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1. Introduction

Let C be a nonempty closed convex subset of real normed linear space X . A self-mapping T : C → C is said to be
nonexpansive if ‖T (x)− T (y)‖ ≤ ‖x− y‖ for all x, y ∈ C . A self-mapping T : C → C is called asymptotically nonexpansive
if there exists a sequence {kn} ⊂ [1,∞), kn → 1 as n→∞ such that

‖T n(x)− T n(y)‖ ≤ kn‖x− y‖ (1.1)

for all x, y ∈ C and n ≥ 1. A mapping T : C → C is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such
that

‖T n(x)− T n(y)‖ ≤ L‖x− y‖ (1.2)

for all x, y ∈ C and n ≥ 1.
It is easy to see that if T is an asymptotically nonexpansive, then it is uniformly L-Lipschitzian with the uniform Lipschitz

constant L = sup{kn : n ≥ 1}.
Fixed-point iteration process for nonexpansive self-mappings including Mann and Ishikawa iteration processes have

been studied extensively by various authors [1,4,6,12,13,16]. For nonexpansive nonself-mappings, some authors [5,9,18,20,
23] have studied the strong and weak convergence theorems in Hilbert space or uniformly convex Banach space. In 1972,
Goebel and Kirk [3] introduced the class of asymptotically nonexpansive self-mappings, who proved that if C is a nonempty
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closed convex subset of a real uniformly convex Banach space and T is an asymptotically nonexpansive self-mapping on C,
then T has a fixed point.
In 1991, Schu [17] introduced a modified Mann iteration process to approximate fixed points of asymptotically

nonexpansive self-mappings in Hilbert space. More precisely, he proved the following theorem.

Theorem 1.1 ([17]). Let H be a Hilbert space, C a nonempty closed convex and bounded subset of H. Let T : C → C be an
asymptotically nonexpansive mapping with sequence {kn} ⊂ [1,∞) for all n ≥ 1, limn→∞ kn = 1 and

∑
∞

n=1(k
2
n − 1) < ∞.

Let {αn} be a sequence in [0, 1] satisfying the condition 0 < a ≤ αn ≤ b < 1, n ≥ 1, for some constant a, b. Then the sequence
{xn} generated from arbitrary x1 ∈ C using

xn+1 = (1− αn)xn + αnT nxn, n ≥ 1, (1.3)

converges strongly to some fixed point of T .

Since then, Schu’s iteration process has been widely used to approximate fixed points of asymptotically nonexpansive self-
mappings in Hilbert space or Banach spaces [12,14,15,17,21].
In 2000, Noor [10] introduced a three-step iterative sequence and studied the approximate solutions of variational

inclusion in Hilbert spaces. In 2005, Suantai [19] defined a new three-step iteration, which is an extension of Noor iterations,
and gave some weak and strong convergence theorems of such iterations for asymptotically nonexpansive mappings in
uniformly convex Banach spaces.
The concept of asymptotically nonexpansive nonself-mappings was introduced in [2] in 2003 as the generalization of

asymptotically nonexpansive self-mappings. The asymptotically nonexpansive nonself-mapping is defined as follows:

Definition 1.1 ([2]). Let C be a nonempty subset of a real normed linear space X . Let P : X → C be a nonexpansive retraction
of X onto C . A nonself-mapping T : C → X is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞),
kn → 1 as n→∞ such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖ (1.4)

for all x, y ∈ C and n ≥ 1. T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ L‖x− y‖ (1.5)

for all x, y ∈ C and n ≥ 1.

By studying the following iteration process:

x1 ∈ C, xn+1 = P((1− αn)xn + αnT (PT )n−1xn), (1.6)

Chidume, Ofoedu and Zegeye [2] got the following strong andweak convergence theorems for asymptotically nonexpansive
nonself-mapping.

Theorem 1.2 ([2]). Let X be a real uniformly convex Banach space and C a nonempty closed convex subset of X . Let T : C → X
be a completely continuous and asymptotically nonexpansive map with sequence {kn} ⊂ [1,∞) such that

∑
∞

n=1(k
2
n − 1) <∞

and F(T ) 6= ∅. Let {αn} ⊂ (0, 1) be such that ε ≤ 1− αn ≤ 1− ε, ∀n ≥ 1 and some ε > 0. From an arbitrary x1 ∈ C, define
the sequence {xn} by (1.6). Then {xn} converges strongly to some fixed point of T .

Theorem 1.3 ([2]). Let X be a real uniformly convex Banach space which has a Fréchet differentiable norm and C a nonempty
closed convex subset of X . Let T : C → X be an asymptotically nonexpansive map with sequence {kn} ⊂ [1,∞) such that∑
∞

n=1(k
2
n − 1) < ∞ and F(T ) 6= ∅. Let {αn} ⊂ (0, 1) be such that ε ≤ 1 − αn ≤ 1 − ε, ∀n ≥ 1 and some ε > 0. From an

arbitrary x1 ∈ C, define the sequence {xn} by (1.6). Then {xn} converges weakly to some fixed point of T .

If T is a self-mapping, then P becomes the identity mapping so that (1.4) and (1.5) reduce to (1.1) and (1.2), respectively.
(1.6) reduces to (1.3).
Recently, Wang [22] generalized the iteration process (1.6) as follows: x1 ∈ C,

yn = P((1− βn)xn + βnT2(PT2)n−1xn),

xn+1 = P((1− αn)xn + αnT1(PT1)n−1yn), n ≥ 1, (1.7)

where T1, T2 : C → X are asymptotically nonexpansive nonself-mappings and {αn}, {βn} are real sequences in [0, 1). He
studied the strong and weak convergence of the iterative scheme (1.7) under proper conditions. Meanwhile, the results
of [22] generalized the results of [2].
Inspired andmotivated by these facts, we introduce and study a new class of iterative schemes in this paper. The scheme

is defined as follows.
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Let X be a normed space, C a nonempty convex subset of X , P : X → C a nonexpansive retraction of X onto C and
T1, T2 : C → X given mappings. Then for an arbitrary x1 ∈ C , the following iteration scheme is studied:

yn = P((1− βn)xn + βnT2(PT2)n−1xn),

xn+1 = P((1− αn)yn + αnT1(PT1)n−1yn), n ≥ 1, (1.8)

where {αn} and {βn} are appropriate real sequences in [0, 1).
The iterative scheme (1.8) is called the projection type Ishikawa iteration for two asymptotically nonexpansive nonself-

mappings. If T1 = T2 and βn = 0 for all n ≥ 1, then (1.8) reduces to (1.6).
The purpose of this paper is to construct an iteration scheme for approximating common fixed points of two

asymptotically nonexpansive nonself-mappings and to prove some strong and weak convergence theorems for such
mappings in a uniformly convex Banach space.
Now, we recall some well known concepts and results.
Let X be a Banach space with dimension X ≥ 2. The modulus of X is the function δX : (0, 2] → [0, 1] defined by

δX (ε) = inf
{
1−

∥∥∥∥12 (x+ y)
∥∥∥∥ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖} .

Banach space X is uniformly convex if and only if δX (ε) > 0 for all ε ∈ (0, 2].
A subset C of X is said to be a retract if there exists a continuous mapping P : X → C such that Px = x for all x ∈ C .

Every closed convex subset of a uniformly convex Banach space is a retract. A mapping P : X → X is said to be a retraction
if P2 = P. It follows that if a mapping P is a retraction, then Pz = z for every z ∈ R(P), the range of P.
Recall that a Banach space X is said to satisfy Opial’s condition [11] if xn → xweakly as n→∞ and x 6= y implying that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

Amapping T : C → X is said to be semi-compact if, for any sequence {xn} in C such that ‖xn−Txn‖ → 0 as n→∞, there
exists a subsequence {xnj} of {xn} such that {xnj} converges strongly to x

∗
∈ C . Two mappings S, T : C → C, where C is a

subset of a normed space X, are said to satisfy condition A′ [7] if there exists a nondecreasing function f : [0,∞)→ [0,∞)
with f (0) = 0, f (r) > 0 for all r ∈ (0,∞) such that either

‖x− Sx‖ ≥ f (d(x, F)) or ‖x− Tx‖ ≥ f (d(x, F))

for all x ∈ C,where d(x, F) = inf{‖x− q‖ : q ∈ F = F(S) ∩ F(T )}.
Note that condition A′ reduces to condition (A) [21] when S = T . Maiti and Ghosh [8] and Tan and Xu [21] have

approximated fixed points of a nonexpansive mapping T by Ishikawa iterates under the condition (A).
In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.4 ([21]). Let {an} and {tn} be two sequences of nonnegative real numbers satisfying the inequality

an+1 ≤ an + tn for all n ≥ 1.

If
∑
∞

n=1 tn <∞, then limn→∞ an exists.

Lemma 1.5 ([17]). Let X be a real uniformly convex Banach space and 0 ≤ p ≤ tn ≤ q < 1 for all positive integer
n ≥ 1. Also suppose that {xn} and {yn} are two sequences of X such that lim supn→∞ ‖xn‖ ≤ r, lim supn→∞ ‖yn‖ ≤ r and
limn→∞ ‖tnxn + (1− tn)yn‖ = r hold for some r ≥ 0; then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.6 ([2]). Let X be a uniformly convex Banach space, C a nonempty closed convex subset of X, and let T : C → X be an
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and kn → 1 as n→∞. Then I − T is demiclosed at zero,
i.e., if xn → x weakly and xn − Txn → 0 strongly, then x ∈ F(T ), where F(T ) is the set of fixed points of T .

Lemma 1.7 ([19]). Let X be a Banach space which satisfies Opial’s condition and let {xn} be a sequence in X. Let u, v ∈ X be such
that limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist. If {xnk} and {xmk} are subsequences of {xn} which converge weakly to u and
v, respectively, then u = v.

2. Main results

In this section, we prove theorems of strong and weak convergence of the iterative scheme given in (1.8) to a common
fixed point for two asymptotically nonexpansive nonself-mappings in a uniformly convex Banach space. In order to prove
our main results, the following lemmas are needed.
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Lemma 2.1. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P as
a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-mappings of C with sequences
{kn}, {ln} ⊂ [1,∞) such that

∑
∞

n=1(kn − 1) < ∞,
∑
∞

n=1(ln − 1) < ∞, kn → 1, ln → 1 as n → ∞, respectively and
F(T1) ∩ F(T2) 6= ∅. Suppose that {αn} and {βn} are real sequences in [0, 1). From an arbitrary x1 ∈ C, define the sequence {xn}
using (1.8). If q ∈ F(T1) ∩ F(T2), then limn→∞ ‖xn − q‖ exists.

Proof. Let q ∈ F(T1) ∩ F(T2). Setting kn = 1 + un, ln = 1 + vn. Since
∑
∞

n=1(kn − 1) < ∞,
∑
∞

n=1(ln − 1) < ∞, so∑
∞

n=1 un <∞,
∑
∞

n=1 vn <∞. Using (1.8), we have

‖yn − q‖ = ‖P((1− βn)xn + βnT2(PT2)n−1xn)− P(q)‖
≤ ‖(1− βn)(xn − q)+ βn(T2(PT2)n−1xn − q)‖
≤ (1− βn)‖xn − q‖ + βn‖T2(PT2)n−1xn − q‖
≤ (1− βn)‖xn − q‖ + βn(1+ vn)‖xn − q‖
= (1− βn)‖xn − q‖ + (βn + βnvn)‖xn − q‖
≤ (1+ vn)‖xn − q‖,

and so

‖xn+1 − q‖ = ‖P((1− αn)yn + αnT1(PT1)n−1yn)− P(q)‖
≤ ‖(1− αn)(yn − q)+ αn(T1(PT1)n−1yn − q)‖
≤ (1− αn)‖yn − q‖ + αn‖T1(PT1)n−1yn − q‖
≤ (1− αn)‖yn − q‖ + αn(1+ un)‖yn − q‖
≤ (1+ un)‖yn − q‖
≤ (1+ un)(1+ vn)‖xn − q‖
= (1+ vn + un + unvn)‖xn − q‖

< e

∞∑
n=1

(vn+un+unvn)
‖x1 − q‖.

Since
∑
∞

n=1(vn + un + unvn) < ∞, then {xn} is bounded. It implies that there exists a constant M > 0 such that
‖xn − q‖ ≤ M for all n ≥ 1. So,

‖xn+1 − q‖ ≤ ‖xn − q‖ + (vn + un + unvn)M.

It follows from Lemma 1.4 that limn→∞ ‖xn − q‖ exists. This completes the proof. �

Lemma 2.2. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P as
a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-mappings of C with sequences
{kn}, {ln} ⊂ [1,∞) such that

∑
∞

n=1(kn − 1) < ∞,
∑
∞

n=1(ln − 1) < ∞, kn → 1, ln → 1 as n → ∞, respectively and
F(T1) ∩ F(T2) 6= ∅. Suppose that {αn} and {βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1). From an arbitrary x1 ∈ C,
define the sequence {xn} by (1.8). Then limn→∞ ‖xn − T1xn‖ = limn→∞ ‖xn − T2xn‖ = 0.

Proof. Let q ∈ F(T1)∩ F(T2). Set kn = 1+ un, ln = 1+ vn. By Lemma 2.1, we see that limn→∞ ‖xn− q‖ exists. Assume that
limn→∞ ‖xn − q‖ = c. Using (1.8), we have

‖yn − q‖ ≤ (1+ vn)‖xn − q‖. (2.1)

Taking the lim sup on both sides in the inequality (2.1), we have

lim sup
n→∞

‖yn − q‖ ≤ c. (2.2)

In addition, ‖T1(PT1)n−1yn − q‖ ≤ kn‖yn − q‖, taking the lim sup on both sides in this inequality, we have

lim sup
n→∞

‖T1(PT1)n−1yn − q‖ ≤ c. (2.3)

From (1.8), we have

‖xn+1 − q‖ ≤ ‖(1− αn)(yn − q)+ αn(T1(PT1)n−1yn − q)‖

≤ (1+ vn + un + unvn)‖xn − q‖. (2.4)

Since
∑
∞

n=1(vn + un + unvn) <∞ and limn→∞ ‖xn+1 − q‖ = c, letting n→∞ in the inequality (2.4), we have

lim
n→∞
‖(1− αn)(yn − q)+ αn(T1(PT1)n−1yn − q)‖ = c. (2.5)
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By using (2.2), (2.3) and (2.5) and Lemma 1.5, we have

lim
n→∞
‖T1(PT1)n−1yn − yn‖ = 0. (2.6)

In addition, ‖T2(PT2)n−1xn − q‖ ≤ ln‖xn − q‖, and taking the lim sup on both sides in this inequality, we have

lim sup
n→∞

‖T2(PT2)n−1xn − q‖ ≤ c. (2.7)

Using (1.8), we have

‖xn+1 − q‖ ≤ (1− αn)‖yn − q‖ + αn‖T1(PT1)n−1yn − q‖
= (1− αn)‖yn − q‖ + αn‖T1(PT1)n−1yn − yn + yn − q‖
≤ (1− αn)‖yn − q‖ + αn‖T1(PT1)n−1yn − yn‖ + αn‖yn − q‖

≤ ‖yn − q‖ + ‖T1(PT1)n−1yn − yn‖. (2.8)

Taking the lim inf on both sides in the inequality (2.8), by (2.6) and limn→∞ ‖xn+1 − q‖ = c , we have

lim inf
n→∞

‖yn − q‖ ≥ c. (2.9)

It follows from (2.2) and (2.9) that limn→∞ ‖yn − q‖ = c. This implies that

c = lim
n→∞
‖yn − q‖ ≤ lim

n→∞
‖(1− βn)(xn − q)+ βn(T2(PT2)n−1xn − q)‖ ≤ lim

n→∞
‖xn − q‖ = c,

and so

lim
n→∞
‖(1− βn)(xn − q)+ βn(T2(PT2)n−1xn − q)‖ = c.

Using (2.7) and Lemma 1.5, we obtain

lim
n→∞
‖T2(PT2)n−1xn − xn‖ = 0. (2.10)

From yn = P((1− βn)xn + βnT2(PT2)n−1xn) and (2.10), we have

‖yn − xn‖ = ‖P((1− βn)xn + βnT2(PT2)n−1xn)− xn‖
≤ ‖(1− βn)(xn − xn)+ βn(T2(PT2)n−1xn − xn)‖
≤ (1− βn)‖xn − xn‖ + βn‖T2(PT2)n−1xn − xn‖
≤ ‖T2(PT2)n−1xn − xn‖
→ 0 (as n→∞). (2.11)

In addition,

‖T1(PT1)n−1xn − xn‖ = ‖T1(PT1)n−1xn − yn + yn − xn‖
≤ ‖T1(PT1)n−1xn − yn‖ + ‖yn − xn‖
= ‖T1(PT1)n−1xn − T1(PT1)n−1yn + T1(PT1)n−1yn − yn‖ + ‖yn − xn‖
≤ ‖T1(PT1)n−1xn − T1(PT1)n−1yn‖ + ‖T1(PT1)n−1yn − yn‖ + ‖yn − xn‖
≤ kn‖xn − yn‖ + ‖T1(PT1)n−1yn − yn‖ + ‖yn − xn‖.

Thus, it follows from (2.6) and (2.11) that

lim
n→∞
‖T1(PT1)n−1xn − xn‖ = 0. (2.12)

By using (1.8), we have

‖xn+1 − xn‖ ≤ (1− αn)‖yn − xn‖ + αn‖T1(PT1)n−1yn − xn‖
≤ (1− αn)‖yn − xn‖ + αn‖T1(PT1)n−1yn − yn + yn − xn‖
≤ (1− αn)‖yn − xn‖ + αn‖T1(PT1)n−1yn − yn‖ + αn‖yn − xn‖
≤ ‖yn − xn‖ + ‖T1(PT1)n−1yn − yn‖.

It follows from (2.6) and (2.11) that

lim
n→∞
‖xn+1 − xn‖ = 0. (2.13)
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Using (2.12) and (2.13), we have

‖xn+1 − T1(PT1)n−1xn+1‖ = ‖xn+1 − xn + xn − T1(PT1)n−1xn + T1(PT1)n−1xn − T1(PT1)n−1xn+1‖
≤ ‖xn+1 − xn‖ + ‖T1(PT1)n−1xn+1 − T1(PT1)n−1xn‖ + ‖T1(PT1)n−1xn − xn‖
≤ ‖xn+1 − xn‖ + kn‖xn+1 − xn‖ + ‖T1(PT1)n−1xn − xn‖,

→ 0 (as n→∞). (2.14)

In addition,

‖xn+1 − T1(PT1)n−2xn+1‖ = ‖xn+1 − xn + xn − T1(PT1)n−2xn + T1(PT1)n−2xn − T1(PT1)n−2xn+1‖
≤ ‖xn+1 − xn‖ + ‖T1(PT1)n−2xn − xn‖ + ‖T1(PT1)n−2xn+1 − T1(PT1)n−2xn‖
≤ ‖xn+1 − xn‖ + ‖T1(PT1)n−2xn − xn‖ + L‖xn+1 − xn‖,

where L = sup{kn : n ≥ 1}. It follows from (2.13) and (2.14) that

lim
n→∞
‖xn+1 − T1(PT1)n−2xn+1‖ = 0. (2.15)

We denote as (PT1)1−1 the identity maps from C onto itself. Thus by the inequality (2.14) and (2.15), we have

‖xn+1 − T1xn+1‖ = ‖xn+1 − T1(PT1)n−1xn+1 + T1(PT1)n−1xn+1 − T1xn+1‖
≤ ‖xn+1 − T1(PT1)n−1xn+1‖ + ‖T1(PT1)n−1xn+1 − T1xn+1‖
= ‖xn+1 − T1(PT1)n−1xn+1‖ + ‖T1(PT1)1−1(PT1)n−1xn+1 − T1(PT1)1−1xn+1‖
≤ ‖xn+1 − T1(PT1)n−1xn+1‖ + L‖(PT1)n−1xn+1 − xn+1‖
= ‖xn+1 − T1(PT1)n−1xn+1‖ + L‖(PT1)(PT1)n−2xn+1 − P(xn+1)‖
≤ ‖xn+1 − T1(PT1)n−1xn+1‖ + L‖T1(PT1)n−2xn+1 − xn+1‖
→ 0 (as n→∞),

which implies that limn→∞ ‖xn − T1xn‖ = 0. Similarly, we may show that limn→∞ ‖xn − T2xn‖ = 0. The proof is
completed. �

Theorem 2.3. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P
as a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-mappings of C with sequences
{kn}, {ln} ⊂ [1,∞) such that

∑
∞

n=1(kn − 1) < ∞,
∑
∞

n=1(ln − 1) < ∞, kn → 1, ln → 1 as n → ∞, respectively and
F(T1) ∩ F(T2) 6= ∅. Suppose that {αn} and {βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Let {xn} and {yn} be the
sequences defined by (1.8). If one of T1 and T2 is completely continuous, then {xn} and {yn} converge strongly to a common fixed
point of T1 and T2.

Proof. By Lemma 2.1, {xn} is bounded. In addition, by Lemma 2.2, limn→∞ ‖xn − T1xn‖ = 0 and limn→∞ ‖xn − T2xn‖ = 0,
and then {T1xn} and {T2xn} are also bounded. If T1 is completely continuous, there exists a subsequence {T1xnj} of {T1xn} such
that T1xnj → q as j → ∞. It follows from Lemma 2.2, that limj→∞ ‖xnj − T1xnj‖ = limj→∞ ‖xnj − T2xnj‖ = 0. So by the
continuity of T1 and Lemma 1.6, we have limj→∞ ‖xnj − q‖ = 0 and q ∈ F(T1) ∩ F(T2). Furthermore, by Lemma 2.1, we get
that limn→∞ ‖xn − q‖ exists. Thus limn→∞ ‖xn − q‖ = 0. From (2.11), we have limn→∞ ‖yn − xn‖ = 0, and it follows that
limn→∞ ‖yn − q‖ = 0. The proof is completed. �

Theorem 2.4. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P
as a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-mappings of C with sequences
{kn}, {ln} ⊂ [1,∞) such that

∑
∞

n=1(kn − 1) < ∞,
∑
∞

n=1(ln − 1) < ∞, kn → 1, ln → 1 as n → ∞, respectively, and
F(T1) ∩ F(T2) 6= ∅. Suppose that {αn} and {βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Let {xn} and {yn} be the
sequences defined by (1.8). If one of T1 and T2 is semi-compact, then {xn} and {yn} converge strongly to a common fixed point of
T1 and T2.

Proof. Since one of T1 and T2 is semi-compact, {xn} is bounded and limn→∞ ‖xn−T1xn‖ = limn→∞ ‖xn−T2xn‖ = 0, and then
there exists subsequence {xnj} of {xn} such that xnj converges strongly to q. It follows from Lemma 1.6 that q ∈ F(T1)∩F(T2).
Thus limn→∞ ‖xn− q‖ exists by Lemma 2.1. Since the subsequence {xnj} of {xn} such that {xnj} converges strongly to q, then
{xn} converges strongly to the common fixed point q ∈ F(T1) ∩ F(T2). From (2.11), we have

lim
n→∞
‖yn − xn‖ = 0,

and it follows that limn→∞ ‖yn − q‖ = 0. The proof is completed. �

In the next result, we prove the strong convergence of the scheme (1.8) under condition A′ which is weaker than the
compactness of the domain of the mappings.
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Theorem 2.5. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P as
a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-mappings of C satisfying condition
A′ with sequences {kn}, {ln} ⊂ [1,∞) such that

∑
∞

n=1(kn − 1) < ∞,
∑
∞

n=1(ln − 1) < ∞, kn → 1, ln → 1 as n → ∞,
respectively, and F(T1) ∩ F(T2) 6= ∅. Suppose that {αn} and {βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Then the
sequences {xn} and {yn} defined by the iterative scheme (1.8) converge strongly to a common fixed point of T1 and T2.

Proof. By Lemma 2.2, we have limn→∞ ‖xn − T1xn‖ = limn→∞ ‖xn − T2xn‖ = 0. It follows from condition A′ that

lim
n→∞

f (d(xn, F)) ≤ lim
n→∞
‖xn − T1xn‖ = 0 or lim

n→∞
f (d(xn, F)) ≤ lim

n→∞
‖xn − T2xn‖ = 0.

In the both case, limn→∞ f (d(xn, F)) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f (0) = 0,
f (r) > 0 for all r ∈ (0,∞), we obtain that limn→∞ d(xn, F) = 0. Next we show that {xn} is a Cauchy sequence. Since
limn→∞ d(xn, F) = 0 and

∑
∞

n=1(vn+un+unvn) <∞, given ε > 0, there exists a natural number n0 such that d(xn, F) <
ε
4

and
∑
∞

k=n0
(vk + uk + ukvk)M < ε

2 for all n ≥ n0. So, we can find y
∗
∈ F such that ‖xn0 − y

∗
‖ < ε

4 . For n ≥ n0 and m ≥ 1,
we have

‖xn+m − xn‖ ≤ ‖xn+m − y∗‖ + ‖xn − y∗‖

≤ ‖xn0 − y
∗
‖ + ‖xn0 − y

∗
‖ +

n+m−1∑
k=n0

(vk + uk + ukvk)M

<
ε

4
+
ε

4
+
ε

2
= ε.

Thus shows that {xn} is a Cauchy sequence and so is convergent since X is complete. Let limn→∞ xn = u. Now
limn→∞ d(xn, F) = 0 gives that d(u, F) = 0. F is closed; therefore u ∈ F . From (2.11), we have

lim
n→∞
‖yn − xn‖ = 0,

and it follows that limn→∞ ‖yn − u‖ = 0. This completes the proof. �

Finally, we prove the weak convergence of the iterative scheme (1.8) for two asymptotically nonexpansive nonself-
mappings in a uniformly convex Banach space satisfying Opial’s condition.

Theorem 2.6. Let X be a uniformly convex Banach space which satisfies Opial’s condition and C a nonempty closed convex
nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-
mappings of C with sequences {kn}, {ln} ⊂ [1,∞) such that

∑
∞

n=1(kn − 1) < ∞,
∑
∞

n=1(ln − 1) < ∞, kn → 1, ln → 1 as
n→∞, respectively, and F(T1) ∩ F(T2) 6= ∅. Suppose that {αn} and {βn} are real sequences in [ε, 1− ε] for some ε ∈ (0, 1).
Let {xn} and {yn} be the sequences defined by (1.8). Then {xn} and {yn} converge weakly to a common fixed point of T1 and T2.

Proof. It follows from Lemma 2.2 that limn→∞ ‖xn − T1xn‖ = limn→∞ ‖xn − T2xn‖ = 0. Since X is uniformly convex
and {xn} is bounded, we may assume that xn → u weakly as n → ∞, without loss of generality. By Lemma 1.6, we
have u ∈ F(T1) ∩ F(T2). Suppose that subsequences {xnk} and {xmk} of {xn} converge weakly to u and v, respectively. From
Lemma 1.6, u, v ∈ F(T1) ∩ F(T2). By Lemma 2.1, limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist. It follows from Lemma 1.7
that u = v. Therefore {xn} converges weakly to a common fixed point of T1 and T2. Moreover, limn→∞ ‖yn − xn‖ = 0 as
proved in Lemma 2.2 and xn → uweakly as n→∞, and therefore yn → uweakly as n→∞. This completes the proof of
the theorem. �
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