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Let ¢ be a root of one and g a semisimple Lie algebra with triangular de-
composition g =1+ § + n". Let U} (resp. U/***) be the nonrestricted (resp.
restricted) quantum enveloping algebra of n. We prove that FractU} is a
quantum Weyl field. We then give a description of the e-center of U;'. Let U/
be the finite part of U/***. Via the Drinfeld correspondence, the U/ *-covariant
space of a Weyl module is s-central. In case g = 3, this enables us to describe
this space in terms of semistandard Young tableaux. = © 1998 Academic Press

0. INTRODUCTION

Let g be a nonzero complex number. A C-algebra defined by generators
X, 1 <i<m, and relations X, X, =q“/X;X;, 1 <i<j<m, a;; €Z,
will be called “algebra of regular functions on an affine quantum space.”
Its skew field of fractions will be called a quantum Weyl field. The X,,
1 <i < m, will be called a system of g-commuting generators.

Let g be a semisimple Lie C-algebra of rank n. Let A be the root
system associated with the choice of a Cartan subalgebra §), and let A* be
the set of positive roots. We fix a decomposition of the longest element w,
of the Weyl group.

Let g be an indeterminate and U,I(g) be the simply connected quantized
enveloping algebra, defined as in [16, 3.2.9]. Let ¢ be an Ith root of one,
I+ 2,and [ # 3 if g has a component of type G,. We define U, (resp.
U’**) to be the nonrestricted (resp. restricted) form as in [11]. As in the
classical case, let U (resp. U/***) be its “nilpotent” subalgebra. Let E_,
a € A%, be the root vectors of U, and Gr U be its associated graded
algebra (see Section 1.5).
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Generalizing results of [1], [17], [10], we prove in Section 3.2 that
Fract U is a quantum Weyl field, i.e., it contains an algebra A,, of
regular functions on an affine quantum space, such that FractA =
Fract U". The method we use specifies the description of the E,’s in term
of a system of e-commuting generators of A, . Moreover, the algebra A,
is isomorphic to Gr U;". The two main tools of the proof are the foIIowmg
The first one is the notion of a roots package (see Definition 2.2), which
arises in Weyl modules (see Lemmas 2.1 and 2.2). The second tool is the
Drinfeld correspondence, which can be made precise by the universal
Z-matrix (see Section 1.6).

An element in U’ will be called e-central if it s-commutes with the
E_’s. As in [1] for the generic case, the realization of U as a quantum
Weyl field is of great help in obtaining its e-center. As for U, (see [13]),
Corollary 4.2 asserts that the center Z of U’ is generated by the
specialization Z_ of the generic center (see [7]) and the algebra Z,
generated by the E!, « € A*. For this result, we first study the center of
Gr U and then lift our results by the (abstract) isomorphism Gr U =
A, cFractU; .

In Section 5, we give an application of the s-center to some covariants
of Weyl modules. Let U/""* be the subalgebra of U’** generated by E_,
a € A", Let A be a dominant weight and V(1) be a dominant weight and
V.(A) be the U’***-Weyl module as in Section 1.7. Then, as in the generic
case, its dual V()t)* viewed as a U/™"*-module, can be naturally embed-
ded in U}, endowed with the adjomt action of U/™*, via the Drinfeld
|somorph|sm Inside U the U/™*-invariants of V,(A)* are e-central
elements (cf. Proposition 5.1). For g = 3(,, this provides a complete
description of the U/™*-invariants of V,(A)* in terms of semistandard
Young tableaux (cf. Theorem 5.3).

1. PRELIMINARIES AND NOTATIONS

1.1. Let g be a semisimple Lie C-algebra of rank n. We fix a Cartan
subalgebra §) of g. Let ¢ = n~+ ) + n be the triangular decomposition
and {«,}; be a basis of the root system A resulting from this decomposition.
We note b =n + § and b+ [, the two opposed Borel subalgebras. Let
P be the weight lattice generated by the fundamental weights @, 1 < i < n,
and P*:= X, Nw; the monoid of integral dominant weights. Let W be the
Weyl group, generated by the reflections corresponding to the simple roots
s;=s,. Let w, be the longest element of W. We denote by (,)
the Wlnvarlant form on P. For each root we set d, = (a, a)/2, and

a=(1/d,)a. We have (o7, @) = §,;.
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1.2. Let g be indeterminate and U,(g) be the simply connected quan-
tized enveloping algebra, defined as in [16, 3.2.9]. Let U, (resp. U,") be the
subalgebra generated by the canonical generators E; = E (resp. F E)
of positive (resp. negative) weights. For all A in P, Iet 7(A) be the
corresponding element in the algebra U° of the torus of U(g) We have
the triangular decomposition U,(q) = U, ® U° ® U, We set

U,(b) =U® U U (b™)=U ®U° (1.2.1)

U,(g) is endowed with a structure of Hopf algebra with comultiplication
A and antipode S.
We define in U,(g) the left and right adjoint actions by

adv.u = v uS(vy)), uadv =S(vy)uvy,

where u,v € U/(g) and A(v) = v, ® vy, with the Sweedler notation. In
particular, if u is an element in U,(g) of weight w, then

ad Ej(u) = Eu — q‘“"WuE;, 1<i<n. (12.2)

If n is a nonnegative integer and « a positive root, we set

1— qnda

[n]. = T [n]et=[nlaln =1l -+ [1]a:

1.3. The dual space U,(g)* is endowed with the natural left and right
regular actions of U/(g): u.c(v) = c(u), c.u(v) = c(vu), u,v € U[(g),
c € U(g)*. For all A in P*, let V,(A) be the simple U,(g)-module with
highest weight A. For any integral dominant weight A, we fix a weight basis
{v,} of V() (this is a misleading notation because there is generally more
than one vector of weight u). We denote by {07} its dual basis. V,(A)* is
endowed with a natural right U,(g)-module structure For all ¢ in V(A)*
and v in V,(A), let ng in U(q)* be glven by c} () = Eu), u € U(q)
Then, we have u. <to=ctu "and ctou=c}, 1 If ¢ (resp v) has welght v
(resp. w), we set (if no confusion occurs) ¢}, =c},. For any integral
dominant weight A, let C(A) (resp. C*())) be the space generated by the
ct, (resp. ¢} ) €€V, (V* v eV, (M) Weset R= @, _,.C(A), R"=
@, p+ C7(M). R™ and R are subalgebras of the Hopf dual of U(q).
R* is a P*-graded algebra, and the C*(A)’s are its graded components.
R (resp. R") is a Uy(g) (resp. U;") module for the left and right regular
actions. Moreover, the left and right adjoint actions of Uq(g) provide right
and left adjoint actions of U,(g), (resp. U,;") on R (resp. R™).
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1.4. [16, Lemma 7.1.9] asserts that the natural morphism U, (g) —> R*
is an embedding. Let A be in P, By [16, 14.11, Remark] the U,(g)-module
structure on V,(A) extends to a R*-module structure.

For all w in W, we define the corresponding element N,, in the quantum
Weyl group (cf. [16, 10.2.1], [18]). Set N, == N, . Recall the following facts:

(i) N, is an invertible element of R* [16, Lemma 10.2.2].

(i) The automorphism 7,: a — N,aN, ' restricts to an automor-
phism of Uq(g) and identifies with the Lusztig automorphism [19] associ-
ated with w [16, Theorem 10.2.6, 10.5.2].

(i) SetT,:==T, .Ifw=s; s
then 7, =T, --- T, [19].

(iv) Let M be a finite-dimensional U,(g)-module, let i be in [1, n],
and let v be an E-invariant element of M with weight w. Then, up to a
multiplicative power of g, N.v = (F/"/[m], Dv, where m = (pu, ;7) [16,
10.2.2(9)].

1.5. We fix a decomposition of the longest element of the Weyl group
wo=s; ...s; ,where N =dimn.Set y, = 1d,y,=s;5, **s;,1 <I <N,
B =yi-e ) 1 </ < N. We endow an order into the set A* of positive
roots: By < -+ B, < B;. We now introduce the following elements in U’
(resp. U,): Eﬁ, T, (E), 1<l <N (resp. Fg =T, (F,)).Fix w in W
and a reduced decomposmon s, of w. We may assume without loss of
generality that the decomposition of w, verifiess, =s,s,,w' € W. We
shall say that the reduced decomposition s,, of w deflnes the elements £ ,
Fg, 1 <1 <I(w). For each positive root «, and all nonnegative integers n
set E™ = (1/[n], DE}, F, F"m = = (1/[nl,, I)F" For each tp e NV, let EY,
EW), F‘” FO ‘be the ordered products EY := v Ef, EW) =
ITj_y E, F¥=TI;_y F', and F") == TT}_\ F{". The components of
¢ in NN will be indexed by the positive roots ¢// = (g, g, P ) =
(g, ¥y, ..., Py). The set NV is endowed with a natural IeX|cograph|c
ordering.

We know (cf. [19]) that these elements generate a Poincaré—Birkoff-Witt
basis of U,". Moreover, the order on A™ defines a natural filtration on U,".
The associated graded Gr Uq+ is generated by the Gr E,, 8 € A", and the

relations ([20], [12, Lemma 1.7])

is a reduced decomposition of w,

Gr E,Gr Eg, q‘#P)GrE s Gr Eg., B> B (15.1)
For each w in W, set

n,=nnwmn), U(n,)=U'NnT,(U(b")).
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LEMMA. Forl<i<n,weW w= Sttt S, we have
(i) wa, € AT ff T, E €U,
(i) —we; € AT ff T E € U(b).
(i) U,(n,) is the algebra generated by the E 1<) <k, defined by
the above decomposztlon of w.

Proof. (i) s given by [19], [12, 1.6]. The hypothesis of (ii) implies that

there exists p, 1 < p < k, such that s, i -5 () = a; . From (i), and the
triangular decomposition, T, E; = T; - T (E )— T, (=F, T(a ))
e U,(b").

Let us prove (iii). By the definition, U,(n,,) is an algebra. Let B, be the
space generated by the polynomial basis prowded bythe E;, 1 <j <k. As
a consequence of (ii), B, c U,(n,,). Moreover, the reduced decomposition
of w may be completed into a reduced decomposition of w,. Thus, we can
complete our polynomial basis into a polynomial basis of Uq*. By (ii) and
the triangular decomposition, we obtain the reverse inclusion. ||

1.6. We know that Uli(g) is an almost cocommutative Hopf algebra (cf.
[14]. Let #Z =%, ® %, be the universal #Z-matrix of U,(g). We recall
the expression of the .%#-matrix as an ordered product [18, 3.3]:

R = ( IT exp.((1 —q.%)E, © Fa))qu‘X’H (1.6.1)

aceAt

where (H,) is an orthonormal basis in ) and exp,(x) == X,. o x"/[n],"
Let ¢ be the restriction homomorphism from U, (g)* to U,(b™)* and
J~= Ker ¢ N R. The following is well known (cf. [4], [21], [5], [6D.

THEOREM. We have

(i) There exists an injective algebra antihomomorphism B*: R/J~ —
U, (), given by ¢ = (1d ® cX %), c ER/J".

(i) There exists an injective ad U,(g)-homomorphism {: R — U(q).

(iii)  The natural projection w: R — R/J~ restricts into an embedding
R*= R/J™ and forx € C*(N), {(x) = 7(=V)B"(x) € 7(-2)U,.

1.7. Let « be the algebra C[q] localized at the multiplicative set
generated by (g — 1), (¢ — w), where o is a kth root of one, for k = 2,
and k = 3 if g has a component of type G,. We define the w-algebra U,
generated by the E;, F,, 1 <i < n, 7(A), A € P". The specialization of U,
at a root of one & (" # 1) will be denoted U,. We define in a similar way
the w-forms U, (0™), U(b7), U}, U,, U? and the specializations U,(b),
U, etc. As before, «&/-forms and e-specialization have a natural PBW basis
[12]. Let U.** be the .-algebra generated by the E(V, « € A*, n € N.
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We define in a similar way the algebra U**~ and U}** (see [11, 9.3.1]). For
all Ain P*, we set V,(A) = U;* v, € V,(A). By [11, Proposition 10.1.4],
V(A is a Uy*-module and C(q) ®,V, () = V,(A); moreover, it is a free
&-module. By 1.4 (iv), the extremal vectors v,,, = N,v,, w € W, belong to
V.,(A). Hence, as T,, restricts to U}, it follows that N,, acts on V(). We
define as above the specializations U/***, U™, V.(\).

2. INTEGRAL MODULES AND ROOT PACKAGES

2.1. A decomposition of w, defines a partition of A* in the following
way.

DEFINITION AND NOTATION.  FiXx wy =s; ==+ s; . For1 <j <n, we call
root packages the sets A/ :={p,, i, =j}. For m 1<m<k:=_CardA/,
we define «; ,, to be the mth element in the decreasing sequence of the
rootsof A7: oy > @, > >, > 0 > ;. Set AT ={a;,, 1<
t < mj.

Note that the partition of A* into root packages depends on the choice
of the reduced decomposition. In the case g = 3[,, the decompositions
$15,538,5,5; and s,5,555,5,55 of w, define different partitions of A* that
are, respectively,

{{al’QZ’a3}l{al +oa,, o, + a3}’{a1 +toa, + 0‘3}}'

{{a2’a1 +a, + azb {a; + ay, a5}, {a, + ag,al}}.

Let M be a o/-module, v,w € M. In the sequel, v = w means that v
equals w up to a (multiplicative) invertible element of ..

LEMMA. With the notation abouve, suppose Bi, = @ Bi, = @iy Let
$U" e NV such that % = 1if B, e Al and 1// U0 =0 otherwise. Let
¢ e NN such that ¢{° = (a;, a;” 1fp <Il<gqand ¢/"® =0 other-
wise. Lety, be as in Section 1.5. Then

(D Set =y D and ¢ == U =D 1+ ¢ In V (@), one has
F(w)v = F(d’)v =y

Y@’

(II) If o s @ 41, then U;kpw/S(Ea) = O, 0y, Uy
(i) y,o —a; ;. =y,

Proof. Let us prove that F“Wu_ .=V, . We have to prove that
FOoy = =v, o = FO Oy = ,,w,- The result then follows by in-

@ wj

duction. erte yp WiSiW,S; + wksj;,-and Vg = WiS;Wy$; = Wy, q8;, Where
the w;, have no s; in their decomposition.



q-COMMUTATIONS IN Uq(n) AT ROOTS OF ONE 563

FWy = F FW" =F,
J

= v
Qi k+1) j Qi k+1 YpTj

N_l, , v, =N , FN1'v

WiSiW S Wiw 1™ 7 IWISiW o8~ Wiy 1" Y, WiSiWaSi= Wii1™ ]J7 Wpy1 @)

= Nwlsjwzsl wk+1F}ij = Nwlsjwzxjm wk+1Ustj = Uquj'
We now prove that F¥p_ = =, ,. By the previous assertion, it is
(. k) _
enough to prove that F(® i Dwys s~ wi_ gy, = Uy, FOT p <1< g, set
= (a a;’) —
=5, . We prove that Fy %% Uy 2 sy = Uy sy The result
will foIIow by mductlon
Fy (e ey =N,, F ()Nt p
]

Yp21-15;T; YpZi-1" 1 YpZi-1 YpZ21-15jT;

= Nyplz L (eer )U P Nypz, Psysioy = Uypzism;
Let a < @; .. Then, acting by T gives F, vy, o = 0. Hence, by (i),
@< Q= Favyp o = O, Uy, Th|s is (i) V|a the Chevalley auto-
morphism, and it gives (iii). I
ExampPLE. Let g be of type B,, with the notation of [2, Planche Il1].
Fix the following decomposition: w, = s,s,s,5,. Then the order in A* is
given by

o> ot a,> ot 20, > .
So,
Af={ay, =ay, 01, = oy + 22y},
Ay=A{ay1=a; + ay, ap, = ay}.
(i) gives a; + (a; +2a,) = 2(a; + @,) and (a; + a,) + a, =

(a, + 2a,).

(i) gives that F, ,,, F,v, and F®,  v_ are extremal vectors of
are

weight s;s,5,@; in V(wﬁ Slmllarly F,F Uy, and F,

ajta,” @

extremal vectors of weight s,s,s,5,@; in V, (@,).

+2a2 @,

2.2. The integers j, k, p, are fixed as above. An element A € NV is
said to satisfy % iff F*Yv_ =wv, . uptoanonzero scalar. Set y = ¢*.
By the previous lemma, x verlfles . Moreover,

LEMMA. Let A be in NV and suppose that A verifies 2. Then
i x=A.
(i) B &la;,, a;,] implies that Ay =
(i) A, =<1
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Proof.  First, remark that if «;, < g, then Fzu, = 0. Indeed, the «;
component of Fj is zero, by construction of Fj. Now let B be such that

@; ;1 < B < a;,. Then, by the previous remark we have F,FYu, =
Fguy o =N, lT 1(F Ju, =0 (for the last equality, we can repeat the
argument above W|th T, l(F ) instead of F,). This provides (i) by induc-
tion.

We now prove (ii). By the previous assertion, we have g > aj = Ng =
0. Hence, we can decompose A = A° + A!, where the support of A° (resp
AY s in [ By, a; [ (resp. [a; ;, «; ;). Remark that, by Lemma 15, F =

T, '(F9) has a (strictly) negative weight. Suppose now F(A°>F<A1)u =
F(A)u = v, . ; then acting on both sides by N , We obtain that v_ _

y(m) Hence a contradiction and (ii) holds.

Suppose A, > 1 Let A’ bein NV such that Ay = A, — 1if B=q;
and A" = A Otherwise. Then F™p_ is nonzero of welght y,®; + q
Letrbesuchthatyr = Qo |fka&1andr—0|fk—1 Then, r<p
and Lemma 2.1 (iii), applled to k — 1, given y, @, =y, @, — a; ;. Hence,
FMyp o = Uy UP to a nonzero scalar. By the hypothesis Uy o, €
F, V(@) =T, (a WV, (w;). As above, acting by 7, * on both sides yields a
contradlctlon So (|||) holds |

3. FUNCTIONS ON AFFINE QUANTUM SPACE AND
QUANTUM WEYL FIELDS

In the sequel, we fix a decomposition of w,. For each A in P*, we fix a
basis {v,} of the .&-module V(). If {v;*} is the dual basis, we then have
the matrix coefficient C?ﬁ,v . For each symbol Ya,k, we will frequently use
the notation Y; ;. g ‘

3.1. An algebra defined by generators X;, 1 <i <m, and relations
X X;=qX;X;, 1 <i<j<m, a;; €Z will be called an “algebra of
regular functlons on an affine quantum space.” Its skew field of fractions
will be called a quantum Weyl field. The X;, 1 <i < m, will be called a
system of g-commuting generators (SQCG). The (antisymmetric) matrix
A = (a; ;) will be called a matrix associated with the SQCG.

ExavmpLe 1. By 15 {GrE,;, Be€ A} is a system of g-commuting
generators for Gr U,". Let A(n) be the associated matrix. Then A(n) is
a N X N antisymmetric matrix with the lower triangular part given by

A 5 = (B, B
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DerINITION.  Let B € A", B =B, = «; ,. We define as in [10, 2.3] the
following elements ¢, (= ¢; ;) of FractR+

=% =c7 1 ¢
Cp Cypé’y,,w,-p’ g = Cjk—1€ k>

with the convention ¢; , = ¢
5 w

ExAmMPLE 2. We shall prove in Corollary 3.2 and (3.3.2) (see also [10,
2.3, 3.1] for another proof) that the {a,, B € A"} is the SQCG of an
algebra of regular functions on an affine quantum space whose associated

matrix is the transpose of A(n).

ip

3.2. We still denote by c; and a, the elements of Fract U,(b™) corre-
sponding to ¢z, az € Fract R* via the Drinfeld antihomomorphism g*
(cf. 1.6) (in particular, ¢; , = 7(— w,-P)). These elements satisfy the follow-
ing properties.

PROPOSITION.  The ¢, (resp. ag) are q-commuting elements in the /-
form U,(07) (resp. FractUy). For all B=p, in A", we have cg =
(EgP + Q)r(—w)), where P and Q are polynomials in E,, a > B. More-
over, the e-specialization of P is nonzero.

Proof.  The fact that the ¢; and the a, are g-commuting elements is a
consequence of [10, Proposition 2.3]. By Theorem 1.6 (iii), ¢, , = ¢z €
B (C*(w)) c 7(—w)U,g). This also holds for c;,_,; hence az€
Fract U,". 'Set X X, = 7(w;))cy € U,. By 1.6, we have

, EPNA
Xy= ¥ AEY,  where A, =, (F"v )TT(1-q;2)".
ye NN
(3.2.1)

By the Weyl character formula, v} (F(‘”)v ) is nonzero iff FWp_ =
Uy o, Up t0 @ nonzero scalar. Hence X is a sum of monomials A, E“’
where i verifies 2 and 4, € U;. By Lemma 2.2 (ii), (iii), we have X
(EgP + Q), where P and Q are polynomials in E,, a > 3. By Lem-
ma 2.2 (i), A, EX is one of these monomials. By construction, it can be
factorized on the left by Eg, and by Lemma 2.1 (i). A, is invertible in ..
Hence, the e-specialization of P is nonzero. |

Let B = a;,. We retain the notation of the proof above, and we set
X=X, = 1(m))cg € U, . Then, (3.2.1) and Lemma 2.2 (i) give (up to a
unit in %)

GrXx,,= Il GrE, . (3.2.2)

m<k
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In the following corollary, we fix an element w in W and its reduced
decomposition s,,. We assume as in 1.5 that the decomposition of w,
verifies s, =s,s,., w' € W. We have

wS w"

COROLLARY. Let A,, be the algebra generated by the ag, where B runs
over the weights of n,,. Then, A, is an algebra of regular functions on an
affine quantum space, with GK-dimension l(w). FractU,(n,) = Fract 4,;
in particular, FractUy = Fract A, , and the associated matrix of A, is
A(n). This remains true after e-specialization.

Proof. A, is generated by the ag, which g-commute. From the assump-
tion preceding the corollary, if 8 € n, and « > B, then « € n,,. Then,
the equality FractU,(n,) = Fract 4, follows from Lemma 1.5 (iii) and
Proposition 3.2. Recalling that the EY, € NV form a PBW-basis of U/,
we deduce that the only relations in A4, are the g-commutations. [

3.3. In this section, we make more precise the g-commutations inside
U,(b*). By [16, Proposition 9.1.5],

cgr = qOB S BI=CBLTD @B e B=a; > B =,
(3.3.1)

g

where s( ) is the weight of c;. By (3.2.2), we have s(a; ;1) = s(e; ;) +
@ 11 (). It follows that

agag = q P FPlagag, XpXg =q P ETITIX,, X,
B>B =ap,. (332)
Recall that for all in P, 7(A) is a group-like element, and so ad (1) is
an automorphism of U,(g).

LEMMA.  Suppose a;  is not almost minimal. Let o = ad 7(«; ;) and
let D be a o-derivation on Uq(g), i.e., D(uv) = D(wv + o)D), u,v €
U,(g). Suppose D(c; ;) = ¢; ;1. Then, D(c}',) = [n]al‘kﬂc}f;lcjvkﬂ, up to
a power of q.

Proof. By (3.2.2) and (1.5.1), we have
X kX ke1 = q(s(a"k)'a”‘”)X},kJrlXj,k ().
Comparing with (3.3.2), we obtain (s(a; ), s(a; ) = —2(s(a; ), @)).

Hence, (s(a; ;1) s(a; ;1) = —2(s(q; ;.41), @;). Using (*) on the left-
hand side gives

(aj,k+1’s( aj,k)) = (aj,k+1ij) - %(aj,kﬂl aj,k+l)' (3.3.3)
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Usmg (3.3.3) and (**), we obtain o (c; )c; i1 = g e 0¢; ey =
q _C;,k+1C;,kn Wlth-m = (a,,k+1' s(a] k)) (a, k+1 W) (a] k+1 ¥ k1
Using (3.3.3) again, we have m = (@; 1, @; 4 41)- We have proved that
0 (¢; )¢ 1 = q v 9se; e . This implies the lemma by induc-
tion on n.

4. CENTER OF Uf

Recall that by convention, we denote by the same symbol an element
and its e-specialization (when it exists). For example, we set X, = Xk =
m(w;)cy € U7, and these elements exist by Proposition 3.2.

4.1. We suppose in the sequel that [ is odd and is not divisible by 3 if g
has a component of type G,. Let ¢ be an /th root of one.

Let B=aq;, € A+ We say that B is an almost minimal root if B is
minimal in A7, i.e,, B =aq;,, m=CardA/. Set X;, =1and X, ;=0
if a;, is almost minimal. If B is almost mlnlmal then let z; == X, = X, ,
For)\EP+ A =XYnw, set z, =1z

DEFINITION.  An e-central element a in Fract U is an element that
g-commutes with the generators E;, i.e., there exists a weight n (unique
modulo IP) such that aE, = &¢**ME,a. The class of n modulo [P will be
called the commutation weight of a.

LEMMA. Let B=a;,, A € P".

M if ,8 is not almost minimal and y= @ ;,,, a <Yy, then
ad E,(cy) = in R

’Y o '}'

(i) z, has weight A — wyA and commutation weight (Id + wy)(A)
modulo IP.

(i) Grz; = [T,car GrE,.

Proof. (i) is a consequence of Lemma 2.1 (ii) and the definition of ¢,

(cf. 3.2).

(ii) is provided by [8, 2.2.1].

(iii) is a particular case of (3.2.2). 1

Remark. 1f u=2z,z,, z, € Z,, has weight A and commutation weight
X', then, by (i), u = 3(A + A") modulo [P. The elements z, and z, have
the same commutation weight iff A = u + [P + Ker(ld + wy).

4.2. The group H generated by —w, acts naturally on [1, n] by A(a;,)
= a,;, h € H. Set —w,(i) = i*. Let I be a subset of [1, n] containing
exactly one representative for each class modulo H and I its complemen-
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tary subset. Let Z_ be the algebra generated by the z,z., if i # i*, and the
z,, if i = i*. Then, by (ii) of the previous lemma, Z_ is central in U .
Remark that Z, may be seen as the specialization of the generic center
(see [7]). As ¢ is an [th root of one, we know [12] that E., B € A", is also
central in U. Let Z, be the algebra generated by those elements.

Let P be the lattice P/IP + Ker(ld + w,). As in [8, 2.2], each class of
elements in P has a representative in P*. For all A in P*, let C* be the
line in U} generated by z,. For all 7 in P, set C™ = &;__C* (this is a
direct sum by Lemma 4.1 (iii)). The following theorem describes the
e-central elements in U

THEOREM. Let C, be the set of e-central elements in US. Then C, =
Uzes Z,Ch In pamcular C.,c e e p Loz,

Proof.

Step 1. Let a € C, be of the form IT Xg#, 0 <n, </; then a €
U,cp+ CA

Proof. We have to show that nz = 0 for g not almost minimal. We
prove this assertion by (reverse) induction on B. Suppose that «; , is not
almost minimal and ng; = 0 for 8 > «; ;. Let y = @; ,,, and yé be the
smallest root greater than y. By Lemma 4.1 (i) and Theorem 1.6, B in A},
B> a;, implies that 7(—2w,)X; is ad E, - -invariant. Hence, by [18,
2.4.1] (see also [10, 2.1]), ad E,, acts as a twisted derivation on the algebra
generated by those 7(—2w;)X,;. To be more precise, on this algebra,
ad E, is a derivation twisted by the automorphism ad7(y). Let
7=1Il_i.,pea 7(—=2n4w;). On the one hand, by the (quantum)
Leibniz formula, Lemma 4.1 (i) and Lemma 3.3 give ad E (ra) =
[n; ], 7aX;; X, ,,,. On the other hand, as a is e-central, we have
ad E; k+1(7'a) E; k+17fl up to a muItlpllcatlve scalar (which may be
zero) This gives [nj i)y Xj ko1 = E; 21X 4, up to a scalar. By (3.2.1) and
Lemma 2.1 (i), the left- ’hand side contains E® in its PBW- -decomposition,
and the right-hand side does not. Hence, [n; ], = 0. Thus, n; , = 0, and
the assertion follows inductively. |

Step 2. Each monomial b in Gr U such that bGrE,; =
e P MGrEgh, v € P, lifts to Uz p Z,CM

Proof. Let b =T1Gr Ege. As Gr E’ lifts to Z,, we can restrict to the
case 0 <ng </ Letc:= Hagﬁ S Fract U;. By Corollary 3.2, the hypothe-
sis on b |mpI|es that cag = &% Vagc. This easily implies by Proposition
3.2 that cE; = ¢# "Egc. In partlcular c is e-central in Fract U;". Remark
now that c 1'[X"/k ikt W|th the convention n; ., =0 if n;, is
almost minimal. Define Tay, =Tik BY rix=mn;,—n;,., [I] and 0 <
rix <Il. Remark that |”]k ],k+l| <1 Hence, multiplying ¢ by an
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(unique) element z, in Z,, we obtain that TTX/i¢ is e-central in U,". So,
Step 1 gives z,c € U, p+ C* In particular, rg =0, for g not almost
minimal. Thus, z, = 1. Gr(¢) = b by (3.2.2), and c¢ is the required element.

We can now finish the proof of the theorem. Let a € C, and b = Gra.
Then, b verifies the hypothesis of Step 2. Let ¢, in U ;.5 Z,C* such that
Grc, = b. a and ¢, have the same commutation weight, ¢, == a — ¢, is in
C, and has a lower degree. Hence, the theorem follows by induction. i

Remark that if w, = —1d, then C, is the center of U . In general, we
have

COROLLARY. Let Z be the center of U.. Then,

(i) Gr Z is the center of Gr U'.
(i) Zis generated by Z_ and Z, i.e., Z = Z\[ Z,].

(i) U is projective over its center, of rank [N~ *!.

Proof. (i) and (ii) are direct consequences of Step 2 and the previous
theorem. Let S be the multiplicative set in Gr U;* generated by the Gr E,,
B not almost minimal or 8 = «; ,, i € I. By Lemma 4.1 (iii), S"*Gr U;" is
free over S~1Gr Z, of rank IN~*!. This yields Giii). I

Remark 1. Recall that for this result, we assumed [/ odd. If [ is even,
then Z, has to be replaced by a larger algebra Z{. This algebra can easily
be obtained for each simple Lie algebra g. In fact, every argument in our
proofs remains true, except for the last assertion of the proof of Step 1.

Remark 2. We conjecture that the assertion (i) is true for U/(g), i.e.,
the center of Gr U, is the graded space of the center. This conjecture has
been verified with Maple V for “small” classical Lie algebras g and all
exceptional Lie algebras.

4.3. The center of an algebra of functions on a quantum space is
directly connected with the kernel of its associated matrix. So, we deduce
the following result, which may be written in terms of root systems (and
roots packages).

COROLLARY. Fix a decomposition of w,. Let A(n) be as in [3.1, Ex-
ample 1]. The rank of A(n) is N — #I. Let B(n) be the submatrix of
A(n) obtained by omitting the almost minimal roots of A}, i € I. Then
the determinant of B(n) is a power of 2 (and 3 if g has a component of
type G,).
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5. U/-INVARIANTS IN V.(A)*

5.1. Byl[l11,9.36], U;" (cf. 1.7) is generated by the E,, E), 1 <i <n.
By [11, 9.3.6], the E; generate a finite-dimensional Hopf subalgebra U/ *.
Define the U.**-module morphism (cf. Theorem 1.6):

¢
LV () = V(D" @0, = CT(A) S (=20

The following proposition gives a characterization of the U/ *-invariants
in V.(A)*.

PROPOSITION. The image of () is contained in 7(—2M)U} and, by
specialization, () defines an injective morphism of U/**-module. {}:
V.(N* = 7(=2M)U;. Moreover, setting P,":== P*N(A + IP), we have

V)= () 1(=20) X Zoz,).

reEP’

Proof. Let u* € V,(M*. By 16, {}(u*) = 7(—=2M)Xa, EYu*(F"v)),
where the a, are units in & If v* belongs to a basis of V,_ (M)*, then
v*(Fv,) € o, Hence, {)(v*) € 7(—2MU;. Suppose {}(u*) € (g — &)
7(—2MU/; then u*(FYv,)) € (¢ — &)« for all . Thus, u* € (¢ — &) -
V_(A)*. This proves the injectivity of the specialization of the U/**-mod-
ule morphism £ We now claim that ({) ' (7(=2M)X,cp+ Zyz,) C
V(A" Indeed, T(=2MX,c p; Zoz, is ad Eqinvariant by (1.2.2) and
Lemma 4.1 (ii). )

We now prove the reverse inclusion. Suppose u* € V,(A)*Y"" has
weight ». Then, 7(—2M)a = {Mu*) is ad E-invariant by Theorem 1.6,
with weight A + ». This implies by (1.2.2) that a is s-central and that the
commutation weight of a is equal to A — ». By Theorem 4.2 and Remark
4.1, we have a € L, . p+ Zyz,. This gives the claimed equality. I

52. Let 7(—2M)K; be the image of V,(A)* by the embedding .
By [6, Proposition 4.1 (iii)], we have
KyK,CK}, . (5.2.1)
By Proposition 5.1, the vector space V,(A)*Y"" is isomorphic to the
intersection of Ky and X, Z,z,. Both spaces can be made explicit,
but the intersection is not quite clear. In return, the intersection of the
associated graded spaces can be made explicit. We shall prove in 5.3 that,
when g = g[,, the associated graded space of the intersection is the
intersection of the associated graded spaces. First, we give the following
lemma.
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LEMMA. Let A € P* and let X be an extremal vector in K, i.e.,
(—2M)X corresponds via [} to an extremal vector in V,(A\)*. Then, X' €
E,u.ElPJ’ ZO[Z/J.]'

Proof. It is enough to prove that X' is central. Indeed, by Remark 4.1
and Theorem 4.2, a central element whose weight belongs to /Q" is in
uea/m0tnr Zolz,]l, which is a subset of X, jp+ Zi[2,] (recall that [ is
odd).

First, we prove this assertion for A = @;, 1 <j < n. Suppose that X
corresponds to the extremal vector vww, w € W, with w minimal for the
length. Thus we have a reduced decomposition S, = WiS; o wis;, where
the w, have no s; in their decomposition. There eX|sts an element w' of
the Weyl group with reduced decomposition s,. such that s,s,. is a
reduced decomposition of w,. Fix this decomposition of w, and set
B =wys; --- wi(a;). Then, X is the X, defined in the proof of 3.2. By
(3.3.2) and Corollary 3.2, X! commutes Wlth the generators of 4, ; thus it
commutes with U, and we have the claimed assertion.

Suppose that A = X; A,@;. Suppose also that X corresponds to the
extremal vector v¥, € V()r)* and that X; corresponds to vy, € V (w)*.
Then, HX“/ and X' are equal by (5.2.1), because they both correspond to
vk, € V(l/\)* The lemma follows. |

5.3. In this section, we suppose g of type A4, (see [2, Table I]). Let ¢
1<i<n+1lbesuchthat o;=¢ —¢,,, 1 <i<n, X"l'e = 0. Fix the
decomposition of wy:

Wo = (Sn sl)(sn SZ) (Sn)'
This decomposition settles the following order on A* (cf. 1.5):

a, >a, +a, > >a,+ e >a, >
>a, F o> o >, o > oa.

The roots packages (cf. 2.1) are defined by
Q=0 1t ta, g, l<k<i<n. (5.3.1)

The principal symbols of the generators of the center are given by
i
=T1E,, 1<i<n, z=[IEy. (5.3.2)
= 1

Let A = X\, € PT,and a; = X7_; A;. A Young diagram of shape A is a
left justified sequence of rows with a; boxes in the ith row. A semistandard
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Young tableau of shape A is a filling of the boxes with numbers 1to n + 1
such that

(R): The entries are not decreasing in the rows.
(C): The entries are strictly increasing in the columns.

Let T (resp. T,) be the set of semistandard Young tableaux (resp.
semistandard Young tableaux of shape A). We know that #T, = dim V,(A)*.
Moreover, there exists a basis B, of I, (A)* and a one-to-one correspon-
dence T, — B, such that a semistandard tableau T maps to a vector of
weight —Z k, €;, where k; is the number of i in 7. We can define T} to be
the set of semlstandard tableaux of shape A with weight w. If n > i, >
>, >21,T,€T, K and A=Y, o, . Then, the T, are single columns
with i, rows, and” we naturally define the concatenation Ty % =T,
which belongs to T, if (R) and (C) are verlfled

Let n: T - Gr U+ such that n(T) = Iz c ,+ Gr Ege, where n,, . . -y
1 <i<j<n,isthe number of j + 1 in the ith row of 7. Let 7, be its

restriction to T,.

ExampLE. Let g be of type A4,. The following tableau T

2]3]3]

is of shape A = 3w, + 2w, and corresponds to a vector of weight u =
—2€, — 2¢, — 3€;. Let T,,...,T; be its single columns from left
to rightt We have T7,,7T, € T 15,1, Ts € T, . The concatenation
T,% - +Tg gives T. 9(T) = GrE GrE? GrEa,n(T1)=1, 2(T,) =

a;+a,
ayt+ay”

GrE, ,n(Ty) = GrE, , n(T,) = n(T,) = GrE

LEMMA. For all A in P*, m, yields a one-to-one correspondence between
T, and a basis of Gr K. Moreover, if T € T}, then the weight of n(T) is
n+ A

Proof. We have #T, = dimGr K. Moreover, the number m in the ith
row belong to [/, n + 1]; thus 7, is an embedding. So, by a cardinality
argument, it is enough to prove that » maps T, into Gr K.

We sketch a proof of this assertion for A = ;. With the notation of 1.6,
let {v;}, be a basis of V(=) and C = (¢, v ) be the matrix with coeffi-
cients in C(W1)|U(b) correspondlng to this basis. As in [5, 4.3], we can
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calculate B7(C) from the representation V(). Taking the graded space,
we have, for an appropriate basis,

1
GrE, 1 (0)
Grr(w,)B*(C) = GrE, GrE, 1 ,
Gre, , Gre, , - Grkg, 1

up to a power of gq.

Now, as in [5, 4.3], K;, 1 <i < n, are generated by the quantum minors
whose columns are the i first columns of 7(w,)B*(C). Let Te T_ and
t, <t, -+ <t; be its components. It is easily verified that n(T) is the
graduate of the quantum minor A, ., ;. This gives the result.

Now, for all A, we can decompose 7 € T, into single columns T =
Tyx - «T,. We have n(T) = T1n(T,) € [1K; <Ky, by (5.2.1). The
assertion on weights can be verified for 7' in T, as above and then
generalized for all A. |

THEOREM. For T€E€T, 1<i<n, 1<k<n—i+1, let m k=
m; (T) be the number of k + i on the ith row. Then, for A = L\, w; € P™,
the character formula of the U/™" invariants in V,(A\)* is given by

dimV,(A) 5% = #{T € TV Vi, k,my o= A1)

Proof. First remark that, by the definition and by (5.3.1), n(T) =
[1Gr E;”'fkﬂ»wwl We prove the theorem by a double inequality.

<: Fix a basis {k,} of K;U/" =70V, ()*Y"") such that
{Grk,} is a basis of Gr K*Uf We suppose k, of weight v + A, ie., k
identifies with a vector of welght v in V(A)*Uf and Grk, = I1Gr Egi+.
Then, by Proposition 5.1, Grk, is in Gr(X peprt Loz, ), and this |mpI|es
a; . = A; 1] by (6.3.2). By the first remark and the previous Lemma,
m N(Grk,)isin{T € Y| Vi, k, m; , = A,_,,,[I]}. So, < holds.

>: Let T be in the set defined above. By Proposition 5.1 and the
previous Lemma, it is enough to prove that n(T) € Gr K; can be lifted
into Ky N X, c ps Zyz,. We now show this assertion.

Let m, = Inf,m, ,. From T and i € [1, n], we construct a new tableau
as follows. On the jth row of T, 1 <j < i, cancel the rightmost m,_, ,
boxes containing n — i +j + 1; the (nonempty) boxes remaining on the
right-hand side are moved to the left (see 5.4).

v
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By [54 Claim 1], we obtain a semistandard tableau 7' € T,

A=my_ @

Write T — T'. By (5.3.2) and the first remark of the proof, we have
n(T) = n(T")Grz[tn-i+1, (5.3.3)

Now, let T=T, 2T, , -+ = T, =T. By hypothesis on T, T is a
semistandard tableau of shape A :==A —X,m, , @, and m; ,(T) =0
[Z]. On the one hand, this implies, by [5.4, Claim 2], that T is a concatena-
tion of /-columns, where an I-column is the /th exponent (for concatena-
tion) of a single column. On the other hand, the fundamental weights are
minuscule; hence, by the previous lemma, the image by n of a single
column (in T, ) can be lifted into an extremal vector (in K ). By Lem-
ma 5.2, n(T) can be lifted into K7 N Y, Zolz,l By (533) n(T) =
n(T)Gr z,_7, and the assertion follows |

5.4. This section is an appendix for Section 5.3.

Let T beinT,, a, = X7_; A;, and t”,lsiSn,lsjsai,betheentry
in the ith row, jth column of T. Fix iy, 1 <iy, < n. Let m be an integer
such that 1 <m < a,; and k: [1,i,] > N, such that

@ 1<k@<k(@)+m-1<a,

(b) k is decreasing.

© ig+ 1, k(io) = (J. Let T’ be the tableau obtained from T by cancel-
ing ¢, ; 1 <i<ig k(j) <j<k(j)+m — 1; the boxes remaining on the
right- hand side are moved to the left. It is clear, for 1 <i < iy, f; ; = ¢, ; if
j<k@and it =t otherwise. Then,

i, j+m—1
Claim 1. T'is a semistandard Young tableau of shape A — mw;.
Proof. Clearly, T’ verifies (R), and by (b), (c) it verifies (C). The

number of entries in the ith row of T’ is A, —m if 1 <i <i, and A,
otherwise. This gives A of shape A — mw;. |

ExAMPLE. In this example, g is of type As, A = 2w, + w, + 2w, +
3w,. In the following tableau 7', we have underlined the entries to cancel:

1123g.z_14|5|
2(3[3[4]5]5
3|4][5][5]6
5(5/[6
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The cancellation corresponds to m = 2, iy = 3, k(1) = 5, k(2) = k(3) = 4.
We then obtain 7:

415

gl W| N -
g | W[
| O W N

Claim 2. With the notation of Theorem 5.3, suppose T € T,, A € [P™,
such that n, (T)€IN,1<i<n,1<k<n-—i+1 Then, T is a con-
catenation of /-columns, where an [-column is the [th exponent (for
concatenation) of a single column.

Proof. By construction, the entries ¢ of the ith row of a semistandard
tableau verify i <t <n + 1. By hypothesis, n, ,(T) € IN; hence each
entry t, i + 1 <t; <n + 1, in the ith row occurs an /-multiple of times.
As A € [P*, the number of boxes in the ith row is a multiple of /. So, each
entry in the ith row occurs an /-multiple of times. By (R), the first [
columns are the /th exponent of a single column. The result is obtained by
reverse induction. i
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