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Let Cay(S : H) be the Cayley digraph of the generators S in the group H. A one-way infinite 
Hamiltonian path in the digraph G is a listing of all the vertices [q: 1 ~< i <oo], such that there is 
an arc from vi to vi+ 1. A two-way infinite Hamiltonian path is similarly defined, with i ranging 
from -0o to oo. In this paper, we give conditions on S and H for the existence of one- and 
two-way infinite Hamiltonian paths in Cay(S:H) .  Two of our results can be summarized as 
follows. First, if S is countably infinite and H is abelian, then Cay(S : H )  has one- and two-way 
Hamiltonian paths if and only if it is strongly connected (except for one infinite family). We also 
give necessary and sufficient conditions on S for Cay(S :H)  to be strongly connected for a large 
class of Cayley digraphs. Second, we show that any Cayley digraph of a countable locally finite 
group has both one- and two-way infinite Hamiltonian paths. As a lemma, we give a relation 
between the strong connectivity and the outer valence of finite vertex-transitive digraphs. 

I.  Introduction 

Let S generate the group H. We define the Cayley digraph of the generating set 
S in the group H, denoted Cay(S :H), to be the directed graph with vertex set H 
and arc set {(v, vs): v~H,  s~S}. When we write Cay(S:H) we will assume 
implicitly that S generates H. We will sometimes use Cay(S) to mean Cay(S: (S)). 
A one-way infinite Hamiltonian path in an infinite directed graph, G, is a 
sequencing of the vertices of G, [vi: 1<~i< oo] such that for each i there is an arc 
joining vi to w~+l. Similarly, we define a two-way infinite Hamiltonian path to be a 
sequencing [v~:-oo<i<oo] with the same property. For simplicity we will fre- 
quently write one-(two-)way path instead of one-(two-)way infinite Hamiltonian 
path. 

Witte [3] has shown that every Cayley digraph of a countably infinite abelian 
torsion group has both one- and two-way paths. In this paper we will investigate 
the existence of infinite paths in other Cayley Digraphs. 

Witte and Gallian [4], Alspach [1], Witte [3], and Witte, Letzter and GaUian [5] 
survey recent work on finite and infinite Hamiltonian paths and circuits in Cayley 
graphs and digraphs. 
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2. Notation and preliminaries 

A n  arc is a directed edge. The inner (outer) valence of a vertex is the number  of 
arcs entering (leaving) the vertex. If G is a digraph, V ( G )  is the vertex set of G, 
hence, if G = Cay(S : H),  then V(G)  = H. If C is a subset of V ( G )  then by G - C 

we mean  the digraph whose vertex set is V ( G ) - C  and whose arc set consists of 
those arcs of G both of whose endpoints lie in V ( G ) - C .  

A path in G can be denoted either by specifying the vertices, [v~: l<-i<~n],  

which we will do using square brackets, or by specifying the arcs, (a~: 1 ~< i ~< n - 1) 
which we will do using parentheses.  In Cayley digraphs we will frequently write 
(s~: 1 ~< i <~ n -  1) where for each i, s~ is the generator corresponding to the arc a~. 
It is then necessary to specify the initial point, which we will usually do by saying 

that (s~: 1 <~ i ~< n - 1) is a path from vl to v,. When speaking of a one-arc path (s) 
we will frequently leave out the parentheses and write s. If (p~: 1 ~< i ~ n) is a set of 

paths then by (Pi: 1 <~ i ~< n) we will mean the path whose generating sequence is 
the concatenation of the sequence of generators corresponding to the paths p~. 
Note that the terminal vertex of p~ need not be the initial vertex of p~+l. A 
Harniltonian path in G is a path which includes each vertex of G exactly once. 

A digraph G is vertex transitive if for every pair of vertices a and b of G, there 

is an automorphism of G which takes a to b. Intuitively, a vertex transitive 
digraph is one that 'looks the same'  from every vertex. In C a y ( S : H )  the map 
x ~--~ba-~x is a digraph automorphism taking a to b; hence every Cayley digraph 
is vertex transitive. In a vertex transitive digraph, G, the outer (inner) valences of 
the vertices of G are independent  of the choice of vertex, so we may speak of the 
outer (inner) valence of G. If G is also finite then the inner and outer valences are 
equal. 

If O is a digraph and for every pair of vertices a and b of G there is a path 
from a to b or a path from b to a, then G is said to be unilaterally connected. If 

for every pair  of vertices a and b there is a path from a to b, then O is strongly 

connected. Every vertex, a, of a digraph, G, is contained in a unique, maximal,  
strongly connected subdigraph of G called the strongly connected component  of  a. 

Since every Cayley digraph Cay(S :/-/) is vertex transitive, Cay(S : H)  is strongly 
connected if and only if for each element  a of H, there is a path from e to a. 
(Here e is the identity of H.) Let (sl, S z , . . . ,  s,) be such a path. Then  the product 
s l s z " ' s , ~  = a. Hence a Cayley digraph Cay(S :H)  is strongly connected if and 
only if every element  of H is a product of elements of S. However, by  definition 
of generating set, every e lement  of H is a product of elements of S and their 

inverses. Hence  it is sufficient for C a y ( S : H )  to be strongly connected that for 
each s in S, s -x is a product of elements of S. Conversely, if Cay(S :H)  is strongly 
connected, then for each s in S there is a path from e to s -~. We have proven the 
following. 

q[]lteorem. Cay(S :/-/) is strongly connected if and only if, for each s in S, there is a 
sequence, (s~: 1 <~ i <- n), o f  elements o f  S with s -1 = sxs:" • • s,. 
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Most of the Cayley digraphs considered in this paper will be in abelian groups 
and for these we will write the group operation additively. We will use 7/ to 
denote the integers, Q the rationals, and R the real numbers. 

A torsion group is a group each of whose elements has finite order. The torsion 
subgroup of an abelian group is the set of all elements of finite order. A 
torsion-free group is a group no nonzero element of which has finite order. It is 
known that every torsion-free abelian group is a subgroup of a vector space over 
Q. The rank of an abelian group is the maximum number of elements that are 
linearly independent over 7/. Every rank n torsion-free abelian group is isomor- 
phic to a subgroup of Q". 

3. Some necessary conditiom 

It follows immediately from the definition that in order for a directed graph to 
have either a one- or two-way infinite Hamiltonian path it must be countable. We 
can impose further necessary conditions on the graph by considering various 
forms of connectedness. 

A graph G is k-divisible if there is a finite set F of vertices such that G - F  has 
at least k infinite connected components. A graph is k-indivisible if it is not 
k-divisible. Every graph with a one-way path is 2-indivisible and every graph with 
a two-way path is 3-indivisible. Notice that Cay(S :Z) is 2-divisible for any finite 
set S, so it cannot have a one-way path and also that Cay({a, b}:H), where H is 
the free group on a and b, is k-divisible for every k and so has neither one- nor 
two-way paths. 

Another property of directed graphs which is closely related to the existence of 
infinite paths is strong connectivity. 

'I'neorem 3.1. If Cay(S:H) has a one-way in]inite Hamilton~an path then it is 
strongly connected. I f  Cay(S : H)  has a two-way inlinite Hamiltonian path then it is 
unilaterally connected. 

Proof. Choose a and b in H. Suppose Cay(S:H) has a one-way path. By the 
vertex transitivity of Cayley digraphs, we lose no generality in assuming that the 
path starts at a. But then since every vertex, including b, is included somewhere in 
the path, some initial segment of the one-way path is a path from a to b. 

Now suppose instead that Cay(S :H)  has a two-way path. Then both a and b 
appear in it so some seooment of the two-way path joints the earlier one to the 
later one. Hence the digraph is unilaterally connected. El 

In general, it is not true that a Cayley digraph with a two-way path is strongly 
connected; however, Witte [private communication] has classified all Cayley 
digraphs with two-way paths which are not strongly connected. We present his 
result next. 
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l l m o r e m  3.2 [Witte]. Suppose C a y ( S : H )  is infinite and not strongly connected. 
Then Cay(S : H )  has a two-way infinite Hamiltonian path i[ and only i[ there is a 
subset T o[ S and an element s in S such that (T) is finite and normal in H, T Ll {s} 

generates H, and Cay(T) has a Hamiltonian path. 

Proof.  First suppose C a y ( S : H )  has a two-way path. Define ~< on H by g ~< h if 
there is a path from g to h. Since C a y ( S : H )  is unilaterally connected, g ~< h or 
h ~< g. Let g ~ h if g <~ h and h ~< g. Then  - is an equivalence relation, and the 
equivalence classes of - (denoted by square brackets) are the strongly connected 

components of Cay(S :H) .  
Since paths can be translated by an element  of the group, ~< is left H-invariant ;  

i.e., a<~b if and only if xa<-xb. Thus a - - b  if and only if e--a-Xb.  Hence I = [ e ]  
is a subgroup and the strongly connected component of a in Cay(S :H)  is aL Let  
T = I f3 S. Suppose a ~ / ,  say a sis2 • sk, a-1 . .  = "" =sk+l "sn, s ~ S .  T h e n s l i s a n  
arc from e to Sl and ( s 2 , . . . , s , )  is a path from Sl to e. Hence s l ~ L  Inductively, 
we can show s~ ~ 1 for each i. Hence  I = (T). 

Let  P = [ v i : - o o < i < o o ]  be a two-way path in Cay(S: G). Then v~<~vi for i < ]  
and [h] must be a sequence of consecutive vertices of P for each h in H. Since 
Cay(S :H)  is vertex transitive, its strongly connected components are isomorphic, 
as digraphs. Hence  there are three possib'dities. Either all components are finite, 
or there is one infinite component,  or there are two infinite components, C = 
{vi: i < r} and C '  = {vi: i ~> r} for some r. The second case contradicts our assump- 
tion that Cay(S : H )  is not strongly connected. In the third case, every vertex a in 
C has the property that a ~< b for all b in H while the vertices in C '  do not have 
this property. This contradicts the vertex transitivity of Cay(S :H) .  Hence I is 
finite. 

Let  N~, -o0<i  <0% be the distinct connected components of Cay(S:H) ,  where 

N o = I  and N~+I is the successor of Ni in P. We have [b] is the successor of [a] if 
and only if [ a ] # [ b ]  and a<-c<-b if and only if [ a ] = [ c ]  or [b ]=[c ] .  This 
condition is left H-invariant ,  so [b] is the successor of [a] if and only if [xb] is the 
successor of [xa]. Let vi be the last vertex of P in No and s = vT, lv~+~. Since [vi+l] 
is the successor of [v~], [xs] is the successor of [x] for all x in H. Therefore 

Ni = [s~]= si/, and H = ( s ,  I). For g i n / ,  [gs] is the successor of [g ]=  No, so gs ~sI. 
Therefore I is normal in (ILl{s})= H. Of course the portion of P in I is a 
Hamil tonian path in Cay(T). 

Conversely, suppose (T) is finite and TO{so} generates H, and (sl, s 2 , . . . ,  s~) is 
a Hamil tonian path in Cay(T). Let  Vo=0, and define v~, -oo<i  <0% such that 
V~+x=V~+Sk where k = i  (mod n + l ) .  Then [v~:-oo<i<oo] is a two-way infinite 
Hamil tonian path  in Cay(S: H). [ ]  

4. A sufficient condition 

Let  G be an infinite digraph. Suppose that for any finite set F of vertices of (3, 
( 3 -  F is strongly connected. Then  we say that G is infinitely strongly connected. 
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Theorem 4.1. Let G be a countable, infinitely strongly connected digraph. Then G 
has both one- and two-way infinite Hamiltonian paths. 

The result is implicit in the proof of Witte [3, Theorem 7.1] but  we present it 
here  for completeness. 

Proof .  Let O ={gx, g2,.--}- We construct a one-way path inductively. Let n ( 0 ) =  
0, and x0 = gl- Given the sequence [x~: 0~<i ~<n(k)] we let g be the element  of G 
with least index which does not occur in [x~:O<~i<~n(k)]. Let  [x~: n(k)~i<~ 
n ( k +  1)] be a path from X~k~ to g in G-{x~:  O<~i<~n(k)-l}. Then [x~: 0 ~ < i < ~ ]  
is a one-way infinite Hamil tonian path  in G. 

We can construct a two-way path similarly by adding to alternate ends of the 
sequence. []  

The following theorem is a partial converse to Theorem 4.1. 

Theorem 4.2. I f  G is a digraph with a one-way infinite Hamiltonian path, and if 
each vertex of G has infinite inner and outer valence, then G is infinitely strongly 
connected. 

Proof.  Let [go, g l , - - - ]  be a one-way infinite Hamil tonian path in G. Let F be a 
finite subset of V(G)  and let x and y be two elements of V ( G ) - F .  Let n be the 
largest index of an element of {x, y} 0 F. Since x has infinite outer valence, there is 
an integer k > n such that (x, gk) is an arc of G. Since y has infinite inner valence, 
there is an integer t >  k such that (g,, y) is an arc of G. Then [x, gk, gk+l, • - . ,  g,, Y] 
is a path from x to y in G - F .  Since x and y were arbitrary, G - F  is strongly 
connected and, hence, G is infinitely strongly connected. []  

5. Digraphs of inCmitdy generated groups 

In this section, we give necessary and sufficient conditions for Cayley digraphs 
of many  infinitely generated groups to have Hamil tonian paths. (By infinitely 
generated groups we mean  groups which have no finite generating set.) 

Theorem 5.1. Suppose H is infinitely generated and for every finite subset M of H 
there is a finite subset S' of S such that: 

(1) M c ( S ' ) ;  
(2) Cay(S')  is strongly connected; 
(3) (s') NH((S')). 

Then C a y ( S : H )  /s infinitely strongly connected. 

Proof .  Given F a finite subset of H and x and y not in/7, we wish to find a path  
from x to y in H \ F .  Take M in the conditions of the theorem to be FO{x,  y}. 
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Let H ' = ( S ' )  and N = N r r ( H ' ) .  Pick v ~ N \ H ' .  Take a path in C a y ( S : H )  of 
minimum length from H '  to v. (We know one exists since the conditions of the 
theorem imply that Cay(S) is strongly connected.) Follow this with a path of 
minimum length from v to H ' .  This gives us a path through v with only its 
endpoints in H ' .  We can translate this by an element of H '  so that the initial point 
of the path is 1, giving us a path [ 1, v 1, v2, • • . ,  v.~ ] in Cay(S : H)  which intersects 
H '  only at its endpoints and which passes through an element of N \  H ' ,  say v,. 

L e t  h = v ~ x - l y v ~ % , .  By the normality of H '  in N, h ~ H ' .  Since Cay(S' : H ' )  is 
strongly connected it has a path [1, h ~ , . . . ,  ha = h]. The path 

[x, xv l ,  xv2, . . . , xv, ,  xv ,  hl,  xv ,  h2, . . . , xv ,  h, xv ,  hv~%,+l,  

xv ,  hv-~%,+2, . . . ,  xv ,  hv-~%,, = y] 

does not intersect H '  except at endpoints because [v~ , . . . ,  vm-t] does not 
intersect H ' ,  and became x, h, v ,  hv~ ~, and ~ are in H '  for all n and i. This gives 

us the desired path. [] 

I z m m a  5.2. A s s u m e  C a y ( S : H )  is strongly connected. Then for each finite subset 

R of  H,  there is a finite subset S '  of S such that R c ( S ' )  and Cay(S') is strongly 

connected. 

Proof. Let  R be a finite subset of H. We know there is a finite subset of S which 
generates all the dements  of R, say {tl, t 2 , . . . ,  ~} = T. Since Cay(S :H)  is strongly 
connected, for each i we can express t~ -1 as a product of elements of S, say 

t~ 1 = S~,lSi.2 " " • si,,(o. 

Le t  S ' = T O { s i j : l < ~ i < ~ n ,  l<~]<r(i)}.  Since T c S ' ,  we have R c ( S ' )  so all we 
need to show is that Cay(S') is strongly connected, or equivalently, that for each 
s ~ S',  s -x is a product of elements of S'. This is clear if s ~ T. Suppose then that 

$ = S i d .  T h e n  

S - 1  = S - .  t id = S i d + l "  " " Si . r ( i )~iSi ,1"  " Sial-- l"  

This completes the proof of the lemma. []  

~ r e m  $.3. Suppose H is infinitely generated and there is a finitely generated 

normal  subgroup K of H such that H / K  is nilpotent. Then the following are 

equivalent: 
(i) Cay(S : H )  is strongly connected; 

(ii) C a y ( S : H )  has a o n e - w a y  infinite Hami l ton ian  path; 
(iii) C a y ( S : H )  has a t w o - w a y  infinite Hami l ton ian  path. 

Proot .  By Theorems 3.1 and 3.2, (ii) and (iii) each imply (i). By Theorem 4.1, it 
suffices to show that strong connectivity implies infinite strong connectivity. For 
this we use Theorem 5.1. Assume Cay(S : H)  is strongly connected. Given a finite 
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subset M of H we must construct S'  to satisfy properties (1), (2) and (3). By 
Lemma 5.2 there is a finite subset S'  of S such that M t.J K = (S') and Cay(S') is 
strongly connected. Also since H/K is locally nilpotent and K = ( S ' ) ,  
(S') =/= Nrr((S')). This completes the proof. []  

Remark. Many groups satisfy the conditions of Theorem 5.3, for example any 
infinitely generated group H such that either H '  (the commutator subgroup of H)  
is finitely generated or H is nilpotent. 

6. A ~  grOUl[~ 

In this section we will give necessary and sufficient conditions on an infinite 
generating set of an abelian group for the corresponding Cayley digraph to have a 
one-way path. We will also give conditions for the existence of two-way paths 
which are always sttlticient and usually necessary. 

I_emma 6.1. Suppose F is a j'inite subgroup of the abelian group H and Cay(S : H)  
is strongly connected. Then Cay(S : H )  is infinitely strongly connected if and only if 
Cay(S/F : H/F)  is inl'initely strongly connected. 

l~roo|. Suppose first that Cay(S) is infinitely strongly connected. Let R / F  be a 
finite subset of H/F and pick x/F and y/F not in R/F. Since there is a path from x 
to y in Cay(S) which avoids R +F,  the image of this path in Cay(S/F) is the 
desired path. 

Now suppose Cay(S/F) is infinitely strongly connected. This implies that S is 
infinite. For each ordered pair (a, b) of elements in F choose a path in Cay(S) 
from a to b. Let P be the union of these paths. Choose any finite subset R of H 
and x and y disjoint from R. Let Q be the union of all cosets of F which contain 
the difference of an element of R and an element of P. 

Since Q is finite we can find s and t in S such that x + s and y - t are not in Q. 
Let  (sl/F, . . . , s,]F), si ~ S, be a path in Cay(SIF) from (x + s)/F to (y - t)/F which 
does not intersect Q/F. Then (s, s l , . . . ,  s,) is a path in Cay(S) from x to y - t - f  
for some f in F. Let ( S , + l , . . . , s , , )  be the path in P from 0 to f. Then 
(s, s t , . . . ,  sin, t) is a path from x to y which does not intersect R. []  

l~rama 6.2. Suppose Cay(S:Z k) is strongly connected, S is inlinite, and k > 1. 
Then Cay(S :Z k) is in[initely strongly connected. 

Proot .  Let R be a finite subset of 7/k and x and y be disjoint from R. Let 
S'  = {ei: - k  ~< i ~< k, i~  0} where e~ denotes the element ( 0 , . . . ,  0, 1, 0 , . . . ,  0) of 
7/k, the 1 occurring in the ith position, and e_i = -e~. Let p~ be a path from 0 to e~ 
in Cay(S) and let N be the maximum distance from any point in these paths to the 
or ion .  Let M be the maximum distance of any point in R from the origin. Choose 
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s and t in S such that x + s and y -  t are at least a distance of N + M from the 

origin. 
Since k > 1 there is a path from x + s to y -  t in Cay (S ' : 7  k) which never goes 

within N + M  of the origin, say (ei(,o: 1---<n---< m). Then (Pioo: l<~n~<m) is a path 
in Cay(S) f rom x + s to y -  t which does not go within M of the origin. The 

desired path is (s, P~(i~,--., P~o-), t). []  

T h e o r e m  6.3. I f  (S)=  H is a countable abelian group with no cyclic subgroup of 
~inite index and S is in[inite, then the following three statements are equivalent: 

(i) C a y ( S : H )  is strongly connected; 
(ii) C a y ( S : H )  has a one-way in[inite Hamiltonian path; 

(iii) C a y ( S : H )  has a two-way infinite Hamiltonian path. 

Proof. If H is infinitely generated this is a special case of Theorem 5.3, so we may 
assume H is finitely generated. As in the proof of Theorem 5.3, we need only 
show that strong connectivity implies infinite strong connectivity. Let T be the 
torsion subgroup of H. By Lemma 6.1 it suffices to show that Cay(S /T :H/T )  is 
infinitely strongly connected. But H / T  is isomorphic to 7/k for some k > 1, so by 
Lemma 6.2 we are done. []  

Theorem 6.4. Cay(S :7/) is infinitely strongly connected if and only if S is un- 
bounded above and below. 

Remark .  Combined  with Lemma 6.1, Theorem 6.4 gives us a test for infinite 
strong connectivity of Cayley digraphs in any abel ian group with a cyclic subgroup 
of finite index. From Theorems 4.1 and 4.2 we know that this test is necessary and 
sufficient for the existence of one-way paths though only sufficient for the 
existence of two-way paths in Cay(S) with S infinite. 

Proof. First suppose S is bounded above. Let  n be the maximum element  of S. 
Then there is dear ly  no path from 0 to n + 1 in Cay(S) which does not intersect 
{1, 2 , . . . ,  n}, so Cay(S) is not infinitely strongly connected. The proof is similar 
for S bounded below. 

Now suppose that  S is unbounded above and below. By the test given in the 
next section, Cay(S) is strongly connected. Let p be a path from 0 to 1. Since we 
can change the order of generators to have all negative generators follow all 
positive generators, we may assume no vertex in the path  p is negative. 

Pick R finite and x and y disjoint from R. Let  r be the maximum element  of R. 
By the unboundedness  conditions on S, there exist s and t in S such that 
r < x + s < y - t. The path (s, p, p, . . . ,  p, t) where p is repeated y - t -  x - s times is 
the desired path. []  

Remark .  Let  S = { - 1 ,  1 , 2 , 3 , . . . } .  Then  Cay(S:Z)  is countable, two indivisible, 
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and strongly connected, but Theorem 4.2 shows that it has no one-way infinite 
Hamil tonian  path. This counterexample shows that the conjunction of the neces- 
sary conditions given in Section 3 for the existence of a one-way path, is not 
sufficient. 

We conjecture that if H is a countable abelian group and Cay(S : H) is strongly 
connected, then  Cay(S : H )  has a two-way infinite Hamil tonian  path, and further- 
more, if H has rank greater than 1, Cay(S :H)  has a one-way infinite Hamil tonian 

path. 

7. A test for strong connectivity 

In this section we provide a test for strong connectivity for a large class of 

Cayley digraphs. 

L e m m a  7.1. Suppose T is a torsion subgroup of the center of H. Then Cay(S : /- /) /s  

strongly connected if and only if Cay(S/T :H/T) is strongly connected. 

ProoL If s - l  = sis2 " " s, then (s/T) - i  = (sl /T) " " (s,[T) so Cay(S/T) is strongly 
connected if Cay(S) is. 

Now suppose Cay(S/T) is strongly connected. Choose s ~ S. We must  express 
s -a as a product  of elements in S. We know there exist s ~ , . . . ,  s, ~ S such that 

(s/T) -1= ( s J T ) . . .  (s,,/T). Hence there is a t in T such that s - 1=  sxs2. . . s , , t .  
Since T is torsion, t has finite order, say m. Then s - ~ = s - " s  m-~= 
(Sl'"" Sn)mS ra-1, and we are done. []  

Corollary 7.2. Suppose H is abelian and T is the torsion subgroup of H. Then 
Cay(S : I4) is strongly connected if and only if Cay(S/T : H / T )  is strongly connected. 

We next give a test for strong connectivity of Cay(S :H)  for H a torsion free 
abelian group of finite rank. Combined with Corollary 7.2, this gives a test for 
strong connectivity of any finite rank abelian group. 

Theorem 7.3. Suppose H c 0"  has rank n. Then Cay(S" H)  is strongly connected if 

and only if  the projection of S to every one-dimensional subspace of R ~ has both 
positive and negative elements. 

]Proof. First  suppose there is a projection P to a one-dimensional  subspace such 
that P(s) >~ 0 for all s in S. P(s) can not be 0 for all s since H has rank n, so there 
is some s with P ( s ) > 0 .  Then P ( - s ) < 0 ,  and dear ly  - s  cannot be a sum of 
elements of S. The proof is similar for P ( s ) ~ 0 .  

Now suppose the projection of S to every one-dimensional  subspace of R" has 
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both  positive and negative elements, or  equivalently, that  S contains points on 

each side of every (n -1 ) -d imens iona l  hyperplane containing 0. Let U =  
{r~sl +" • • + rkSk : Si ~ S, ri positive real, and k >I 0}. Clearly U is convex, and since 
r ank(H)  = n, U is contained in no ( n -  1)-dimensional hyperplane.  It  follows that 

U is the union of a convex open set V and a subset of the boundary  of V. If 0 
were not in V, there would be an (n -1 ) -d imens iona l  hyperplane containing 0 

with V entirely on one side of it, hence with U containing no point on the other 

side, a contradiction. 
Pick s ~ S. Since 0 ~ V, there is a positive rational multiple of - s  in V. Hence 

there are positive reals r ~ , . . . ,  rk and s ~ , . . . ,  sk ~ S with - s  = rxsl +" • • + rksk. 

Since S = Q " ,  there are also positive rationals r ~ , . . . ,  r~ which satisfy the same 

equation. Multiplying through by the least common denominator ,  m, we get 

positive integers a x , . . . ,  ak with - m s  = axsx +" • • + akSk. 

Finally, --s = (m -- 1)s + axSl +" • • + aksk. [] 

8. Locally rm~e groups 

In this section we prove that  every Cayley digraph of a countable locally finite 

group has one- and two-way paths. (A locally finite group is one in which every 

finite subset generates a finite subgroup.) We  will first need a result relating the 

strong connectivity of a finite vertex transitive digraph to its outer  valence. By 

strong connectivity we mean the minimum number of vertices which can be 

removed from a digraph such that  the remaining digraph is either not strongly 

connected or is trivial. 

Theorem 8.1. Let  G be a finite, connected, vertex transitive digraph with outer 

valence r and strong connectivity k. Then k > (1/2)r and 1/2 is the best possible 

constant in this inequality. 

Proof .  Watkins [2] has a similar result for undirected graphs; we will adapt  his 

argument  to digraphs. Let  G, k, and r be as in the hypotheses of the theorem. Let  

n = I V(G)I .  W e  say  a subset C of V ( G )  is a cut set if G - C  is not strongly 
connected or is trivial, and let C(G)  denote the collection of minimum cut sets, 

i.e. those of cardinality k. If G - C  is trivial for some C ~  C ( G ) ,  then k = n -  1 
and the theorem is certainly true so we may  assume that  G - C  has at least two 
vertices. If A and B are two subsets of V ( G )  we say that  A points to B if there 

are vertices Vl of A and v2 of B such that  (vl, v2) is an arc of G ;  in this case we 
will also say that  B is pointed to by A .  If A points exclusively to itself and to B, 
i.e., A does not  point  to V ( G ) - A - B ,  then we say that  A is a pointer to B. 
Similarly, if V ( G ) - A - B  does not point  to B, then we say that B is an 
antipointer of A.  Clearly V ( G ) - A  is a pointer  to A,  and we will consider this 
case as trivial. 
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8.2. Let C be a subset o[ V(G) .  Then C is a non-trivial cut set of G if and 
only if C has a non-trivial pointer. 

Proof .  Suppose C has a non-trivial pointer, A.  Let v c A  and w ~ V ( G ) - C - A .  
Then  there are no arcs from A to V ( G ) - C - A  so there can be no path from v 

to w in G - C .  Thus C is a cut set. 
Conversely, suppose C is a non-trivial cut set. Then G - C is a union of at least 

two disjoint s trong components  with vertex sets At ,  A2, • . . ,  A~. For any s, either 

As is a pointer to C or there is some s' different from s such that  As points to As,. 
Suppose there are no pointers to C. Then  there is an infLrfite sequence 

A/ca ), A i (2 ) . . . .  such that  each strong component  points to the next. Since G is a 
finite digraph, there must  be repetitions. However  if each set in the sequence 

Aj(I~, Aj (2~ , . . . ,  Aj(t~ points to the next then the subdigraph on the union of 
Ai(l~, Ajt2~, . . .  is strongly connected, contradicting the fact that  each A~ is a 

strong component.  Hence  at least one of the components must  be a pointer to 

c.  [] 

In an analagous manner  we can show that C is a cut set if and only if C has a 
non-trivial antipointer.  

Let p(G)=min{[V(A)l: A is a pointer to C and C~C(G)}.  A pointer, A,  is 
called an atomic pointer if [A[ = p ( G ) .  We analogously define q(G) to be the 

smallest size of antipointers of minimum cut sets, and an atomic antipointer to be 

an antipointer of this size. 

If we reverse the directions of all of the arcs of G, we get a new vertex 

transitive digraph, G ' ,  with the same r and k but  q(G)= p(G' )  and p ( G ) =  q(G') 
since pointers become antipointers and vice versa. We therefore lose no generality 
in assuming that  q(G)>I p(G) .  With this assumption we can prove the following 
lemma.  

I~mma 8.3. Distinct atomic pointers of G are disjoint. 

P r o o | .  Assume the contrary. Then there are two distinct atomic pointers A t  and 

A 2 with non-empty  intersection. Let  the mhnimum cut sets to which these point be 

Ca and (72, respectively. Let  R t =  V ( G ) - ( A t O q )  and R2 = V(G)-(A2OC2) .  
Let D t=(CtAR2)U(CtAC2)U(C2ORt )  and D2=(CtNA2)U(CtAC2)U 
(C2 O A1). By the definition of pointer, A t  does not point to V ( G ) -  A t  - C1 and A2 
does not point to V ( G ) -  A 2 -  C2 so A t  n A2 does not point to ( V ( G ) -  A t -  CO U 
( V ( G ) -  A 2 -  C2) = V ( G ) -  A t  n A 2 -  D2. Hence  A t  n A2 is a pointer to D2. 
Clearly A~ U A2 is a pointer  to D~. Also we have 

IDll + 1921 = IO1U O21+ IO1 no21 = I q  U C21 + I q  n C21 = I q l  + IC2l = 2k. 

Since A t  AA2 is a non-trivial pointer to /)2, /)2 is a cut set and since 
IA1NA21<IAII=p(G), 1)2 is not  a minimum cut set; hence 1921> k. Therefore,  
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IDd < k. This makes it is impossible that  D1 is a cut set, so Ax t.J A2 is a trivial 

pointer,  i.e., A1 t.J A2t.J Dx = V(G). But A1 does not  point to R1 so R1 is an 
antipointer of C1. 

Thus IRd >~ q(G)~  p ( G )  = IA21, and hence 

2p(G) + k ~IAal + IRll +1Cll = I V(G)I = IA1U A2 U 911 ~ IAll + IA21 + 1911 
< 2p(G)  + k. 

This contradiction completes the proof of the lemma.  [ ]  

Since there is some minimum cut set with an atomic pointer,  by vertex 

transitivity, every vertex must  be contained in at least one such cut set. It  follows 
that  there are at least V(G)/k  minimum cut sets with atomic pointers. Two 

distinct minimum cut sets cannot share a single pointer since their intersection 
would also have that pointer  and would therefore be a smaller cut set. There are 

thus at least V(G)/k  distinct atomic pointers. These are disjoint so we have 

V(G)>~ p(G)(V(G)/k)  or p ( G ) ~  k. But each vertex of a pointer can point only to 

other  vertices of the pointer  and to those of the cut set, so r ~< p ( G ) -  1 + k < 2k. 
To show that  1/2 is the best  possible constant we exhibit a sequence of digraphs 

for which k/r approaches 1/2. 

Let A be the complete graph on n vertices. Let  G be formed by taking three 

copies of A and adding arcs from each vertex of the first copy to each vertex of 

the second copy, each of the second to each of the third, and each of the third to 

each of the first. Then it is easily seen that G has strong connectivity n and outer 

valence 2 n - 1  so k / r=n / (2n -1 )  which approaches 1/2 as n grows without 
bound. [ ]  

Remark .  Theorem 8.1 is considerably stronger than what we will need to prove 

Theorem 8.4. For our  purposes it would have stttticed to prove that  k goes to 
infinity as r does. However  we consider the above result to be elegant enough in 

its own right to present  it in full. 

• v a ~ r e m  8.4. If  H is a countable locally finite group, and S is any generating set 
for H, then C a y ( S : H )  has one- and two-way inlinite Hamiltonian paths. 

Proof .  By Theorem 4.1 it suffices to prove that  C a y ( S : H )  is infirtitely strongly 
connected. Let  R be a finite subset of H and x and y elements not  in R. We wish 

to show that  there is a pa th  from x to y in H - R .  Let S '  be a finite subset of S 

with at least 2]R[ elements such that R O{x, y } c ( S ' ) .  Then  Cay(S ' )  is a finite 
connected vertex transitive digraph with outer  valence at least  2 IRL so it has 
strong connectivity at least IRI+I. Thus C a y ( S ' ) - R  is strongly connected and 
contains a path  from x to y. Since Cay(S')  is a subdigraph of Cay(S : H ) ,  this path 
also exists in Cay(S: t - / ) .  [ ]  
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9. Groups which always have paths 

In Section 8, we showed that every Cayley digraph on a countable locally finite 
group has both one- and two-way infinite Hamiltonian paths. The following 
example due to Witte shows that locally finite groups are not the only ones with 
this property. 

Let H be the semidirect product of Q and 7/2 where 7/2 acts on Q by inversion. 
Then it is not difficult to see that Cay (S :H)  is infinitely strongly connected for 
any generating set S but it is not locally finite (not even torsion). 

In this section we prove that among abelian groups, only torsion groups always 
have paths. In order to do so we prove the following necessary condition on a 
group H for every Cayley digraph on H to have a one-way path. 

Theorem 9.1. I f  there is a non-trivial homomorphism f : H ~ - ~ ,  then there is a 
generating set S of H for which C a y ( S : H )  has no one-way infinite Hamiltonian 
path. 

Proof. Let  S = {h ~ H: [(h)>I 0}. Since for each h ~ H, either h or its inverse is in 
S, S generates H. Clearly Cay(S :H)  is not strongly connected, hence Cay(S :/-/) 
has no one-way path. []  

We can use this to prove the theorem: 

T h e o r e m  9.2. I f  H is an abelian group and for every generating set S of H, 
Cay(S :/-/) has a one-way infinite Hamiltonian path, then H is torsion. 

Proof. Suppose the torsion subgroup, T, of H is a proper subgroup. Then the 
canonical homomorphism f:H~--->H/T is non-trivial. H I T  is torsion-free and, 
hence, is a subgroup of a vector space V over Q. Choose a basis, {b~: i ~ /}  for V. 
For each j ~ I  there is a homomorphism, gi, of V into Q defined by gj(bi)= 1 if 
i = ] and 0 otherwise. For each ], gi o f is a homomorphism of H into Q and since f 
is non-trivial, there is some j for which gj o [ is non-trivial. By Theorem 9.1, there 
is a generating set S of H such that Cay(S:H)  has no one-way path. []  
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