## MATHEMATICS

# ON THE CARDINALITY OF CLOSED SUBSETS 

BY<br>S. MROWKA and W. J. PERVIN *)

(Communicated by Prof. H. Freudenthal at the meeting of September 26, 1964)

It is well known [1] that the infinite closed subsets of $\beta N$ are of cardinality $2^{c}$. In contrast to this, we shall show (assuming the Continuum Hypothesis):

Theorem. No compact Hausdorff space has the property that all of its infinite closed subsets have cardinality $c$.

Proof. Let $X$ be a compact Hausdorff space with the stated property. First we observe that $X$ cannot contain any subspace which is the one point compactification of an infinite discrete space, for any set containing the ideal point would be closed. Now consider the derived sets $d(X)$, consisting of all limit points of $X$, and $d(d(X))=d^{2}(X)$. Both $d(X)$ and $d^{2}(X)$ are closed subsets of $X$, and so $d^{2}(X) \subseteq d(X)$. If $d^{2}(X) \neq d(X)$, then letting $x \in d(X) \backslash d^{2}(X)$, there is a closed neighborhood $V$ of $x$ such that $V \cap d(X)=\{x\}$. But then it is clear that $V$ is the one point compactification of the infinite discrete space $V \backslash\{x\}$, and this is a contradiction. On the other hand, if $d^{2}(X)=d(X)$, then clearly $d(X)$ is infinite and closed. Consequently, by our assumption, its cardinality is $c$. It is clear that the first axiom of countability is not satisfied in the space $d(X)$ at any of its points, for otherwise we could construct a closed countable subset of $d(X)$ and hence of $X$ by taking a convergent sequence and its limit. This, however, contradicts a theorem (utilizing the Continuum Hypothesis) of Mrówka [2] which states that a compact Hausdorff space of cardinality $c$ must contain continuously many points at which the first axiom of countability is satisfied.

It is natural to ask, given a compact Hausdorff space of cardinality $m>\boldsymbol{N} 0$, must it contain infinite closed subsets of cardinality less than $m$ ? The example of $\beta N$ shows that the answer is "no" for $m=2 c$. Assuming the Generalized Continuum Hypothesis, the answer is "yes" for all other cardinals $m>\boldsymbol{N}_{0}$; indeed, for $m=c$ this is the statement of the theorem and for $m>2^{c}$ we note that the space must contain a closed infinite subset of cardinality no greater than $2^{c}$ (the closure of any infinite countable set).

[^0]To conclude the paper we will show (without using the Continuum Hypothesis) that the theorem fails to be true without the assumption of compactness. We first need the following

Lemma. Let $Y$ be a topological space with the property that every infinite closed subset of $Y$ is of cardinality greater than or equal to $c$. Given a subset $B$ of $Y$ of cardinality $c$, there is a subset $A$ of $Y$ such that $B \subseteq A$, card $A=c$, and every infinite subset of $B$ has continuously many accumulation points in $A$.

Proof. Let $\mathscr{E}$ be the class of all countably infinite subsets of $B$. Clearly, card $\mathscr{E}=c$. For every $E \in \mathscr{E}, \operatorname{card} c(E) \geqslant c$, hence card $[c(E) \backslash E] \geqslant c$. We may then select a subset $F_{E}$ of $c(E) \backslash E$ with card $F_{E}=c$. Let $A=B \cup \bigcup\left\{F_{E}: E \in \mathscr{E}\right\}$. Clearly, $A$ has the required properties.

Theorem. These exists an infinite completely regular Hausdorff space $X$ with the property that every infinite closed subset of $X$ is of cardinality $c$.

Proof. Let $Y$ be an infinite completely regular Hausdorff space with the property that every infinite closed subset of $Y$ is of cardinality $\geqslant c$ (for example, we may take $Y=\beta N$ ). Let $A$ be a subset of $Y$ with cardinality $c$. We shall define a transfinite sequence $A_{\lambda}, \lambda<\Omega$ (where $\Omega$ is the first uncountable ordinal) of subsets of $Y$ as follows. We let $A_{0}=A$ and suppose that the sets $A_{\lambda}$ have been defined for every $\lambda<\lambda_{0}$ so that card $A_{\lambda}=c$. If $B=\bigcup\left\{A_{\lambda}: \lambda<\lambda_{0}\right\}$, then card $B=c$ and, by the lemma, we may let $A_{\lambda_{0}}$ be a subset of $Y$ such that $B \subseteq A_{\lambda_{0}}$ card $A_{\lambda_{0}}=c$, and every infinite subset of $B$ has continuously many accumulation points in $A_{\lambda_{0}}$. Finally, we let $X=\bigcup\left\{A_{\lambda}: \lambda<\Omega\right\}$. Clearly, $X$ is a completely regular Hausdorff space whose cardinality is $c$. Let $F$ be an infinite closed subset of $X$. Then $F$ contains a countably infinite subset, say $E$. There is a $\lambda_{0}<\Omega$ such that $E \subseteq \bigcup\left\{A_{\lambda}: \lambda<\lambda_{0}\right\}$, and hence $E$ has continuously many accumulation points in $A_{\lambda_{0}}$. Thus, card $c_{X}(E) \geqslant c$, but $c_{X}(E) \subseteq F$, and so card $F \geqslant c$. On the other hand, it is clear that card $F \leqslant c$.

The Pennsylvania State University

## BIBLIOGRAPHY

1. Novák, J., On the cartesian product of two compact spaces, Fund. Math. 40, 106-112 (1953).
2. Mrówka, S., On the potency of compact spaces and the first axiom of countability, Bull. Pol. Acad. Sci. 6, 7-9 (1958).

[^0]:    *) The authors were supported by the National Science Foundation under research grant NSF GP-1843 and NSF G-22690.

