Inequalities and Bounds for Quasi-symmetric 3-Designs

RAJENDRA M. PAWALE

Mathematics Department, Parle College, Dixit Road, Vile-Parle (East), Bombay-400 057, India

Communicated by the Managing Editors
Received August 28, 1989; revised December 22, 1990

Quasi-symmetric 3-designs with block intersection numbers \(x \) and \(y \) \((0 < x < y < k)\) are studied, several inequalities satisfied by the parameters of a quasi-symmetric 3-designs are obtained. Let \(D \) be a quasi-symmetric 3-design with the block size \(k \) and intersection numbers \(x, y; y > x \geq 1 \) and suppose \(D' \) denote the complement of \(D \) with the block size \(k' \) and intersection numbers \(x', y' \). If \(k - 1 < x + y \) then it is proved that \(x' + y' \leq k' \). Using this it is shown that the quasi-symmetric 3-designs corresponding to \(y = x + 1, x + 2 \) are either extensions of symmetric designs or designs corresponding to the Witt-design (or trivial design, i.e., \(v = k + 2 \)) or the complement of above designs.

1. INTRODUCTION

A quasi-symmetric block design \(D \) is a \(t-(v, k, \lambda) \) design in which any two blocks intersect in \(x \) or \(y \) points. If \(x = y \) then \(t = 2 \) and in that case \(b = v \), where \(b \) is the number of blocks. Such designs are called symmetric designs where any two blocks intersect in \(\lambda \) points. It is well known that a 3-design has at least two block intersection numbers. In this paper we study quasi-symmetric 3-designs with intersection numbers \(x, y \) \((0 < x < y < k)\).

Cameron [6] classified quasi-symmetric 3-designs with intersection number \(x = 0 \) (Theorem 2.1). In [12] Sane and Shrikhande made the conjecture: Let \(D \) be a quasi-symmetric 3-design. Then one of the following cases occurs:

(i) \(x = 0 \) and \(D \) is a design in Cameron's family (see Theorem 2.1);

(ii) \(x = 1 \) and \(D \) is the Witt-Lüneburg design on 23 points or its residual;

(iii) \(D \) is the complement of some design in (i) or (ii) above.

In support of the conjecture, the case \(x = 1 \) was settled by Calderbank and Morton [5] and Pawale and Sane [10]. Though the conjecture is still
far from settled, it is hoped that the results of this paper will contribute a step towards its proof. To that end we prove that if the pair \((x, y)\) satisfies \(4xy > (x + y - 1)^2\) then the number of quasi-symmetric 3-designs with block intersection numbers \(x, y\) are finite.

The main purpose of this paper is to give the following bounds for intersection numbers \(x, y\) of quasi-symmetric 3-design \(D\):

\[
\begin{align*}
(i) \quad & \frac{(k-1)^2(v-k+1)}{(v-2)(v-k)} \leq x + y - 1 \leq \frac{2(k-1)(k-2)}{(v-3)}; \\
(ii) \quad & \frac{k(k-1)^2}{(v-2)(v-k)} \leq xy \leq \frac{k(k-1)^2(k-2)}{(v-2)(v-3)}; \\
(iii) \quad & \frac{k}{v-k+1} \leq \frac{xy}{x+y-1} \leq \frac{k(k-1)}{2(v-2)}; \\
(iv) \quad & \frac{(v-1)(2k-v)+(k-1)(k-2)}{(v-2)} \leq x + y - 1; \\
(v) \quad & \frac{k(k-1)(2k-v)}{(v-2)} \leq xy; \\
(vi) \quad & \frac{k(k-1)(2k-v)}{(v-1)(2k-v)+(k-1)(k-2)} \leq \frac{xy}{x+y-1}.
\end{align*}
\]

The upper bounds are attained in (i), (ii), and (iii) if and only if \(D\) is the Witt 4-(23, 7, 1) design or its complement. Equality holds in (iv), (v), and (vi) if and only if \(D\) is the complement of a design in Cameron’s family. We add that inequality (i) was first obtained by Calderbank [4], using linear programming techniques. From inequality (iii) it is clear that \(v-2 \leq k(k-1)/2\). We characterise the cases \(v-2 = k(k-1)/2\) and \(v-1 = k(k-1)/2\) in terms of the Witt 4-(23, 7, 1) design and its residual.

Let \(D'\) denote the complement of \(D\) with block size \(k'\) and intersection numbers \(x'\) and \(y'\) using inequality (i) we show that, if \(k-1 \leq x + y\) then \(x' + y' \leq k'\). This result is used to determine quasi-symmetric 3-designs with intersection numbers \(x\) and \(y = x + 1, x + 2\).

Section 2 contains preliminary results. For basic definitions and results we refer to [2, 7].

2. PRELIMINARIES

Throughout this paper \(D\) will denote a quasi-symmetric 3-design with standard parameter set \((v, b, r, k, \lambda; x, y)\), where \(x, y\) are two block inter-
section numbers with $0 \leq x < y < k$. For $x = 0$ such designs were classified by Cameron [6] in the following theorem.

Theorem 2.1. D is a quasi-symmetric 3-design with an intersection number 0 if and only if D is an extension of a symmetric 2-design. In that case the parameters of D are one of the following four types:

1. D is a Hadamard 3-design;
2. $v = (\lambda + 2)(\lambda^2 + 4\lambda + 2) + 1$, $k - \lambda^2 + 3\lambda + 2$, and $\lambda = 1, 2, ...$;
3. D is the extension of a projective plane of order 10;
4. $v = 496$, $k = 40$, and $\lambda = 3$.

Quasi-symmetric 3-designs for $x = 1$ were classified by Calderbank and Morton [5] and Pawale and Sane [10] in the following theorem.

Theorem 2.2. Let D be a quasi-symmetric 3-design with the smaller intersection number $x = 1$. Then D is either the unique Witt 4-(23, 7, 1) design or its residual the unique 3-(22, 7, 4) design (we consider the 3-(5, 3, 1) design to be trivial).

The following recursive relation will be used throughout this paper.

Lemma 2.3. In t-(v, k, λ) design, let λ_i be the number of blocks containing given i-tuple, $i = 0, 1, ..., t$, with $\lambda_t = \lambda$, $\lambda_0 = b$, and $\lambda_1 = r$. Then

$$\lambda_i = \frac{(v - i)}{(k - i)} \lambda_{i+1}, \quad i = 0, 1, ..., t - 1. \quad (1)$$

Lemma 2.4 [12, Lemma 2.5]. The following relation holds for any proper quasi-symmetric design:

$$k(r - 1)(y + x - 1) - xy(b - 1) = k(k - 1)(\lambda - 1). \quad (2)$$

Lemma 2.5 [4, 9, 12]. Parameters of D satisfy the following equation:

$$xy(v - 2)^2 + [xy - k(k - 1)(x + y - 1)](v - 2) + k(k - 1)^2 (k - 2) = 0. \quad (3)$$

Proof. We divide the proof into two parts. If the residual E of D is a proper quasi-symmetric design then Eq. (2) for E is

$$k(r - \lambda_2 - 1)(y + x - 1) - xy(b - r - 1) = k(k - 1)(\lambda_2 - \lambda_3 - 1). \quad (4)$$

Subtracting (4) from (2) and using relation (1) we obtain (3). Also if $x = 0$ then by Theorem 2.1, (3) holds. Let D have non-zero intersection numbers
and suppose the residual of \(D \) is a symmetric design. In this case \(b - r = v - 1 \), \(r - \lambda_2 = k \), \((\lambda_2 - \lambda_3)(v - 2) = k(k - 1)\), and the derived design of \(D \) is a proper quasi-symmetric design. Equation (2) for the derived design of \(D \) is

\[
(k - 1)(\lambda_2 - 1)(y + x - 3) - (x - 1)(y - 1)(r - 1) = (k - 1)(k - 2)(\lambda_3 - 1).
\]

Now subtract (2) from (5) and use above relations to obtain (3).

Remark 2.6. Neumaier [9] first obtained an inequality for a quasi-symmetric 2-design in which equality holds for a quasi-symmetric 3-design resulting in Eq. (3). Calderbank [4] also obtained the same inequality using Hahn polynomials. However, their proof is quite involved and as far as quasi-symmetric 3-designs are concerned above, the proof of (3) is quite elementary and short.

Corollary 2.7. Let \(D \) be a quasi-symmetric 3-design then \(v - 2 \) divides \(k(k - 1)^2(k - 2) \).

Proof. Clear from (3).

Proposition 2.8. Let \(D \) be a quasi-symmetric 3-design with \(x \geq 1 \). If \(4xy - (x + y - 1)^2 > 0 \), then

\[
k < \frac{8xy}{[4xy - (x + y - 1)^2]}.
\]

Proof. The discriminant \(\Delta \) of quadratic (3) is given by

\[
\Delta = (xy)^2 - 2xy(x + y - 1)k(k - 1) + k(k - 1)^2 \\
\times \{ -k[4xy - (x + y - 1)^2] + 8xy \}.
\]

Since \(\Delta \geq 0 \), \(-k[4xy - (x + y - 1)^2] + 8xy > 0\), which gives the above inequality.

Remark 2.9. It is clear by Proposition 2.8 that for fixed integers \(x, y \), \(1 \leq x < y \) such that \(4xy - (x + y - 1)^2 > 0 \), \(k \) takes finitely many values. Hence by [12, Theorem 2.6], there exist finitely many quasi-symmetric 3-designs with intersection numbers \(x, y \).

Proposition 2.10. Let \(D \) be a quasi-symmetric 3-design with \(x \geq 1 \), then

\[
x + y - 1 = \frac{(k - 1)^2 [2(v - 1)\lambda_2 - k(v + k - 3)]}{(v - 2)[(v - 1)\lambda_2 - k(k - 1)]}; \tag{6}
\]

\[
xy = \frac{k^2(k - 1)^2 [\lambda_2 - (k - 1)]}{(v - 2)[(v - 1)\lambda_2 - k(k - 1)]}. \tag{7}
\]
Proof. Equation (3) can be written as

\[k(k-1)(v-2)(x+y-1)-(v-1)(v-2)xy = k(k-1)^2 (k-2). \]

(8)

Now consider (2) and (8) as simultaneous linear equations in unknowns \(x+y-1 \) and \(xy \). It is clear from Crammer's rule that if \(A \neq 0 \) then

\[x+y-1 = \frac{B}{A} \quad \text{and} \quad xy = \frac{C}{A}, \]

where

\[A = \frac{(v-2)(v-k)[k(k-1)-(v-1)\lambda_2]}{(k-1)}, \]

\[B = (k-1)(v-k)[k(v+k-3)-2(v-1)\lambda_2]; \]

\[C = k^2(k-1)(v-k)[(k-1)-\lambda_2]. \]

Since \(D \) is not a symmetric design, we have \(r > k \). Using (1) we obtain \((v-1)\lambda_2 > k(k-1)\). This implies that \(A < 0 \) and completes the proof.

Corollary 2.11. Let \(D \) be a quasi-symmetric 3-design with \(x \geq 1 \). Then \(\lambda_2 \geq k \).

Proof. Since \(xy > 0 \), \(\lambda_2 - (k-1) > 0 \) i.e. \(\lambda_2 \geq k \).

3. **Main Results**

Theorem 3.1. Let \(D \) be a quasi-symmetric 3-design with the smaller block intersection number \(x \geq 1 \). Then

\[\frac{(k-1)^2(v-k+1)}{(v-2)(v-k)} \leq x+y-1 \leq \frac{2(k-1)(k-2)}{(v-3)}; \]

(9)

\[\frac{k(k-1)^2}{(v-2)(v-k)} \leq xy \leq \frac{k(k-1)^2 (k-2)}{(v-2)(v-3)}; \]

(10)

\[\frac{k}{v-k+1} \leq \frac{xy}{x+y-1} \leq \frac{k(k-1)}{2(v-2)}; \]

(11)

\[\frac{(v-1)(2k-v)+(k-1)(k-2)}{(v-2)} \leq x+y-1; \]

\[\frac{k(k-1)(2k-v)}{(v-2)} \leq xy; \]

\[\frac{k(k-1)(2k-v)}{(v-1)(2k-v)+(k-1)(k-2)} \leq \frac{xy}{x+y-1}. \]

Upper bounds are attained in (i), (ii), and (iii) if and only if \(D \)
is 4-design. Equality holds in (iv), (v), and (vi) if and only if \(D \) is the complement of a design in Cameron's family.

(vii) \(v - 2 \leq k(k - 1)/2 \), Equality holds if and only if \(D \) is the 4-(23, 7, 1) design or the trivial 3-(5, 3, 1) design.

(viii) \(v - 1 = k(k - 1)/2 \) if and only if \(D \) is the 3-(22, 7, 4) design.

Proof. (i), (ii), and (iii). By [7] the inequality \(b \leq v(v - 1)/2 \) holds for any quasi-symmetric design with equality if and only if \(D \) is a 4-design. By (1) we obtain \(\lambda_2 \leq k(k - 1)/2 \), with equality if and only if \(D \) is a 4-design. Hence by Corollary 2.11, \(k \leq \lambda_2 \leq k(k - 1)/2 \). Let

\[
f_1(\theta) = \frac{(k - 1)^2 [2(v - 1)\theta - k(v + k - 3)]}{(v - 2)[(v - 1)\theta - k(k - 1)]};
\]

\[
f_2(\theta) = \frac{k^2(k - 1)^2 [\theta - (k - 1)]}{(v - 2)[(v - 1)\theta - k(k - 1)]};
\]

\[
f_3(\theta) = \frac{k^2[\theta - (k - 1)]}{[2(v - 1)\theta - k(v + k - 3)]}.
\]

Then \(f_i \)'s for \(i = 1, 2, 3 \) are differentiable real-valued functions on the interval \([k, k(k - 1)/2]\) and the derivatives are

\[
\frac{\delta f_1(\theta)}{\delta \theta} = \frac{k(k - 1)^2 (v - 1)(v - k - 1)}{(v - 2)[(v - 1)\theta - k(k - 1)]^2};
\]

\[
\frac{\delta f_2(\theta)}{\delta \theta} = \frac{k^2(k - 1)^3 (v - k - 1)}{(v - 2)[(v - 1)\theta - k(k - 1)]^2};
\]

\[
\frac{\delta f_3(\theta)}{\delta \theta} = \frac{k^2(k - 2)(v - k - 1)}{[2(v - 1)\theta - k(v + k - 3)]^2}.
\]

It is clear that all the above derivatives are non-negative. Hence \(f_i \)'s for \(i = 1, 2, 3 \) are increasing functions of \(\theta \), therefore \(f_i(k) \leq f_i(\lambda_2) \leq f_i(k(k - 1)/2) \) for \(i = 1, 2, 3 \). Now use (6) and (7) to complete the proof.

(iv), (v), (vi). The residual of \(D \) is a 2-design with the parameters \((v, k, \lambda_2 - \lambda_3)\). By Fisher's inequality we obtain \(r - \lambda_2 \geq k \), with equality if and only if the residual of \(D \) is a symmetric design. It is easy to see that the residual of \(D \) is a symmetric design if and only if \(D \) is the complement of a quasi-symmetric 3-design which is an extension of a symmetric design. That is, by Theorem 2.1, \(D \) is the complement of a design in Cameron's family.

Now \(r - \lambda_2 \geq k \) implies \(\lambda_2 \geq k(k - 1)/(v - k) \) which implies \(f_i(k(k - 1)/(v - k)) \leq f_i(k(k - 1)/(v - k)) \) for \(i = 1, 2, 3 \) with equality if and only if \(D \) is the comple-
ment of a design in Cameron's family. Again use (6) and (7) to complete the proof.

(vii) Since $x \geq 1$, $xy/x + y - 1 \geq 1$. Hence by (11), $k(k-1)/2(v-2) \geq 1$, implies $(v-2) \leq k(k-1)/2$. If $v-2 = k(k-1)/2$, then by (11) $xy/x + y - 1 \leq 1$ implies $(x-1)(y-1) \leq 0$; hence $x = 1$. By Theorem 2.2 D is the 4-$(23, 7, 1)$ design or the trivial 3-$(5, 3, 1)$ design.

(viii) Let $v-1 = k(k-1)/2$. In this case $xy - (x+y-1) = [2(k-1)/(v-2)] \{1 - [k(k - 3)/2(\lambda_2 - 2)]\} < 2$. Therefore, $xy - (x+y-1) = (x-1)(y-1) \leq 1$; hence $x = 1$. By Theorem 2.2, D is the 3-$(22, 7, 4)$ design.

Corollary 3.2. Let D be a non-trivial quasi-symmetric 3-design. Then:

(i) $x + y - 1 = 2(k-1)(k-2)/(v-3)$ if and only if D is the Witt 4-design or its complement;

(ii) $xy = k(k-1)^2(k-2)/(v-2)(v-3)$ if and only if D is the Witt 4-design or its complement.

Proof. By Theorem 3.1 in both the cases D is a 4-design. By [3, 8], D is the Witt 4-design or its complement.

Remark 3.3. Inequality (i) of Theorem 3.1, as also Corollary 3.2(i) were first obtained by Calderbank [4] using liner programming techniques.

Theorem 3.4. Let D be a quasi-symmetric 3-design with the block intersection numbers x and y, $y > x \geq 1$, and D' denote the complement of D with block size k' and intersection numbers x' and y'. If $k-1 \leq x+y$ then $x'+y' \leq k'$.

Proof. It is clear that

$$x' + y' = k' + (v - 3k + x + y). \quad (12)$$

Using (9) we obtain

$$v - 3k + x + y \leq \frac{[(k-1)-(x+y)][2(k-1)-(x+y-1)]}{x+y-1}.$$

If $k-1 \leq xy$, then $v - 3k + x + y \leq 0$; using (12) we obtain $x'+y' \leq k'$.

Remark 3.5. While dealing with complementation problem it is always preferable to start with assumption such as $v < 2k$. In this context inequalities (iv), (v), (vi) of Theorem 3.1 and Theorem 3.4 are important. Now observe that $y' - x' = y - x$; i.e., the difference between the block intersection numbers is the same for both D and D'. We use Theorem 3.4 to characterise $y - x = 1$ and 2.
Now we will investigate quasi-symmetric 3-design with the intersection numbers x and $y = x + 1$, $x + 2$. It is enough to consider $x + y \leq k$, since designs obtained by considering $x + y > k$ are complements of designs obtained in the previous case.

Theorem 3.6. Let D be a quasi-symmetric 3-design with intersection numbers x and $y = x + 1$. Then D is a trivial design (i.e., $v = k + 2$ and $b = v(v - 1)/2$).

Proof. Let, if possible, D be a non-trivial quasi-symmetric 3-design, i.e., $v > k + 2$. If $x = 0$ then by Theorem 2.1 a non-trivial quasi-symmetric 3-design with $y = 1$ does not exist. Now consider $x \geq 1$, $y = x + 1$, and $x + y \leq k$, which may be assumed by Remark 3.5. By Proposition 2.8 we obtain $k < 2x + 2$; hence $k = 2x + 1$. In this case the discriminant A of the quadratic (3) is

$$A = -16x^3 + 11x^2 + 10x + 1.$$

It is clear that $A < 0$ for all $x \geq 2$. Therefore $x = 1$, by the Theorem 2.2 D is the $3-(5, 3, 1)$ design, a contradiction. Hence $v = k + 2$; in this case using Eq. (3) we obtain $k = x + 2$. Now by (6) or (7) and (1), we obtain $b = v(v - 1)/2$, which implies D is a trivial design. This complete our proof.

Theorem 3.7. Let D be a quasi-symmetric 3-design with intersection numbers x and $y = x + 2$. Then D is either the 3-(22, 6, 1) or the 3-(22, 7, 4) design or the 4-(23, 7, 1) design or the complement of one of these three designs.

Proof. If $x = 0$ then $y = 2$ and by Theorem 2.1 D is the 3-(22, 6, 1) design. Let $x \geq 1$, $y = x + 2$; then by Proposition 2.8 $k \leq 2x + 5$. Now assume by an earlier remark that $x + y \leq k$; therefore $2x + 2 \leq k \leq 2x + 5$. Compute the discriminant A of quadratic (3) in the four possible cases. It is easily seen that the condition $A \geq 0$ and A a perfect square forces $x = 1$. By Theorem 2.2 D is the 4-(23, 7, 1) or the 3-(2, 7, 4) design.

Acknowledgment

This paper is part of the author's Ph.D. work, completed under the guidance of Dr. S. S. Sane. The author gratefully acknowledges the help received from Dr. Sane.

References

3. A. Bremner, A diophantine equation arising from tight 4-designs, Osaka J. Math. 16 (1979), 353-356.
12. S. S. Sane and M. S. Shrikhande, Quasi-symmetric 2, 3, 4-designs, Combinatorica 7, No. 3 (1987), 291-301.