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Abstract 

In a fuzzy clustering an object typically receives strictly positive memberships to all clusters, even when the object 
clearly belongs to one particular cluster. Consequently, each cluster’s estimated center and scatter matrix are influenced 
by many objects that have small positive memberships to it. This effect may keep the fuzzy method from finding the true 
clusters. We analyze the cause and propose a remedy, which is a modification of the objective function and the 
corresponding algorithm. The resulting clustering has a high contrast in the sense that outlying and bridging objects 
remain fuzzy, whereas the other objects become crisp. The enhanced version of fuzzy k-means is illustrated with an 
example, as well as the enhanced version of the fuzzy minimum volume method. 
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1. Introduction 

For partitioning a data set into groups of similar objects it has been argued by many authors [2, 
3, 6, 9, lo] that fuzzy approaches often work better than crisp ones. This is the case for many 
iterative algorithms which converge to a local minimum of the objective function, without any 
assurance of its proximity to the global minimum. In this situation a fuzzy method evolves more 
smoothly to the global minimum whereas a crisp method bears more risk to get stuck in a local 
minimum. Moreover, fuzzy methods are better able to cope with marginal objects such as outliers 
and bridges [S]. 

However, fuzzy clustering methods also have their drawbacks. One of the shortcomings is that 
nearly all objects receive positive membership values to all clusters. Therefore the cluster centers, 
which are weighted means of all objects, are influenced by objects that clearly do not belong to 
these clusters. This effect can be observed when a small cluster with few objects is close to a large 
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cluster with many objects. The center of the small cluster will then be biased towards the large 
cluster, because the many objects of the large cluster all have a nonzero membership to the small 
cluster and hence contribute to its center. Since these centers (and often scatter matrices as well) 
need to be computed inside the clustering algorithm, this may seriously affect the clustering itself. 

These effects would be avoided or at least largely reduced if only the outlying objects and the 
bridges remain fuzzy, whereas the other objects become crisp. In this way the memberships would 
no longer all be grey: quite a number of them would be white (Uit = 1) whereas most others would 
be black (Uit = 0), and only a few would remain grey (0 < Uit < 1). The overall picture would 
therefore have a much higher contrast. 

2. General formulation of nonhierarcbial clustering methods 

Notwithstanding their different objectives, most nonhierarchial clustering methods can be 
described by the same generic elements as follows. 

Suppose we have multivariate objects Xi for i = 1, . . . , n, each described by p attributes, such that 
xi is the column vector 

Xi=(Xil *..Xij*e.Xip)’ for all i= l,..., n. (1) 

The general purpose is to group the objects into k clusters, each of which is characterized by 
a center pLr (with t = 1, . . . , k) and possibly a scatter matrix. The unknowns of the problem are the 
membership functions Uit, together with the centers pt and the scatter matrices. A membership Uir 
with value 1 indicates that object i belongs completely to cluster t; the value 0 means that it does 
not belong to this cluster. Two very different approaches are possible. If Uir is defined as a Boolean 
variable, with the sole values 0 or 1, the clustering is said to be crisp. If however Uir can take on all 
values between 0 and 1, we have afuzzy clustering. In both cases the partition constraint must be 
verified: 

CUit = 1 for all i= l,...,n, (2) 
f 

where 

Uir 2 0 for all i and t. (3) 

All these elements are used to compute the objective function, which is of the type: 

F = F(xiy Uit). (4) 

It always involves the n objects Xi and the n x k membership functions Uit. The actual form taken by 
this objective function varies according to the type of method and the purpose of the clustering, as 
will be seen below. 

A well-known clustering method is fuzzy k-means [3] where (4) becomes 

F = C C&(Xi - Pt)l(Xi - PLt) 
t i 

(5) 

for arbitrary vectors pt and memberships Uir (subject to (2) and (3)). The general formulation given 
above also covers several other fuzzy clustering methods which will be described in Section 5. 
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The role of the exponent a 

We will look more closely at the effect of the exponent 01 on the optimal solution. Let us first 
consider the case of the fuzzy k-means method (5) in a situation with two clusters. 

A solution of this optimization problem is a collection of memberships l;i, (for 1 < i < n 
and 1 < t Q k) and cluster centers fir,. . . , jik which together minimize (5). By fixing everything 
at its optimal value except for Gil and Giz we see that this implies that tiir and ziiz minimize the 
expression 

Fi = UTl(Xi - /il)‘(Xi - fil) + UTz((xi - $z)‘(Xi - Qz) 

subject to the constraint 

Uil + Ui2 = 1. 

Here, Fi, := UTt(xi - fit)‘(xi - fit). Fig. 1 shows how the first term of (6) depends on the membership 
Uil for different values of tl. 

Although the relation between Uir and Fil depends on a, we note that Fil is always zero for 
Uir = 0, and that for Uir = 1 it becomes 

6ir := (Xi - /.?l)‘(Xi - 81). (8) 

Therefore, the minimum of Fil is always obtained for uir = 0. Furthermore, for any c1> 1 it has 
a zero derivative at nil = 0, whereas at nil = 1 the derivative equals 

CC(Xi - fil)'(Xi - j21) = Ctdil* 

For CI = 2 the function Fil is a parabola. For c1 = 1, the curve degenerates to a straight line. 
As the second term of (6) has the same form as the first, the same conclusions hold for Fiz except 

that 612 may differ from 6il. We will assume that 6il # 0 and 612 # 0. 
Plotting the whole function Fi subject to (7) amounts to superimposing Fig. 1 and a reversed 

graph for the second term, as in Fig. 2. The function Fi takes on the value 6iz at nil = 0 and 6il at 
Uir = 1. 

Fig. 1. Plot of Fii as a function of Uil for various exponents ~1. 
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Fig. 2. Plot of Fi as a function of Uil for tl = 1 and CI = 2. 

For a > 1, the derivative of Fi at Uir = 0 is strictly negative, and equal to the derivative of Fi2 
there. At Uil = 1 the derivative has the same positive value (9) as before. Hence, the minimum of Fi 
must be attained for memberships Uit that lie inside 10, l[. By differentiation we find that the 
minimum is attained for 

#2 
Uil = 

Sfl + S$ 
with /I = l/(a - 1). (10) 

Hence, if 6ir = 8i2 we have Uir = Ui2 = 4. Moreover, for 6ir > 6i2 we have Uir < 3, and vice versa. 
For a = 1, the picture is quite different. The derivative of Fi then equals 6ir - 632 for all 

0 < Uir < 1. Therefore the minimum of Fi is attained for Uir = 0 if Si2 < 6ir, and for air = 1 if 
612 > dir. 

The above reasoning explains why choosing CI > 1 yields a strictly fuzzy result (that is, always 
0 < Uit < l), whereas CC = 1 yields a crisp result (i.e., Uit = 0 or Uit = 1) even though the Uit are in 
principle allowed to take any value in the continuous range [0, 11. 

Note that the above reasoning can be generalized to situations with more than 2 clusters. 
Moreover, we will see in Section 5 that the same effect also exists when implementing other fuzzy 
clustering methods, for instance based on minimizing the total volume of tolerance ellipsoids. 

The challenge is now to find a way to improve the objective function such that “clear-cut” objects 
will be classified in a crisp manner, whereas “doubtful” objects are still classified in a fuzzy manner. 
The next section indicates how this can be done. 

4. Fuzzy clustering with high contrast 

We have seen in the previous section why the objective function (6) yields strictly fuzzy 
memberships for nearly all objects. This results directly from the fact that for c1 > 1, each Fit has 
a zero derivative at Uit = 0. This would no longer be the case if this derivative could be made 
positive. This can be done by replacing u$ by another functionf(uit). 

Let us take a parabola which passes through the points (0,O) and (1,l) but which has a positive 
derivative at any Uit 2 0. Sincef(0) = 0 andf(1) = 1 we obtain 

f(Uir) = C&t + (1 - C)Ui’, (11) 
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where c < 1 because the coefficient of ui must be positive. Moreover, the derivative offat uit = 0 
equals c, hence we have to take c > 0. The constant 0 < c < 1 will be called the contrast factor. 
When c + 0 we see that (11) reduces to U: which yields a strictly fuzzy clustering (no contrast). For 
c + 1 formula (11) becomes Uit which yields a crisp clustering (maximal contrast). For 0 < c < 1 the 
function flies between these extremes, and yields a fuzzy clustering with enhanced contrast. 

Remark. A more general parabola-like function can be obtained as follows. Fix 0 < E < 1, and put 

f(Uit) = CUir + (1 - C)/[&(2 - E)] t4: if Uit < E, (12) 

= [(2 - C&)Uit - (1 - C)&]/(2 - E) if nit 2 E. (13) 

For E = 1, (12) reduces to (11); for E = 0, (12) is inoperational and (13) reduces to 

f f&t) = %t (14) 

which is the equation of a straight line. For 0 < E c 1, Eqs. (12) and (13) represent a curve extended 
by a straight line, which is a generalization of (11). Moreover, at Uit = E we have 

f(E - 1 =fb + 1 and f’(s - ) =f’(& + ), (15) 

which ensures the continuity of the functionf and its first derivative. 

5. General algorithm 

Apart from the fuzzy k-means method we will list several other fuzzy clustering techniques, and 
then present an algorithm by which their contrast can be improved as well. 

1. The adaptive distances method [4] has 

F = 1 C&(Xi - Pt)IGt(Xi - Pt)* (16) 
t i 

Here G, is an unknown positive-definite matrix, which is estimated by the optimization of the 
objective function (16). However, in order to prevent any G, from becoming (nearly) singular, this 
matrix must somehow be constrained. Gustafson and Kessel proposed the set of constraints 

( G, ( = 8, for all t = 1, . . . , k, (17) 

with 8, having a fixed value for each cluster. For this technique to produce the natural clusters, their 
relative volumes must be known in advance. 

2. The minimum determinant method [9] has 

F = (SI (18) 
in which S is defined for all clusters simultaneously by 

S = C C&fxi - Pt)(xi - PtYln* 
t i 

(19) 

This method is based on the assumption that all clusters have similar shapes. 



86 P.J. Rousseeuw et al. fJouma1 of Computational and Applied Mathematics 64 (1995) 81-90 

3. The product ofdeterminants method [9] is based on the maximum likelihood criterion. Here 

F = nlSfIflt (20) 

in which S, and it, are defined as 

st = 14 lxi - Pt) (Xi - fit)'/& 
i 

(21) 

This method allows for clusters of different shapes, but tries to obtain clusters with similar volumes. 
This restriction is largely avoided in the following two methods. 

4. The minimum total volume method of fuzzy clustering [7] proceeds by minimizing 

F = C(St(“* (22) 

where S, again depends on the memberships Uit through (21). 
5. The sum of all normalized determinants (SAND) method is defined by minimizing the objective 

function 

F = CIStll’p (23) 

(see [7]) with p the dimension. 
All these objective functions depend only on the memberships uir. They can all be minimized by 

the same algorithm, described in [7], which puts the derivatives with respect to the Uit equal to zero 
and uses the Lagrange method of constrained optimization. 

In case the memberships in the objective function occur in the form uf, the results are 

p 2. A 8 dxi 
t 

Iid 
and 

h l/&t 1 uit = C~+T~ l/Bir 
-_ 

Bit 
CrgTi ArIBir _ A 

c~#T~ l/Bip t 1 

, o 

’ 

(24) 

(25) 

for t# Tip and 

fiit = (, for tE Tim 

In this solution, Ti (which depends on i) represents the set of indices t for which (25) would become 
strictly negative. The values of A, and Bit are typical for each method and can be found in the 
corresponding references. 

Replacing uf in the objective function by (11) yields the same results but with 

Zif t”itlxi 

pt = Cif(Uit) ’ 
(26) 
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’ = C C.f<Q)(Xi - I-&)(& - jb)‘/& 
t i 

St = Cff”it)tXi - Pt)(Xi - I&)‘/& 
i 

87 

(27) 

(28) 

and where A, and Bit are replaced by A:, and Bjt defined as follows: 

Ait = A, - CBit/a, 

Bjt = (1 - C)Bi,. 

Based on these relations it is possible to develop a unified algorithm, generalizing the algorithm 
proposed in [l] for the fuzzy k-means method. The main steps are as follows: 

1. Initialize membership values of all objects with respect to each cluster, in accordance with the 
conditions (2) and (3); 

2. Calculate the center of each cluster according to (26) and - if relevant - its scatter matrix 
according to (27) or (28); 

3. For each object i, initalize the set Ti = 8 and evaluate the membership functions according to 
(25). If some of the memberships are negative, put them equal to zero, put their index in the set Ti 
and recalculate the other memberships according to (25). Iterate as long as some memberships are 
strictly negative. Repeat this for all objects i; 

4. Compare the memberships with those of the previous passage. If no values differ by more than 
a quantity E, stop; otherwise go back to step 2. 

By choosing adequate values for the contrast factor c, it is now possible to choose to which 
extent the memberships will be crisp or fuzzy, as we will see in the following examples. 

6. Examples 

In a first example it will be shown that the proposed approach effectively enhances the contrast 
between the elements that clearly belong to a cluster and those that are doubtful. 

The data, from Kaufman and Rousseeuw [S], consist of three well-separated clusters with 
two outliers or bridges, one of which is almost at the same distance from all three clusters, 
whereas the other is equally distant from two clusters but further away from the third cluster 
(Fig. 3). When applying the fuzzy k-means clustering method (with zero contrast factor) to these 
data, the three clusters are easily found, with memberships at least 0.95 for all objects but the two 
outliers. We see that the membership to a cluster decreases with the distance to its center (Table 1). 
When using fuzzy k-means with a contrast factor of (say) 0.3 the result is even sharper, as only the 
two outliers are left with fuzzy memberships, all other objects being crisp. Changing the contrast 
factor further does not influence the results much, apart from slightly varying the memberships of 
the outliers. 

The second example shows that enhancing the contrast may be necessary to find the natural 
clusters. 

The example uses a data set of 64 four-dimensional objects, obtained by generating 8 objects 
from one population and 56 from another [S]. Each analysis is repeated for 10 different starting 
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Fig. 3. Plot of 22 objects. 

partitions, which are needed by the fuzzy algorithm of Section 5. Applying the uncontrasted (c = 0) 
minimum volume method to this data set yields a reasonable result, but it does not provide the 
expected natural clusters. This is because the typical fuzziness bias occurs: due to the positive 
memberships of the objects of the large cluster to the small cluster, the center of the small cluster is 
shifted towards the large cluster. 

To avoid this fuzziness bias we can use a positive contrast factor. Table 2 shows, for different 
values of the contrast factor c, the frequency of obtaining the natural and alternative clusterings. 
For c = 0 we see the fuzziness bias. For values of c between 0.33 and 0.50 we obtain the correct 
partition in a stable way (at least 9 times out of 10). Increasing c to 0.80 and 0.95 only seldom yields 
the partition corresponding to the global optimum, because then the method starts to behave as 
a crisp algorithm that converges to a local minimum. It appears that an intermediate value of 
c (such as c = 3 in this example) works best. 

7. Conclusions 

The proposed method of enhanced contrast combines the best of both worlds by using fuzziness 
features for performing the calculations and for characterizing truly fuzzy objects, while leaving the 
others crisp. The contrasted minimum volume method becomes capable of finding clusters of 
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Table 1 
Comparison between uncontrasted and contrasted clusterings 

Data Fuzzy k-means 

c=o c = 0.3 

i X Y %l uiZ ui3 uil ui2 %3 

1 1 
2 2 
3 2 
4 2 
5 3 

6 7 

7 12 
8 13 
9 13 

10 14 
11 14 
12 15 

13 7 

14 6 
15 7 
16 8 
17 6 
18 7 
19 8 
20 6 
21 7 
22 8 

9 0.97 0.01 0.02 1.00 
10 0.98 0.01 0.01 1.00 
9 1.00 0.00 0.00 1.00 
8 0.96 0.01 0.03 1.00 
9 0.99 0.00 0.01 1.00 

14 

9 
10 
8 

10 
8 
9 

7 

3 
3 
3 
2 
2 
2 
1 
1 
1 

0.50 

0.02 
0.01 
0.01 
0.01 
0.01 
0.02 

0.37 

0.03 
0.01 
0.02 
0.02 
0.00 
0.01 
0.03 
0.02 
0.02 

0.34 0.16 0.69 

0.96 0.02 
0.98 0.01 
0.97 0.02 
0.98 0.01 
0.97 0.02 
0.96 0.02 

0.22 

0.02 
0.01 
0.03 
0.01 
0.00 
0.01 
0.02 
0.01 
0.02 

0.41 

0.95 
0.98 
0.95 
0.97 
1.00 
0.98 
0.95 
0.97 
0.96 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.45 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.31 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.09 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.46 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

Table 2 
Results of the contrasted minimum volume method applied to data with two 
natural clusters, with 8 and 56 objects 

Outcomes in 10 trials Contrast factor c 

0.00 0.33 0.50 0.67 0.80 0.95 

T c 8/56 - 10 9 7 4 - 

Y 1 
P u 13/51 10 - 1 
i S 

C t 30134 - 2 2 - 

r e r others 1 - 4 10 
S 

Total 10 10 10 10 10 10 
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unequal shapes (provided they are somewhat ellipsoidal) and unequal numbers of objects. Pro- 
vided its contrast factor is chosen adequately, the corresponding algorithm typically finds the 
global minimum. 
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