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Let « be a root of one and g a semisimple Lie algebra with triangular de-
y q Ž r e sq. Žcomposition g s n q h q n . Let U resp. U be the nonrestricted resp.« «

. qrestricted quantum enveloping algebra of n. We prove that Fract U is a«

quantum Weyl field. We then give a description of the «-center of Uq. Let U f inq
« «

be the finite part of U r esq. Via the Drinfeld correspondence, the U f inq-covariant« «

space of a Weyl module is «-central. In case g s sl , this enables us to describen
this space in terms of semistandard Young tableaux. Q 1998 Academic Press

0. INTRODUCTION

Let q be a nonzero complex number. A C-algebra defined by generators
X , 1 F i F m, and relations X X s q ai, j X X , 1 F i - j F m, a g Z,i i j j i i, j
will be called ‘‘algebra of regular functions on an affine quantum space.’’
Its skew field of fractions will be called a quantum Weyl field. The X ,i
1 F i F m, will be called a system of q-commuting generators.

Let g be a semisimple Lie C-algebra of rank n. Let D be the root
system associated with the choice of a Cartan subalgebra h , and let Dq be
the set of positive roots. We fix a decomposition of the longest element w0
of the Weyl group.

Ž .Let q be an indeterminate and U g be the simply connected quantizedq
w xenveloping algebra, defined as in 16, 3.2.9 . Let « be an lth root of one,

Žl / 2, and l / 3 if g has a component of type G . We define U resp.2 «
r e s. Ž . w xU to be the nonrestricted resp. restricted form as in 11 . As in the«

q Ž r e sq.classical case, let U resp. U be its ‘‘nilpotent’’ subalgebra. Let E ,« « a

a g Dq, be the root vectors of Uq, and Gr Uq be its associated graded« «

Ž .algebra see Section 1.5 .
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w x w x w xGeneralizing results of 1 , 17 , 10 , we prove in Section 3.2 that
Fract Uq is a quantum Weyl field, i.e., it contains an algebra A of« w 0

regular functions on an affine quantum space, such that Fract A sw 0

Fract Uq. The method we use specifies the description of the E ’s in term« a

of a system of «-commuting generators of A . Moreover, the algebra Aw w0 0

is isomorphic to Gr Uq. The two main tools of the proof are the following.«

Ž .The first one is the notion of a roots package see Definition 2.2 , which
Ž .arises in Weyl modules see Lemmas 2.1 and 2.2 . The second tool is the

Drinfeld correspondence, which can be made precise by the universal
Ž .RR-matrix see Section 1.6 .

An element in Uq will be called «-central if it «-commutes with the«

w x qE ’s. As in 1 for the generic case, the realization of U as a quantuma «

Ž w x.Weyl field is of great help in obtaining its «-center. As for U see 13 ,«

Corollary 4.2 asserts that the center Z of Uq is generated by the«

Ž w x.specialization Z of the generic center see 7 and the algebra Z« 0
generated by the El , a g Dq. For this result, we first study the center ofa

q Ž . qGr U and then lift our results by the abstract isomorphism Gr U ,« «

A ; Fract Uq.w «0

In Section 5, we give an application of the «-center to some covariants
of Weyl modules. Let U f inq be the subalgebra of U r esq generated by E ,« « a

q Ž .a g D . Let l be a dominant weight and V l be a dominant weight and«

Ž . r e sqV l be the U -Weyl module as in Section 1.7. Then, as in the generic« «

Ž . f inqcase, its dual V l *, viewed as a U -module, can be naturally embed-« «

ded in Uq, endowed with the adjoint action of U f inq, via the Drinfeld« «
q f inq Ž .isomorphism. Inside U the U -invariants of V l * are «-central« « «

Ž .elements cf. Proposition 5.1 . For g s sl , this provides a completen
f inq Ž .description of the U -invariants of V l * in terms of semistandard« «

Ž .Young tableaux cf. Theorem 5.3 .

1. PRELIMINARIES AND NOTATIONS

1.1. Let g be a semisimple Lie C-algebra of rank n. We fix a Cartan
subalgebra h of g. Let g s nyq h q n be the triangular decomposition

� 4and a be a basis of the root system D resulting from this decomposition.i i
We note b s n q h and byq h , the two opposed Borel subalgebras. Let
P be the weight lattice generated by the fundamental weights Ã , 1 F i F n,i
and Pq[ Ý NÃ the monoid of integral dominant weights. Let W be thei i
Weyl group, generated by the reflections corresponding to the simple roots

Ž .s [ s . Let w be the longest element of W. We denote by ,i a 0i
Ž .the W-invariant form on P. For each root we set d s a , a r2, anda

Ž . Ž .a s 1rd a . We have a , Ã s d .ˇ ˇa j i i j
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Ž .1.2. Let q be indeterminate and U g be the simply connected quan-q
w x q Ž y.tized enveloping algebra, defined as in 16, 3.2.9 . Let U resp. U be theq q

Ž .subalgebra generated by the canonical generators E s E resp. F s Fi a i ai i
Ž . Ž .of positive resp. negative weights. For all l in P, let t l be the

0 Ž .corresponding element in the algebra U of the torus of U g . We haveq
Ž . y 0 qthe triangular decomposition U g s U m U m U . We setq q q

U b s Uqm U 0 , U by s Uym U 0 . 1.2.1Ž . Ž . Ž .q q q q

Ž .U g is endowed with a structure of Hopf algebra with comultiplicationq
D and antipode S.

Ž .We define in U g the left and right adjoint actions byq

&
ad ¨ .u s ¨ uS ¨ , u.ad ¨ s S ¨ u¨ ,Ž . Ž .Ž1. Ž2. Ž1. Ž2.

Ž . Ž .where u, ¨ g U g and D ¨ s ¨ m ¨ with the Sweedler notation. Inq Ž1. Ž2.
Ž .particular, if u is an element in U g of weight m, thenq

ad E u s E u y qŽa i , m .uE , 1 F i F n. 1.2.2Ž . Ž .i i i

If n is a nonnegative integer and a a positive root, we set

1 y q nda

w x w x w x w x w xn s , n !s n n y1 ??? 1 .a a a a ada1 y q

Ž .1.3. The dual space U g * is endowed with the natural left and rightq
Ž . Ž . Ž . Ž . Ž . Ž .regular actions of U g : u.c ¨ s c u¨ , c.u ¨ s c ¨u , u, ¨ g U g ,q q

Ž . q Ž . Ž .c g U g *. For all l in P , let V l be the simple U g -module withq q q
highest weight l. For any integral dominant weight l, we fix a weight basis
� 4 Ž . Ž¨ of V l this is a misleading notation because there is generally morem q

. � U4 Ž .than one vector of weight m . We denote by ¨ its dual basis. V l * ism q
Ž . Ž .endowed with a natural right U g -module structure. For all j in V l *q q

Ž . l Ž . l Ž . Ž . Ž .and ¨ in V l , let c in U g * be given by c u s j u¨ , u g U g .q j , ¨ q j , ¨ q
l l l l Ž .Then, we have u.c s c and c .u s c . If j resp. ¨ has weight nj , ¨ j , u¨ j , ¨ j u, ¨

Ž . Ž . l lresp. m , we set if no confusion occurs c s c . For any integraln , m j , ¨
Ž . Ž qŽ ..dominant weight l, let C l resp. C l be the space generated by the

l Ž l . Ž . Ž . Ž . qc resp. c j g V l *, ¨ g V l . We set R s [ C l , R sqj , ¨ j , l q q lg P
qŽ . q Ž .[ C l . R and R are subalgebras of the Hopf dual of U g .q qlg P

q q qŽ .R is a P -graded algebra, and the C l ’s are its graded components.
Ž q. Ž . Ž q.R resp. R is a U g resp. U module for the left and right regularq q

Ž .actions. Moreover, the left and right adjoint actions of U g provide rightq
Ž . Ž q. Ž q.and left adjoint actions of U g , resp. U on R resp. R .q q
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w x Ž .1.4. 16, Lemma 7.1.9 asserts that the natural morphism U g ª R*q
q w x Ž .is an embedding. Let l be in P . By 16, 14.11, Remark the U g -moduleq

Ž .structure on V l extends to a R*-module structure.q
For all w in W, we define the corresponding element N in the quantumw

Ž w x w x.Weyl group cf. 16, 10.2.1 , 18 . Set N [ N . Recall the following facts:i sa i

Ž . w xi N is an invertible element of R* 16, Lemma 10.2.2 .w

Ž . y1ii The automorphism T : a ¬ N aN restricts to an automor-w w w
Ž . w xphism of U g and identifies with the Lusztig automorphism 19 associ-q
w xated with w 16, Theorem 10.2.6, 10.5.2 .

Ž .iii Set T [ T . If w s s ??? s is a reduced decomposition of w,i s i ia 1 kiw xthen T s T ??? T 19 .w i i1 k

Ž . Ž . w xiv Let M be a finite-dimensional U g -module, let i be in 1, n ,q
and let ¨ be an E -invariant element of M with weight m. Then, up to ai

Ž m w x . Ž . wmultiplicative power of q, N .¨ s F r m ! ¨ , where m s m, a 16,ˇi i a ii
Ž .x10.2.2 9 .

1.5. We fix a decomposition of the longest element of the Weyl group
w s s . . . s , where N s dim n. Set y s Id, y s s s ??? s , 1 F l F N,0 i i 0 l i i i1 N 1 2 l

Ž . qb s y a , 1 F l F N. We endow an order into the set D of positivel ly1 i l

roots: b - ??? b - b . We now introduce the following elements in Uq
N 2 1 q

Ž y. Ž . Ž Ž ..resp. U : E s T E , 1 F l F N resp. F s T F . Fix w in Wq b y i b y il ly1 l l ly1 l

and a reduced decomposition s of w. We may assume without loss ofw
generality that the decomposition of w verifies s s s s , w9 g W. We0 w w w 90

shall say that the reduced decomposition s of w defines the elements E ,w b l
Ž .F , 1 F l F l w . For each positive root a , and all nonnegative integers n,b l Žn. Ž w x . n Žn. Ž w x . n N cset E s 1r n ! E , F s 1r n ! F . For each c g N , let E ,a d a a d aa a

EŽc ., F c, F Žc . be the ordered products Ec [ Ł1 Ec l, EŽc . [lsN b l

Ł l EŽc l ., F c [ Ł1 F c l, and F Žc . [ Ł1 F Žc l .. The components oflsN b lsN b lsN bl l l
N Ž .c in N will be indexed by the positive roots c s c , c , . . . , c sb b b1 2 N

Ž . Nc , c , . . . , c . The set N is endowed with a natural lexicographic1 2 N
ordering.

Ž w x.We know cf. 19 that these elements generate a Poincare]Birkoff]Witt´
basis of Uq. Moreover, the order on Dq defines a natural filtration on Uq.q q
The associated graded Gr Uq is generated by the Gr E , b g Dq, and theq b

Žw x w x.relations 20 , 12, Lemma 1.7

Gr E Gr E s qŽ b , b 9.Gr E Gr E , b ) b9. 1.5.1Ž .b b 9 b b 9

For each w in W, set

n [ n l w ny , U n [ Uql T U by .Ž . Ž . Ž .Ž .w q w q w q
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LEMMA. For 1 F i F n, w g W, w s s ??? s , we ha¨ei i1 k

Ž . q qi wa g D iff T E g U .i w i q

Ž . q Ž y.ii ywa g D iff T E g U b .i w i q

Ž . Ž .iii U n is the algebra generated by the E , 1 F j F k, defined byq w b j

the abo¨e decomposition of w.

Ž . w x w x Ž .Proof. i is given by 19 , 12, 1.6 . The hypothesis of ii implies that
Ž . Ž .there exists p, 1 F p F k, such that s ??? s a s a . From i , and thei i i ipq 1 k p

Ž . Ž Ž ..triangular decomposition, T E s T ??? T E s T ??? T yF t aw i i i i i i i i1 p p 1 py1 p p
Ž y.g U b .q

Ž . Ž .Let us prove iii . By the definition, U n is an algebra. Let B be theq w w
space generated by the polynomial basis provided by the E , 1 F j F k. Asb j

Ž . Ž .a consequence of ii , B ; U n . Moreover, the reduced decompositionw q w
of w may be completed into a reduced decomposition of w . Thus, we can0

q Ž .complete our polynomial basis into a polynomial basis of U . By ii andq
the triangular decomposition, we obtain the reverse inclusion.

Ž . Ž1.6. We know that U g is an almost cocommutative Hopf algebra cf.q
w x. Ž .14 . Let RR s RR m RR be the universal RR-matrix of U g . We recallŽ1. Ž2. q

w xthe expression of the RR-matrix as an ordered product 18, 3.3 :

RR s exp 1 y qy2 E m F q H imH i , 1.6.1Ž .Ž .Ž .Ł a a a až /qagD

Ž . Ž . n w xwhere H is an orthonormal basis in h and exp x [ Ý x r n !.i a nG 0 a

Ž . Ž y.Let w be the restriction homomorphism from U g * to U b * andq q
y Ž w x w x w x w x.J s Ker w l R. The following is well known cf. 4 , 21 , 5 , 6 .

THEOREM. We ha¨e

Ž . q yi There exists an injectï e algebra antihomomorphism b : RrJ ª
Ž . Ž .Ž . yU b , gï en by c ¬ Id m c RR , c g RrJ .q

Ž . Ž . Ž .ii There exists an injectï e ad U g -homomorphism z : R ª U g .q q

Ž . yiii The natural projection p : R ª RrJ restricts into an embedding
q y qŽ . Ž . Ž . qŽ . Ž . qR ¨ RrJ and for x g C l , z x s t yl b x ; t y2l U .q

w x1.7. Let AA be the algebra C q localized at the multiplicative set
Ž . Ž .generated by q y 1 , q y v , where v is a k th root of one, for k s 2,

and k s 3 if g has a component of type G . We define the AA-algebra U2 AA

Ž . qgenerated by the E , F , 1 F i F n, t l , l g P . The specialization of Ui i AA

Ž k .at a root of one « « / 1 will be denoted U . We define in a similar way«

Ž q. Ž y. q y 0 Ž .the AA-forms U b , U b , U , U , U and the specializations U b ,AA AA AA AA AA «

Uq, etc. As before, AA-forms and «-specialization have a natural PBW basis«

w x r e sq Žn. q12 . Let U be the AA-algebra generated by the E , a g D , n g N.AA a
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r e sy r e s Ž w x.We define in a similar way the algebra U and U see 11, 9.3.1 . ForAA AA
q Ž . r e sy Ž . w xall l in P , we set V l [ U ¨ ; V l . By 11, Proposition 10.1.4 ,AA AA l q

Ž . r e s Ž . Ž . Ž .V l is a U -module and C q m V l s V l ; moreover, it is a freeAA AA AA AA q
Ž .AA-module. By 1.4 iv , the extremal vectors ¨ [ N ¨ , w g W, belong towl w l

Ž . r e s Ž .V l . Hence, as T restricts to U , it follows that N acts on V l . WeAA w AA w AA
r e sq r esy Ž .define as above the specializations U , U , V l .« « «

2. INTEGRAL MODULES AND ROOT PACKAGES

2.1. A decomposition of w defines a partition of Dq in the following0
way.

DEFINITION AND NOTATION. Fix w s s ??? s . For 1 F j F n, we call0 i i1 Nq � 4 qroot packages the sets D [ b , i s j . For m, 1 F m F k [ CardD ,j l l j
we define a to be the mth element in the decreasing sequence of thej, m

q q �roots of D : a ) a ) ??? ) a ) ??? ) a . Set D [ a , 1 Fj j, 1 j, 2 j, m j, k j, m j, t
4t F m .

Note that the partition of Dq into root packages depends on the choice
of the reduced decomposition. In the case g s sl , the decompositions4
s s s s s s and s s s s s s of w define different partitions of Dq that1 2 3 1 2 1 2 1 3 2 1 3 0
are, respectively,

� 4 � 4 � 4a , a , a , a q a , a q a , a q a q a ,� 41 2 3 1 2 2 3 1 2 3

� 4 � 4 � 4a , a q a q a , a q a , a , a q a , a .� 42 1 2 3 1 2 3 2 3 1

Let M be a AA-module, ¨ , w g M. In the sequel, ¨ ' w means that ¨
Ž .equals w up to a multiplicative invertible element of AA.

LEMMA. With the notation abo¨e, suppose b s a , b s a . Leti j, k i j, kq1p q

c Ž j, k . g NN such that c Ž j, k . s 1 if b g Dq , and c Ž j, k . s 0 otherwise. Letl l j, k l
Ž j, k . N Ž j, k . Ž . Ž j, k .f g N such that f s a , a if p - l - q and f s 0 other-ˇl j l l

wise. Let y be as in Section 1.5. Thenl

Ž . Ž j, kq1. Ž j, ky1. Ž j, k . Ž .i Set c [ c and f [ c q f . In V Ã , one hasAA j
F Žc .¨ ' F Žf .¨ ' ¨ .Ã Ã y Ãj j q j

Ž . U Ž . Uii If a F a , then ¨ S E s d ¨ .j, kq1 y Ã a a , a y Ãp j j, kq1 q j

Ž .iii y Ã y a s y Ã .p j j, kq1 q j

Proof. Let us prove that F Žc .¨ ' ¨ . We have to prove thatÃ y Ãj q j

F Žc Ž j, k ..¨ ' ¨ « F Žc Ž j, kq1..¨ ' ¨ . The result then follows by in-Ã y Ã Ã y Ãj p j j q j

duction. Write y s w s w s ??? w s , and y s w s w s ??? w s , wherep 1 j 2 j k j q 1 j 2 j kq1 j
the w have no s in their decomposition.l j
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F Žc Ž j , kq1..¨ s F F Žc Ž j , k ..¨ ' F ¨Ã a Ã a y Ãj Ž j , kq1. j j , kq1 p j

s N F Ny1 ¨ 'N F Ny1 ¨w s w s ??? w j w s w s ??? w y Ã w s w s ??? w j v Ã1 j 2 j kq1 1 j 2 j kq1 p j 1 j 2 j kq1 kq1 j

s N F ¨ ' N ¨ ' ¨ .w s w s ??? w j Ã w s w s ??? w s Ã y Ã1 j 2 j kq1 j 1 j 2 j kq1 j j q j

We now prove that F Žf .¨ ' ¨ . By the previous assertion, it isÃ y Ãj q j

enough to prove that F Žf Ž j, k ..¨ ' ¨ . For p - l - q, setw s w s ??? w s Ã y Ã1 j 2 j ky1 j j q j

yŽ a , a ˇ .j lz s s ??? s . We prove that F ¨ ' ¨ . The resultl i i b y z s Ã y z s Ãpq 1 l l p ly1 j j p l j j

will follow by induction.

yŽ a , a ˇ . yŽa , a ˇ . y1j l j lF ¨ s N F N ¨b y z s Ã y z i y z y z s Ãl p ly1 j j p ly1 l p ly1 p ly1 j j

yŽ a , a ˇ .j l' N F ¨ ' N ¨ ' ¨ .y z i s Ã y z s s Ã y z s Ãp ly1 l j j p ly1 i j j p l j jl

y1 Ž .Let a - a . Then, acting by T gives F ¨ s 0. Hence, by i ,yj, kq1 a y Ãp p j

Ž .a F a « F ¨ s d ¨ . This is ii via the Chevalley auto-j, kq1 a y Ã a , a y Ãp j j, kq1 q j

Ž .morphism, and it gives iii .

w xEXAMPLE. Let g be of type B , with the notation of 2, Planche II .2
Fix the following decomposition: w s s s s s . Then the order in Dq is0 1 2 1 2
given by

a ) a q a ) a q 2a ) a .1 1 2 1 2 2

So,
q � 4D s a s a , a s a q 2a ,1 1, 1 1 1, 2 1 2

q � 4D s a s a q a , a s a .2 2, 1 1 2 2, 2 2

Ž . Ž . Ž . Ž .i gives a q a q 2a s 2 a q a and a q a q a s1 1 2 1 2 1 2 2
Ž .a q 2a .1 2

Ž . Ž2.ii gives that F F ¨ and F ¨ are extremal vectors ofa q2 a a Ã a qa Ã1 2 1 1 1 2 1
Ž .weight s s s Ã in V Ã . Similarly, F F ¨ and F ¨ are1 2 1 1 AA 1 a a qa Ã a q2 a Ã2 1 2 2 1 2 2

Ž .extremal vectors of weight s s s s Ã in V Ã .1 2 1 2 1 AA 2

2.2. The integers j, k, p, are fixed as above. An element L g NN is
said to satisfy PP iff F ŽL .¨ s ¨ , up to a nonzero scalar. Set x s c Ž j, k ..Ã y Ãj p j

By the previous lemma, x verifies PP. Moreover,

LEMMA. Let L be in NN and suppose that L ¨erifies PP. Then

Ž .i x G L.
Ž . w xii b f a , a implies that L s 0.j, k j, 1 b

Ž .iii L F 1.a j, k
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Proof. First, remark that if a - b , then F ¨ s 0. Indeed, the aj, 1 b Ã jj

component of F is zero, by construction of F . Now, let b be such thatb b

a - b - a . Then, by the previous remark, we have F F Ž x .¨ sj, kq1 j, k b Ã jy1 y1Ž . ŽF ¨ ' N T F ¨ s 0 for the last equality, we can repeat theb y Ã y y b Ãp j p p j
y1Ž . . Ž .argument above, with T F instead of F . This provides i by induc-y b bp

tion.
Ž .We now prove ii . By the previous assertion, we have b ) a « L sj, 1 b

0 1 0 Ž0. Hence, we can decompose L s L q L , where the support of L resp.
1. w w Ž w x.L is in b , a resp. a , a . Remark that, by Lemma 1.5, F [N j, k j, k j, 1
y1Ž ŽL 0 .. Ž . ŽL 0 . ŽL1.T F has a strictly negative weight. Suppose now F F ¨ sy Ãp j

F ŽL .¨ ' ¨ ; then acting on both sides by Ny1, we obtain that ¨ gÃ y Ã y Ãj p j p j

Ž . Ž .F.V Ã . Hence a contradiction and ii holds.AA j

Suppose L ) 1. Let L9 be in NN such that L
X s L y 1 if b s aa b b j, kj, k

and L9 s L otherwise. Then F ŽL9.¨ is nonzero of weight y Ã q a .b Ã p j j, kj

Let r be such that y a s a if k / 1 and r s 0 if k s 1. Then, r - pr j j, ky1
Ž .and Lemma 2.1 iii , applied to k y 1, given y Ã s y Ã y a . Hence,p j r j j, k

F ŽL9.¨ s ¨ , up to a nonzero scalar. By the hypothesis ¨ gÃ y Ã y Ãj r j r j

Ž . Ž . Ž . y1F V Ã s T a V Ã . As above, acting by T on both sides yields aa AA j y j AA j yj, k p r

Ž .contradiction. So, iii holds.

3. FUNCTIONS ON AFFINE QUANTUM SPACE AND
QUANTUM WEYL FIELDS

In the sequel, we fix a decomposition of v . For each l in Pq, we fix a0
� 4 Ž . � U4basis ¨ of the AA-module V l . If ¨ is the dual basis, we then havem AA m

the matrix coefficient c U
l . For each symbol Y , we will frequently use¨ , ¨ an m j, k

the notation Y .j, k

3.1. An algebra defined by generators X , 1 F i F m, and relationsi

X X s q ai, j X X , 1 F i - j F m, a g Z, will be called an ‘‘algebra ofi j j i i, j

regular functions on an affine quantum space.’’ Its skew field of fractions
will be called a quantum Weyl field. The X , 1 F i F m, will be called ai

Ž . Ž .system of q-commuting generators SQCG . The antisymmetric matrix
Ž .A [ a will be called a matrix associated with the SQCG.i, j

� q4EXAMPLE 1. By 1.5 Gr E , b g D is a system of q-commutingb
q Ž . Ž .generators for Gr U . Let A n be the associated matrix. Then A n isq

a N = N antisymmetric matrix with the lower triangular part given by
Ž . Ž .A n s b , b9 .b , b 9
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q w xDEFINITION. Let b g D , b s b s a . We define as in 10, 2.3 thei j, kp
Ž . qfollowing elements c s c of Fract R :b j, k

c s cÃ i p , a s cy1 c ,b b j , ky1 j , ky Ã , Ãp i ip p

with the convention c s cÃ i p .j, 0 KÃ , Ãi ip p

Ž . Ž wEXAMPLE 2. We shall prove in Corollary 3.2 and 3.3.2 see also 10,
x . � q42.3, 3.1 for another proof that the a , b g D is the SQCG of anb

algebra of regular functions on an affine quantum space whose associated
Ž .matrix is the transpose of A n .

Ž q.3.2. We still denote by c and a the elements of Fract U b corre-b b AA

sponding to c , a g Fract Rq via the Drinfeld antihomomorphism bq
b b

Ž . Ž Ž ..cf. 1.6 in particular, c s t yÃ . These elements satisfy the follow-j, 0 i p

ing properties.

Ž .PROPOSITION. The c resp. a are q-commuting elements in the AA-b b

Ž q. Ž q. qform U b resp. Fract U . For all b s b in D , we ha¨e c sAA AA p b

Ž . Ž .E P q Q t yÃ , where P and Q are polynomials in E , a ) b. More-b l a

o¨er, the «-specialization of P is nonzero.

Proof. The fact that the c and the a are q-commuting elements is ab b

w x Ž .consequence of 10, Proposition 2.3 . By Theorem 1.6 iii , c s c gj, k b
qŽ qŽ .. Ž . Ž .b C Ã ; t yÃ U g . This also holds for c ; hence a gj j q j, ky1 b

q Ž . qFract U . Set X s X s t Ã c g U . By 1.6, we haveq b j, k j b q

cX ac Žc . y2X [ A E , where A s ¨ F ¨ 1 y q .Ž .Ý Łž /b c c y Ã Ã ap j j
NcgN

3.2.1Ž .

X Ž Žc . . Žc .By the Weyl character formula, ¨ F ¨ is nonzero iff F ¨ sy Ã Ã Ãp j j j

¨ , up to a nonzero scalar. Hence, X is a sum of monomials A Ec,y Ã b cp j
q Ž . Ž .where c verifies PP and A g U . By Lemma 2.2 ii , iii , we have X sc AA b

Ž .E P q Q , where P and Q are polynomials in E , a ) b. By Lem-b a

Ž . xma 2.2 i , A E is one of these monomials. By construction, it can bex

Ž .factorized on the left by E , and by Lemma 2.1 i . A is invertible in AA.b x

Hence, the «-specialization of P is nonzero.

Let b s a . We retain the notation of the proof above, and we setj, k
Ž . q Ž . Ž . ŽX s X s t Ã c g U . Then, 3.2.1 and Lemma 2.2 i give up to ab j, k j b AA

.unit in AA

Gr X s Gr E . 3.2.2Ž .Łj , k a j , m
mFk
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In the following corollary, we fix an element w in W and its reduced
decomposition s . We assume as in 1.5 that the decomposition of ww 0
verifies s s s s , w9 g W. We havew w w 90

COROLLARY. Let A be the algebra generated by the a , where b runsw b

o¨er the weights of n . Then, A is an algebra of regular functions on anw w
Ž . Ž .affine quantum space, with GK-dimension l w . Fract U n s Fract A ;AA w w

in particular, Fract Uqs Fract A , and the associated matrix of A isAA w w0 0
Ž .A n . This remains true after «-specialization.

Proof. A is generated by the a , which q-commute. From the assump-w b

tion preceding the corollary, if b g n and a ) b , then a g n . Then,w w
Ž . Ž .the equality Fract U n s Fract A follows from Lemma 1.5 iii andAA w w

Proposition 3.2. Recalling that the Ec, c g NN form a PBW-basis of Uq,AA

we deduce that the only relations in A are the q-commutations.w

3.3. In this section, we make more precise the q-commutations inside
Ž q. w xU b . By 16, Proposition 9.1.5 ,AA

c c s qŽ sŽ b . , sŽ b 9..y Ž sŽ b . , Ã
X
j .yŽÃ j , sŽ b 9..c c , b s a ) b9 s a ,b b 9 b 9 b j , k j9 , k 9

3.3.1Ž .

Ž . Ž . Ž . Ž .where s b is the weight of c . By 3.2.2 , we have s a s s a qb j, kq1 j, k
Ž .a * . It follows thatj, kq1

a a s qyŽ b , b 9.a a , X X s qŽ sŽ b . , sŽ b 9.y2Ã jX .X , X ,b b 9 b 9 b b b 9 b 9 b

b ) b9 s a . 3.3.2Ž .j9 , k 9

Ž . Ž .Recall that for all in P, t l is a group-like element, and so ad t l is
Ž .an automorphism of U g .q

Ž .LEMMA. Suppose a is not almost minimal. Let s s ad t a andj, k j, kq1
Ž . Ž . Ž . Ž . Ž .let D be a s-derï ation on U g , i.e., D u¨ s D u ¨ q s u D ¨ , u, ¨ gq

Ž . Ž . Ž n . w x ny1U g . Suppose D c s c . Then, D c s n c c , up toq j, k j, kq1 j, k a j, k j, kq1j, kq1

a power of q.

Ž . Ž .Proof. By 3.2.2 and 1.5.1 , we have

X X s qŽ sŽa j , k . , a j , kq1.X X ** .Ž .j , k j , kq1 j , kq1 j , k

Ž . Ž Ž . Ž .. Ž Ž . .Comparing with 3.3.2 , we obtain s a , s a s y2 s a , Ã .j, k j, k j, k j
Ž Ž . Ž .. Ž Ž . . Ž .Hence, s a , s a s y2 s a , Ã . Using * on the left-j, kq1 j, kq1 j, kq1 j

hand side gives

1a , s a s a , Ã y a , a . 3.3.3Ž . Ž . Ž . Ž .Ž .j , kq1 j , k j , kq1 j j , kq1 j , kq12
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Ž . Ž . Ž . Ža j, kq1, sŽa j, k ..Using 3.3.3 and ** , we obtain s c c s q c c sj, k j, kq1 j, k j, kq1
1m Ž Ž .. Ž . Ž .q c c , with m s a , s a y a , Ã y a , a .j, kq1 j, k j, kq1 j, k j, kq1 j j, kq1 j, kq12

Ž . Ž .Using 3.3.3 again, we have m s a , a . We have proved thatj, kq1 j, kq1
Ž . Ža j, kq1, a j, kq1.s c c s q c c . This implies the lemma by induc-j, k j, kq1 j, kq1 j, k

tion on n.

4. CENTER OF Uq
«

Recall that by convention, we denote by the same symbol an element
Ž .and its «-specialization when it exists . For example, we set X s X sb j, k

Ž . qt Ã c g U , and these elements exist by Proposition 3.2.j b «

4.1. We suppose in the sequel that l is odd and is not divisible by 3 if g
has a component of type G . Let « be an lth root of one.2

Let b s a g Dq. We say that b is an almost minimal root if b isj, k j
minimal in Dq, i.e., b s a , m s CardDq. Set X s 1 and X s 0j j, m j j, 0 j, kq1
if a is almost minimal. If b is almost minimal, then let z [ X s X .j, k j b j, k
For l g Pq, l s Ýn Ã , set z s Ł z n j.j j l j

DEFINITION. An «-central element a in Fract Uq is an element that«

Ž«-commutes with the generators E , i.e., there exists a weight h uniquei
. Ža i, h .modulo lP such that aE s « E a. The class of h modulo lP will bei i

called the commutation weight of a.

LEMMA. Let b s a , l g Pq.j, k

Ž .i if b is not almost minimal and g s a , a F g , thenj, kq1
Ž . qad E c s d c in R .a b g , a g

Ž . Ž .Ž .ii z has weight l y w l and commutation weight Id q w ll 0 0
modulo lP.

Ž . qiii Gr z s Ł Gr E .j a g D aj

Ž . Ž .Proof. i is a consequence of Lemma 2.1 ii and the definition of cb

Ž .cf. 3.1 .
Ž . w xii is provided by 8, 2.2.1 .
Ž . Ž .iii is a particular case of 3.2.2 .

Remark. If u s z z , z g Z , has weight l and commutation weight0 m 0 0
1Ž . Ž .l9, then, by ii , m s l q l9 modulo lP. The elements z and z havel m2

Ž .the same commutation weight iff l s m q lP q Ker Id q w .0

w x Ž .4.2. The group H generated by yw acts naturally on 1, n by h a0 i
Ž . w xs a , h g H. Set yw i s i*. Let I be a subset of 1, n containinghŽ i. 0

exactly one representative for each class modulo H and I its complemen-
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tary subset. Let Z be the algebra generated by the z z , if i / i*, and the« i i*
Ž . qz , if i s i*. Then, by ii of the previous lemma, Z is central in U .i « «

Remark that Z may be seen as the specialization of the generic center«

Ž w x. w x l qsee 7 . As « is an lth root of one, we know 12 that E , b g D , is alsob

central in Uq. Let Z be the algebra generated by those elements.« 0
Ž . w xLet P be the lattice PrlP q Ker Id q w . As in 8, 2.2 , each class of0

q q lelements in P has a representative in P . For all l in P , let C be the
q p l Žline in U generated by z . For all p in P, set C s [ C this is a« l lsp

Ž ..direct sum by Lemma 4.1 iii . The following theorem describes the
«-central elements in Uq.«

THEOREM. Let C be the set of «-central elements in Uq. Then C s« « «
lD Z C . In particular, C ; [ Z z .qlg P 0 « 0 mm g P

Proof.

Step 1. Let a g C be of the form Ł X nb , 0 F n - l; then a g« b b

D q C l.lg P

Proof. We have to show that n s 0 for b not almost minimal. Web

Ž .prove this assertion by reverse induction on b. Suppose that a is notj, k
almost minimal and n s 0 for b ) a . Let g s a and g ) be theb j, k j, kq1

Ž . qsmallest root greater than g . By Lemma 4.1 i and Theorem 1.6, b in D ,i
Ž . w)b ) a , implies that t y2Ã X is ad E -invariant. Hence, by 18,j, k i b g

x Ž w x.2.4.1 see also 10, 2.1 , ad E acts as a twisted derivation on the algebrag

Ž .generated by those t y2Ã X . To be more precise, on this algebra,i b

Ž .ad E is a derivation twisted by the automorphism ad t g . Letg

Ž . Ž .qt s Ł t y2n Ã . On the one hand, by the quantum1F iF n, b g D b i
Ž . Ž .Leibniz formula, Lemma 4.1 i and Lemma 3.3 give ad E t a sg

w x y1n t aX X . On the other hand, as a is «-central, we havej, k g j, k j, kq1
Ž . Žad E t a s E t a, up to a multiplicative scalar which may bej, kq1 j, kq1

. w x Ž .zero . This gives n X s E X , up to a scalar. By 3.2.1 andj, k g j, kq1 j, kq1 j, k
Ž . Žf .Lemma 2.1 i , the left-hand side contains E in its PBW-decomposition,

w xand the right-hand side does not. Hence, n s 0. Thus, n s 0, andj, k g j, k
the assertion follows inductively.

Step 2. Each monomial b in Gr Uq such that b Gr E s« b
Ž b , n . l« Gr E b, n g P, lifts to D Z C .b lg P 0

Proof. Let b s Ł Gr Enb. As Gr El lifts to Z , we can restrict to theb b 0
case 0 F n - l. Let c [ Łanb g Fract Uq. By Corollary 3.2, the hypothe-b b «

sis on b implies that ca s « Ž b , n .a c. This easily implies by Propositionb b

3.2 that cE s « Ž b , n .E c. In particular, c is «-central in Fract Uq. Remarkb b «

now that c s Ł X n j, kyn j, kq1, with the convention n s 0 if n isj, k j, kq1 j, k
w xalmost minimal. Define r s r by r ' n y n l and 0 Fa j, k j, k j, k j, kq1j, k

< <r - l. Remark that n y n - l. Hence, multiplying c by anj, k j, k j, kq1
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Ž . r j, k qunique element z in Z , we obtain that Ł X is «-central in U . So,0 0 j, k «

Step 1 gives z c g D q C l. In particular, r s 0, for b not almost0 lg P b

Ž . Ž .minimal. Thus, z s 1. Gr c s b by 3.2.2 , and c is the required element.0

We can now finish the proof of the theorem. Let a g C and b [ Gr a.«
lThen, b verifies the hypothesis of Step 2. Let c in D Z C such that0 lg P 0

Gr c s b. a and c have the same commutation weight, c [ a y c is in0 0 1 0
C and has a lower degree. Hence, the theorem follows by induction.«

Remark that if w s yId, then C is the center of Uq. In general, we0 « «

have

COROLLARY. Let Z be the center of Uq. Then,«

Ž . qi Gr Z is the center of Gr U .«

Ž . w xii Z is generated by Z and Z , i.e., Z s Z Z .« 0 0 «

Ž . q NyaIiii U is projectï e o¨er its center, of rank l .«

Ž . Ž .Proof. i and ii are direct consequences of Step 2 and the previous
theorem. Let S be the multiplicative set in Gr Uq generated by the Gr E ,« b

y1 qŽ .b not almost minimal or b s a , i g I. By Lemma 4.1 iii , S Gr U isi, k «
y1 NyaI Ž .free over S Gr Z, of rank l . This yields iii .

Remark 1. Recall that for this result, we assumed l odd. If l is even,
then Z has to be replaced by a larger algebra ZX . This algebra can easily0 0
be obtained for each simple Lie algebra g. In fact, every argument in our
proofs remains true, except for the last assertion of the proof of Step 1.

Ž . Ž .Remark 2. We conjecture that the assertion i is true for U g , i.e.,«

the center of Gr U is the graded space of the center. This conjecture has«

been verified with Maple V for ‘‘small’’ classical Lie algebras g and all
exceptional Lie algebras.

4.3. The center of an algebra of functions on a quantum space is
directly connected with the kernel of its associated matrix. So, we deduce

Žthe following result, which may be written in terms of root systems and
.roots packages .

Ž . wCOROLLARY. Fix a decomposition of w . Let A n be as in 3.1, Ex-0
x Ž . Ž .ample 1 . The rank of A n is N y aI. Let B n be the submatrix of

Ž . qA n obtained by omitting the almost minimal roots of D , i g I. Theni
Ž . Žthe determinant of B n is a power of 2 and 3 if g has a component of

.type G .2
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q Ž .5. U -INVARIANTS IN V l *« «

w x r e sq Ž . Ž l .5.1. By 11, 9.3.6 , U cf. 1.7 is generated by the E , E , 1 F i F n.« i i
w x f inqBy 11, 9.3.6 , the E generate a finite-dimensional Hopf subalgebra U .i «

r e sq Ž .Define the U -module morphism cf. Theorem 1.6 :AA

z
l q qz : V l * ª V l * m ¨ ¨ C l ª t y2l U .Ž . Ž . Ž . Ž .AA AA AA l q

The following proposition gives a characterization of the U r esq-invariants«

Ž .in V l *.«

l Ž . qPROPOSITION. The image of z is contained in t y2l U and, byAA AA

specialization, z l defines an injectï e morphism of U r esq-module: z l:AA « «

Ž . Ž . q q q Ž .V l * ¨ t y2l U . Moreo¨er, setting P [ P l l q lP , we ha¨e« « l

f i nq y1U l«V l * s z t y2l Z z .Ž . Ž .Ž . Ý« « 0 mž /
qmgPl

Ž . lŽ . Ž . c Ž Žc . .Proof. Let u* g V l *. By 1.6, z u* s t y2l Ýa E u* F ¨ ,AA AA c l

Ž .where the a are units in AA. If ¨* belongs to a basis of V l *, thenc AA

Ž Žc . . lŽ . Ž . q lŽ . Ž .¨* F ¨ g AA. Hence, z ¨* g t y2l U . Suppose z u* g q y « ?l AA AA AA

Ž . q Ž Žc . . Ž . Ž .t y2l U ; then u* F ¨ g q y « AA for all c . Thus, u* g q y « ?AA l

Ž . r e sqV l *. This proves the injectivity of the specialization of the U -mod-AA «
l Ž l.y1Ž Ž . .qule morphism z . We now claim that z t y2l Ý Z z ;« « m g P 0 ml

Ž . U«
f i nq Ž . Ž .qV l * . Indeed, t y2l Ý Z z is ad E -invariant by 1.2.2 and« m g P 0 m il

Ž .Lemma 4.1 ii .
Ž . U«

f i nq
We now prove the reverse inclusion. Suppose u* g V l * has«

Ž . lŽ .weight n . Then, t y2l a [ z u* is ad E -invariant by Theorem 1.6,« i
Ž .with weight l q n . This implies by 1.2.2 that a is «-central and that the

commutation weight of a is equal to l y n . By Theorem 4.2 and Remark
q4.1, we have a g Ý Z z . This gives the claimed equality.mg P 0 ml

Ž . q Ž . l5.2. Let t y2l K be the image of V l * by the embedding z .l « «

w Ž .xBy 6, Proposition 4.1 iii , we have

KqKq; Kq . 5.2.1Ž .l m lqm

Ž . U«
f i nq

By Proposition 5.1, the vector space V l * is isomorphic to the«

intersection of Kq and Ý q Z z . Both spaces can be made explicit,l m g P 0 ml

but the intersection is not quite clear. In return, the intersection of the
associated graded spaces can be made explicit. We shall prove in 5.3 that,
when g s sl , the associated graded space of the intersection is then
intersection of the associated graded spaces. First, we give the following
lemma.
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LEMMA. Let l g Pq and let X be an extremal ¨ector in Kq, i.e.,l

Ž . l Ž . lt y2l X corresponds ¨ia z to an extremal ¨ector in V l *. Then, X g« «

w xqÝ Z z .mg l P 0 m

Proof. It is enough to prove that X l is central. Indeed, by Remark 4.1
and Theorem 4.2, a central element whose weight belongs to lQq is in

w x w x Žq q qÝ Z z , which is a subset of Ý Z z recall that l ismg Ž lr2.Q l P 0 m m g l P 0 m

.odd .
First, we prove this assertion for l s Ã , 1 F j F n. Suppose that Xj

corresponds to the extremal vector ¨U , w g W, with w minimal for thewÃ j

length. Thus we have a reduced decomposition s s w s ??? w s , wherew 1 j k j
the w have no s in their decomposition. There exists an element w9 ofl j
the Weyl group with reduced decomposition s such that s s is aw 9 w w 9

reduced decomposition of w . Fix this decomposition of w and set0 0
Ž .b [ w s ??? w a . Then, X is the X defined in the proof of 3.2. By1 j k j b

Ž . l3.3.2 and Corollary 3.2, X commutes with the generators of A ; thus itw 0

commutes with Uq, and we have the claimed assertion.«

Suppose that l s Ý l Ã . Suppose also that X corresponds to thei i i
U Ž . U Ž .extremal vector ¨ g V l * and that X corresponds to ¨ g V Ã *.wl « j wÃ « jjll j l Ž .Then, Ł X and X are equal by 5.2.1 , because they both correspond toj

U Ž .¨ g V ll *. The lemma follows.w ll «

Ž w x.5.3. In this section, we suppose g of type A see 2, Table I . Let e ,n i
1 F i F n q 1, be such that a s e y e , 1 F i F n, Ýnq1 e s 0. Fix thei i iq1 is1 i
decomposition of w :0

w s s ??? s s ??? s ??? s .Ž . Ž . Ž .0 n 1 n 2 n

q Ž .This decomposition settles the following order on D cf. 1.5 :

a ) a q a ) ??? ) a q ??? qa ) a ) ???n n ny1 n 1 ny1

) a q ??? qa ) ??? ) a q a ) a .ny1 1 2 1 1

Ž .The roots packages cf. 2.1 are defined by

a s a q ??? qa , 1 F k F i F n. 5.3.1Ž .i , k iykq1 nykq1

The principal symbols of the generators of the center are given by

i
liz s E , 1 F i F n , z s E . 5.3.2Ž .Ł Łi a l ai , k i , k

ks1 i

Let l s Ýl Ã g Pq, and a s Ýn l . A Young diagram of shape l is ai i i jsi j
left justified sequence of rows with a boxes in the ith row. A semistandardi
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Young tableau of shape l is a filling of the boxes with numbers 1 to n q 1
such that

Ž .R : The entries are not decreasing in the rows.

Ž .C : The entries are strictly increasing in the columns.

Ž . ŽLet T resp. T be the set of semistandard Young tableaux resp.l

. Ž .semistandard Young tableaux of shape l . We know that aT s dim V l *.l «

Ž .Moreover, there exists a basis B of V l * and a one-to-one correspon-l «

dence T ª B such that a semistandard tableau T maps to a vector ofl l

weight yÝ k e , where k is the number of i in T. We can define Tm to bei i i i l

the set of semistandard tableaux of shape l with weight m. If n G i G ???1
G i G 1, T g T , and l [ Ý Ã . Then, the T are single columnsk m Ã m i mi mm

with i rows, and we naturally define the concatenation T ) ??? )T ,m 1 k
Ž . Ž .which belongs to T if R and C are verified.l

q Ž . nbqLet h: T ª Gr U such that h T s Ł Gr E , where n ,« b g D b a q ??? qai j

1 F i F j F n, is the number of j q 1 in the ith row of T. Let h be itsl

restriction to T .l

EXAMPLE. Let g be of type A . The following tableau T :2

1 1 2 3 3

2 3

is of shape l s 3Ã q 2Ã and corresponds to a vector of weight m s1 2
y2e y 2e y 3e . Let T , . . . , T be its single columns from left1 2 3 1 5
to right. We have T , T g T , T , T , T g T . The concatenation1 2 Ã 3 4 5 Ã2 1

Ž . 2 Ž . Ž .T ) ??? )T gives T. h T s Gr E Gr E Gr E , h T s 1, h T s1 5 a a qa a 1 21 1 2 2
Ž . Ž . Ž .Gr E , h T s Gr E , h T s h T s Gr E .a 3 a 4 5 a qa2 1 1 2

LEMMA. For all l in Pq, h yields a one-to-one correspondence betweenl
q m Ž .T and a basis of Gr K . Moreo¨er, if T g T , then the weight of h T isl l l

m q l.

Proof. We have aT s dim Gr Kq. Moreover, the number m in the ithl l

w xrow belong to i, n q 1 ; thus h is an embedding. So, by a cardinalityl

argument, it is enough to prove that h maps T into Gr Kq.l l

We sketch a proof of this assertion for l s Ã . With the notation of 1.6,i
� 4 Ž . Ž .Ulet ¨ , be a basis of V Ã and C [ c be the matrix with coeffi-i q 1 ¨ , ¨i j

Ž . < w xcients in C Ã corresponding to this basis. As in 5, 4.3 , we canU Žb.1 q
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qŽ . Ž .calculate b C from the representation V Ã . Taking the graded space,q 1
we have, for an appropriate basis,

1
Gr E 1 0Ž .1

q Gr E Gr E 112 2Gr t Ã b C s ,Ž . Ž .1 . . . .. . . .. . . .� 0
Gr E Gr E ??? Gr E 11 . . . n 2 . . . n n

up to a power of q.

w x qNow, as in 5, 4.3 , K , 1 F i F n, are generated by the quantum minorsÃ i
Ž . qŽ .whose columns are the i first columns of t Ã b C . Let T g T and1 Ã i

Ž .t - t ??? - t be its components. It is easily verified that h T is the1 2 i
graduate of the quantum minor D . This gives the result.�t , . . . , t 4, �1, . . . , i41 i

Now, for all l, we can decompose T g T into single columns T sl

Ž . Ž . q q Ž .T ) ??? )T . We have h T s Ł h T g Ł K ; K , by 5.2.1 . TheÃ1 k m lim

assertion on weights can be verified for T in T as above and thenÃ i

generalized for all l.

THEOREM. For T g T, 1 F i F n, 1 F k F n y i q 1, let m si, k
Ž . qm T be the number of k q i on the ith row. Then, for l s Ýl Ã g P ,i, k i i

f inq Ž .the character formula of the U in¨ariants in V l * is gï en by« «

U f i nqU n« w xdim V l s a T g T N ; i , k , m ' l l .� 4Ž . n« l i , k nykq1

Ž . Ž .Proof. First remark that, by the definition and by 5.3.1 , h T s
Ł Gr Em iykq1, nq iq1. We prove the theorem by a double inequality.a i, k

� 4 qU«
f i nq Ž . lŽ Ž . U«

f i nq.F : Fix a basis k of K [ t 2l z V l * such thatn l « «

� 4 qU«
f i nq

Gr k is a basis of Gr K . We suppose k of weight n q l, i.e., kn l n n

Ž . U«
f i nq ai, kidentifies with a vector of weight n in V l * , and Gr k s Ł Gr E .« n n a i, k

Ž .qThen, by Proposition 5.1, Gr k is in Gr Ý Z z , and this impliesn m g P 0 mlw x Ž .a ' l l by 5.3.2 . By the first remark and the previous Lemma,i, k i
y1Ž . � n w x4h Gr k is in T g T N ; i, k, m ' l l . So, F holds.l n l i, k nykq1

G : Let T be in the set defined above. By Proposition 5.1 and the
Ž . qprevious Lemma, it is enough to prove that h T g Gr K can be liftedl

into Kql Ý q Z z . We now show this assertion.l m g P 0 ml w xLet m [ Inf m . From T and i g 1, n , we construct a new tableauk i i, k
as follows. On the jth row of T , 1 F j F i, cancel the rightmost mny iq1

Ž .boxes containing n y i q j q 1; the nonempty boxes remaining on the
Ž .right-hand side are moved to the left see 5.4 .
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w xBy 5.4, Claim 1 , we obtain a semistandard tableau T 9 g T .lym Ãny iq1 ii 6 Ž .Write T T 9. By 5.3.2 and the first remark of the proof, we have

h T s h T 9 Gr z m ny iq1 . 5.3.3Ž . Ž . Ž .i

n 16 6 ˜ ˜Now, let T s T T ??? T s T. By hypothesis on T , T is an ny1 1
˜ ˜Ž .semistandard tableau of shape l [ l y Ý m Ã , and m T ' 0i nyiq1 i i, k

˜w x w xl . On the one hand, this implies, by 5.4, Claim 2 , that T is a concatena-
Žtion of l-columns, where an l-column is the lth exponent for concatena-

.tion of a single column. On the other hand, the fundamental weights are
minuscule; hence, by the previous lemma, the image by h of a single

Ž . Ž q .column in T can be lifted into an extremal vector in K . By Lem-Ã Ãi i˜Ž . w x Ž . Ž .qma 5.2, h T can be lifted into K l Ý Z z . By 5.3.3 , h T sl̃ m g l P 0 m
˜Ž .h T Gr z , and the assertion follows.˜lyl

5.4. This section is an appendix for Section 5.3.
Let T be in T , a s Ýn l , and t , 1 F i F n, 1 F j F a , be the entryl i jsi i i, j i

in the ith row, jth column of T. Fix i , 1 F i F n. Let m be an integer0 0
w xsuch that 1 F m F a and k: 1, i ª N, such thati 00

Ž . Ž . Ž .a 1 F k i F k i q m y 1 F a .i
Ž .b k is decreasing.
Ž .c t s B. Let T 9 be the tableau obtained from T by cancel-i q1, kŽ i .0 0

Ž . Ž .ing t 1 F i F i , k j F j F k j q m y 1; the boxes remaining on thei, j 0
right-hand side are moved to the left. It is clear, for 1 F i F i , tX s t if0 i, j i, j

Ž . Xj - k i and t s t , otherwise. Then,i, j i, jqmy1

Claim 1. T 9 is a semistandard Young tableau of shape l y mÃ .i

Ž . Ž . Ž . Ž .Proof. Clearly, T 9 verifies R , and by b , c it verifies C . The
number of entries in the ith row of T 9 is l y m if 1 F i F i and l ,i 0 i
otherwise. This gives l of shape l y mÃ .i

EXAMPLE. In this example, g is of type A , l s 2Ã q Ã q 2Ã q5 1 2 3
3Ã . In the following tableau T , we have underlined the entries to cancel:4

1 1 2 3 3 4 4 5

2 3 3 4 5 5

3 4 5 5 6

5 5 6
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Ž . Ž . Ž .The cancellation corresponds to m s 2, i s 3, k 1 s 5, k 2 s k 3 s 4.0
We then obtain T 9:

1 1 2 3 4 5

2 3 3 5

3 4 5

5 5 6

Claim 2. With the notation of Theorem 5.3, suppose T g T , l g lPq,l

Ž .such that n T g lN, 1 F i F n, 1 F k F n y i q 1. Then, T is a con-i, k
Žcatenation of l-columns, where an l-column is the lth exponent for

.concatenation of a single column.

Proof. By construction, the entries t of the ith row of a semistandard
Ž .tableau verify i F t F n q 1. By hypothesis, n T g lN; hence eachi, k

entry t , i q 1 F t F n q 1, in the ith row occurs an l-multiple of times.i i
As l g lPq, the number of boxes in the ith row is a multiple of l. So, each

Ž .entry in the ith row occurs an l-multiple of times. By R , the first l
columns are the lth exponent of a single column. The result is obtained by
reverse induction.
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