension function? By [21, Definition 4.5] this would
include Auslander—Gorenstein algebras suchrs

7.2. Density of unruffled points

(Borho—Joseph [4]; see Lemma 2.3). Suppose shahd Z satisfy hypotheses of Sec-
tion 2.1 and (2) of Section 2.2. Does the set of unruffled maximal ideals @dntain a
non-empty Zariski open subset 8f?

7.3. Existence of unruffled extensions

Find a more elementary proof of the fact that prime factors of the enveloping algebra of
a complex semisimple Lie algebra are unruffled over their centres. Find some other large
classes of unruffled extensions. For example, what about quantised enveloping algebras
U, (g) where the quantising parametgrs not a root of unity? Is a prime noetherian affine
Pl algebra with an affine centt@ always unruffled oveZ ?

7.4. Non-central subalgebras

Let B C A be any pair of affine noetherian algebras of finite GK-dimension. One can
clearly extend the definition of an unruffled extension to this setting: several variants come
to mind, but one might try requiring constancy of GK-dit ® g A) asM ranges over
all simple rightB-modules of fixed GK-dimension. Does this lead to an interesting theory?
Is there a version of the Main Theorem?

7.5. Unruffled factors

Is Corollary 6.4 true without the hypothesis thais Auslander—Gorenstein? Are all the
results of this paragraph valid without assumifigmooth, provideg is a smooth prime?

7.6. Factors of semisimple enveloping algebras

First, we repeat (a generalisation of) Joseph’s question from [18], already stated in Sec-
tion 6.3. LetP be a prime ideal of the enveloping algebra of a complex semisimple Lie
algebrag, and suppose is induced from a completely rigid primitive idedl of the en-
veloping algebra of a parabolic subalgepra® = 1,,(J, 1). Let Z be the normalisation of
the centreZ of A = U(g)/P. Suppose thaZ is smooth. IsA := A ®; Z a freeZ-module?

In view of the Theorem from Section 6.3 a positive answer to the above question would
follow from a positive answer to the following. With the above notation and hypotheses, is
A Cohen—Macaulay? One can also ask, of course, whetheAuslander—Gorenstein.

More generally, the partial results for primitive ideals discussed in Section 6.3 suggest
the following rather wild speculation: i is the normalisation of an arbitrary prime factor
of U(g), g semisimple, is the Auslander—Gorégis and/or the Cohen—Macaulay property
for A controlled by the corresponding property #6? In particular, which primitive factors
of U(g) are Auslander—Gorenstein or Cohen—Macaulay?
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7.7. The hypothesismA # A

As Mike Artin has observed to me, the hypothesis in the Main Theoremthag A
for all maximal idealsn of Z is notideal, in that (for example, whehis commutative) its
validity can be lost by localising at powers of a single elemem pé localisation which
would not damage flatness # were a flatZ-module. This suggests that the definition
of unruffledness is too strong — namely, we ought only to require that (1) holds for those
maximal idealsn of Z for whichmA # A. We would then aim to prove that (with and
Z asin Theorem 5.1), with Cohen—Macaulay and smooth,

Ais aflatZ-module ifand onlyif Z is unruffledinA. (59)

Much of the proof of Theorem 5.1.3 gogdwdugh unchanged in this setting, but a few
technical problems remain, so | leave it as a final open question whether (59) is true with
the weaker version of the definition of unruffled proposed above.
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