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Abstract

Let C be a smooth projective irreducible curve over an algebraic closed field k of characteristic 0. We
consider Brill–Noether loci over the moduli space of morphisms from C to a Grassmannian G(m,n) of
m-planes in kn and the corresponding Quot schemes of quotients of a trivial vector bundle on C compacti-
fying the spaces of morphisms. We study in detail the case in which m = 2, n = 4. We prove results on the
irreducibility and dimension of these Brill–Noether loci and we address explicit formulas for their coho-
mology classes. We study the existence problem of these spaces which is closely related with the problem
of classification of vector bundles over curves.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of Brill–Noether over the space of stable vector bundles or semistable bundles
has been very much studied (see for example [BGMN,BGN,Mer,Te]). Let C be a non-singular
projective curve defined over an algebraically closed field k of characteristic 0, and let M(r, d)

denote the moduli space of stable vector bundles over C of rank r and degree d . When r and d

are not coprime, M(r, d) is not compact and can be compactified to a scheme M̃(r, d) by adding
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equivalence classes of semistable vector bundles of rank r and degree d . For E a rank r and de-
gree d vector bundle, the slope of E is defined as μ(E) = d

r
. The notion of stability, semistability

and S-equivalence was first introduced by Mumford, Seshadri and Narasimhan [Mum,NS,Ses].
A vector bundle is stable (respectively semistable) when for every proper subbundle F :

μ(F) = deg(F )

rank(F )
< μ(E), respectively � .

Any semistable vector bundle E has an S-filtration, that is, a filtration by subbundles:

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E,

whose factors (Ei/Ei−1) are all stable with μ(Ei/Ei−1) = μ(E). The isomorphism class of the
direct sum grE := ⊕k

i=1 Ei/Ei−1 is independent of the filtration, and two semistable bundles
are called S-equivalent if

gr(E) ∼= gr(F ).

The Brill–Noether loci over the moduli space of stable bundles are defined as:

Br,d,k = {
E ∈ M(r, d)

∣∣ h0(E) � k
}

for a fixed integer k, and over the moduli space of semistable vector bundles it is defined by:

B̃r,d,k = {[E] ∈ M(r, d)
∣∣ h0(gr(E)

)
� k

}
.

By the Semicontinuity theorem, these Brill–Noether loci are closed subschemes of the appropri-
ate moduli spaces, and in particular it is not difficult to describe them as determinantal loci which
allows us to estimate their dimension.

The main object of Brill–Noether theory is the study of these subschemes, in particular ques-
tions related to their non-emptiness, connectedness, irreducibility, dimension, topological and
geometric structure. In the case of line bundles in which the moduli spaces are all isomorphic
to the Jacobian, these questions have been completely answered when the underlying curve is
generic (see for instance [ACGH]). Montserrat Teixidor i Bigas proved in 1991 a theorem that
gives a rather general solution to the problem, but it holds only for a generic curve (see [Te]).
Brambila-Paz, Grzegorczyk and Newstead in 1995 gave a solution to the problem for every curve
when d

r
� 1 (cf. [BGN]).

We can define in an analogous way Brill–Noether loci over the space of morphisms
Mord(C,X) of fixed degree d from a curve to a projective variety, and the corresponding Quot
schemes compactifying these spaces of morphisms. In particular, we are going to consider a
Brill–Noether stratification over the space of morphisms R0

C,d from a genus g, smooth projective
irreducible curve C to the Grassmannian G(m,n) of m-dimensional subspaces of kn. Moreover,
we study in detail the case in which m = 2, n = 4. In this case, this theory is connected with the
geometry of ruled surfaces in P3. Since G(2,4) is endowed with the universal quotient bundle Q,
a natural compactification for this space is provided by the Quot scheme RC,d , parametrizing epi-
morphisms of vector bundles O4

C → E → 0. Quot schemes have been shown by Grothendieck,
to be fine moduli spaces for the problem of parametrizing quotients of a fixed sheaf, and as such,
to carry universal structures.
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Given a morphism f in R0
C,d , the pull-back E := f ∗Q∨ is a vector bundle of rank 2 over C.

We can consider its Segre invariant s(E) which is defined as the minimal degree of a twist
E∨ ⊗ L with a line bundle such that the resulting bundle has a non-zero section. The Brill–
Noether stratum is then defined by the following locally closed condition:

R0
C,d,s := {

f ∈ R0
C,d

∣∣ s(f ∗Q) = s
}
.

We consider the closure of the stratum RC,d,s in the Quot scheme compactification. In the
first three sections of the paper some basic results on the loci RC,d,s are presented. In particular
RC,d,s is exhibited as the degeneration locus of a natural and appropriate morphism of vector
bundles.

In section four the fundamental class of RC,d,s is computed in the cohomology ring of RC,d

under the assumption that RC,d,s is either empty or of the expected codimension in RC,d (for
large d depending on s), (Theorem 4.2). We give a partial solution to the existence problem in
the rank two case, that is, when we are considering the Grassmannian G(2,4). We see that the
problem is closely related with the problem of classification of vector bundles over curves.

2. Brill–Noether loci

Consider the universal exact sequence over the Grassmannian G(m,n):

0 →N → On
G →Q → 0. (1)

For every morphism f ∈ Md := Mord(C,G(m,n)), we take the pull-back of the sequence 1:

0 → f ∗N → f ∗On
G(m,n) → f ∗Q→ 0. (2)

The next lemma describes the bundles E which arise from this construction.

Lemma 2.1. Given E, a degree d , rank r bundle over C, there exists a morphism f ∈
Mord(C,G(n − r, n)) such that f ∗Q = E if and only if E is generated by n global sections
or equivalently is given by a quotient,

On
C → E → 0.

We consider the Grassmannian G(m,n) where m = n − r . By the universal property of the
Grassmannian, there exists a morphism f ∈ Md such that f ∗Q ∼= E, where Q is the universal
quotient bundle over the Grassmannian G(m,n).

Conversely, for all f ∈ Md , f ∗Q is generated by global sections, since Q is given by a quo-
tient:

On
G(m,n) → Q→ 0.

These quotients are parametrized by Grothendieck’s Quot schemes Qd,r,n(C) of degree d ,
rank r quotients of On

C compactifying the spaces of morphisms Md .
In the genus 0 case, by a theorem of Grothendieck, every vector bundle E over P1 decomposes

as a direct sum of line bundles and therefore for E ∼= ⊕
i OP1(ai) to be generated by global

sections means that ai � 0. In the genus 1 case, the bundles generated by global sections are the
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indecomposable bundles of degree d > r (since h0(E) = d > r for an indecomposable bundle of
positive degree [At]), the trivial bundle OC and the direct sums of such bundles. In genus greater
than or equal to 2, certain restrictions on the bundle imply that it is generated by global sections.
For example, we can tensorize with a line bundle of degree m such that E(m) = E ⊗OC(m) is
generated by global sections and h1(E(m)) = 0 [Ses]. Moreover, if d is sufficiently large and E

is semistable, then h1(E) = 0 and E is generated by its global sections; in fact, it is sufficient to
take d > r(2g − 1).

We define the Brill–Noether loci over the spaces of morphisms Md as:

Md,a = {
f ∈ Md

∣∣ h0(C,f ∗Q) � a
}

(3)

for a fixed integer a. More generally, we can tensorize the bundle with a fixed line bundle L over
C and consider the following Brill–Noether loci:

Md,a(L) = {
f ∈ Md

∣∣ h0(C,f ∗Q⊗ L) � a
}
. (4)

3. A Brill–Noether stratification over the Quot scheme

In [Mar2], we consider the space of morphisms R0
d := Mord(P1,G(2,4)) and two different

compactifications of this space, the Quot scheme compactification and the compactification of
stable maps given by Kontsevich. We consider the following Brill–Noether loci inside the space
of morphisms R0

d :

R0
d,a = {

f ∈ R0
d

∣∣ h0(f ∗Q∨ ⊗OP1(a)
)
� 1, h0(f ∗Q∨ ⊗OP1(a − 1)

) = 0
}
, (5)

for a fixed integer a.
Note that we are considering here rank two bundles, but the definition can be generalized

easily to bundles of arbitrary rank r .
It is easy to see that this set can be defined alternatively as the f ∈ R0

d with f ∗Q ∼= OP1(a) ⊕
OP1(d − a), for a � d

2 , and the parameter a gives a stratification of the space R0
d .

Geometric interpretation
The image of a curve C by f is a geometric curve in the corresponding Grassmannian or

equivalently a rational ruled surface in P3 for the Grassmannian of lines. Fixing the parameter a

we are fixing the degree of a minimal directrix in the ruled surface. The spaces R0
d,a are locally

closed again by the Semicontinuity Theorem and they can be shown as the degeneration locus
of a morphism of bundles by means of the universal exact sequence over the corresponding
Quot scheme Rd and we find that the expected dimension of R0

d,a as a determinantal variety
is 3d + 2a + 5. These spaces are considered in [Mar1] as parameter spaces for rational ruled
surfaces in order to solve the following enumerative problems:

(1) The problem of enumerating rational ruled surfaces through 4d + 1 points, or equivalently
computing the degree of R0

d inside the projective space of surfaces of fixed degree d ,

R0
d → P(d+3

3 )−1.

(2) Enumerating rational ruled surfaces with fixed splitting type. This problem raises the ques-
tion of defining Gromov–Witten invariants for bundles with a fixed splitting type.



C. Martínez / Journal of Algebra 319 (2008) 4391–4403 4395
From now, the underlying curve C will be a smooth, irreducible projective curve of genus
greater than or equal to 1, and we will be studying only the case n = 2,m = 4. We call R0

C,d the
spaces of morphisms Mord(C,G(2,4)). For a vector bundle E of rank 2 over C, its Segre in-
variant is the integer s such that the minimal degree of a line quotient E → L → 0 is d+s

2 , or the
maximal degree of a twist E∨ ⊗ L, having a non-zero section. Note that s(E) ≡ deg(E) mod 2
and that E is stable (respectively semistable) if and only if s(E) � 1 (respectively s(E) � 0)
[LN,CS].

If T is any algebraic variety over k and A is a vector bundle of rank r on C × T , then the
function s :T → Z defined by s(t) = s(A|C×t ) is lower semicontinuous.

Given f ∈ R0
C,d we consider the Segre invariant s of the bundle f ∗Q which is the maximal

degree of a twist f ∗Q∨ ⊗ L with a generic line bundle L of degree d+s
2 such that the resulting

bundle has a non-zero section.
We define the corresponding Brill–Noether loci over R0

C,d as the subsets:

R0
C,d,s =

{
f ∈ R0

C,d

∣∣∣ h0(f ∗Q∨ ⊗ L
)
� 1, L of minimal degree

d + s

2

}
. (6)

The subvarieties R0
C,d,s are locally closed and are a natural generalization for arbitrary genus

of the subvarieties R0
d,a , defined previously, taking a = d+s

2 which is the degree of the line
bundle L.

The Zariski closure of R0
C,d,s is given by the set [Mar2]:

R0
C,d,s =

{
f ∈ R0

C,d

∣∣∣ h0(f ∗Q∨ ⊗ L
)
� 1, deg(L) = d + s

2

}
.

Observe that L is allowed to vary on the variety of line bundles of fixed degree, which is
isomorphic to the Jacobian, which is compact. The closure describes exactly the set of morphisms
f ∈ R0

C,d for which f ∗Q is a rank two vector bundle with Segre invariant less or equal than s,
that is,

R0
C,d,s = R0

C,d,s ∪ R0
C,d,s−1 ∪ · · · .

Evenmore, R0
C,d,s−1 ⊂ R0

C,d,s , and therefore R0
C,d,s−1 ⊂ R0

C,d,s .
Let us consider the universal exact sequence on RC,d × C,

0 →K → On
RC,d×C → E → 0, (7)

which satisfies that for all k-scheme S, the set of morphisms f : S → RC,d is in correspondence
one to one with the set of isomorphism classes of short exact sequences, O4

S×C → ES×C → 0,
where ES×C is flat over S.

Since the universal quotient sheaf E is flat over RC,d , for each q ∈ RC,d , Eq := E |{q}×C is a
coherent sheaf over C. By flatness, h0(Eq) − h1(Eq) is constant on any connected component
of RC,d . The Riemann–Roch theorem allows us to compute its value:

h0(Eq) − h1(Eq) = d + 2(1 − g),

for every q ∈ RC,d .
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We consider the Zariski closure RC,d,s of the sets R0
C,d,s inside the Quot scheme compactifi-

cation of the space of morphisms:

RC,d,s =
{
q ∈ RC,d

∣∣∣ h0(C,E∨
q ⊗ L

)
� 1, degL = d + s

2

}
=

{
q ∈ RC,d

∣∣∣ h1(C,Eq ⊗ KC ⊗ L−1) � 1, degL = d + s

2

}
=

{
q ∈ RC,d

∣∣∣ h0(C,Eq ⊗ KC ⊗ L−1) � d + 3 − 2g, degL = d + s

2

}
.

The first equality is due to the duality theorem, and the second one is due to the Riemann–Roch
theorem.

The existence problem
The existence problem here means that, given s, there exist a vector bundle E of rank 2

with Segre invariant s and a morphism f ∈ R0
C,d such that f ∗Q := E. Therefore the existence

problem for R0
C,d,s is closely related with the existence problem of vector bundles of rank 2

with Segre invariant s and consequently with the problem of classification of vector bundles over
curves. The contents of the next proposition are well known in the context of vector bundles (see
for example [La] for the rank 2 case and [RT] for the general case).

Proposition 3.1.

(1) If s > g then R0
C,d,s is empty.

(2) If C is a smooth elliptic curve, d ≡ s mod 2 and d � 3 then R0
C,d,1 and R0

C,d,0 are non-empty.

(3) If C is a smooth curve of genus g � s � 0, d ≡ s mod 2 and d > 2(2g − 1), then R0
C,d,s is

non-empty.

Proof. Given f ∈ R0
C,d , the pull-back f ∗Q∨ of the dual of the universal quotient bundle over

G(2, n) is a rank 2 bundle over C of degree −d . We can tensorize it with a line bundle of degree
d+s

2 such that E′ := f ∗Q∨ ⊗L is a normalized bundle of degree s, that is, h0(E′) 
= 0 but for all
invertible sheaves L on C with degL < 0, we have H 0(E′ ⊗ L) = 0. Since E′ is a normalized
bundle there are two possibilities for E′:

• If E′ is decomposable as a direct sum of two invertible sheaves, then E′ ∼= OC ⊕F for some
F with degF � 0, therefore s(E′) � 0 and all values of s(E) � 0 are possible.

• If E′ is indecomposable, then 2 − 2g � s � g (see [Har]).

In particular, this implies that there does not exist a vector bundle of rank 2 over C with Segre
invariant s > g, and consequently R0

C,d,s is empty as we stated in (1).
If C is an elliptic curve, for each value 0 � s � 1 there is a bundle E over C of rank 2

with Segre invariant s. Therefore by Lemma 2.1, the sets R0
C,d,1 and R0

C,d,0 are non-empty. This
proves (2).

If C is a smooth curve of genus g � 2, 0 � s � g and d > 2(2g − 1), there is a semistable
vector bundle of rank 2 over C with Segre invariant s and again by Lemma 2.1, R0

C,d,s is non-
empty. �
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The next theorem will exhibit the RC,d,s as determinantal varieties which allows us to estimate
their dimensions.

Let KC be the canonical bundle over C and π1,π2 be the projection maps of RC,d × C

over the first and second factors respectively. Tensorizing the sequence (7) with the linear sheaf
π∗

2 (KC ⊗ L−1) gives the exact sequence:

0 → K⊗ π∗
2

(
KC ⊗ L−1) →On

RC,d×C ⊗ π∗
2

(
KC ⊗ L−1) → E ⊗ π∗

2

(
KC ⊗ L−1) → 0. (8)

Here L is a generic line bundle on C of fixed degree d+s
2 . The π1∗ direct image of the above

sequence yields the following long exact sequence on RC,d :

0 → π1∗
(
K ⊗ π∗

2

(
KC ⊗ L−1)) → π1∗

(
On

RC,d
⊗ π∗

2

(
KC ⊗ L−1))

→ π1∗
(
E ⊗ π∗

2

(
KC ⊗ L−1)) → R1π1∗

(
K ⊗ π∗

2

(
KC ⊗ L−1))

→ R1π1∗
(
On

RC,d
⊗ π∗

2

(
KC ⊗ L−1)) → R1π1∗

(
E ⊗ π∗

2

(
KC ⊗ L−1)) → 0.

Theorem 3.2. For d sufficiently large depending on s, RC,d,s(L) is the locus where the map

R1π1∗
(
K⊗ π∗

2

(
L−1 ⊗ KC

)) → R1π1∗
(
On

RC,d×C ⊗ π∗
2

(
L−1 ⊗ KC

))
(9)

is not surjective. It is irreducible and has expected codimension 2g − s − 1 as a determinantal
variety.

Proof. The map (9) is not surjective in the support of the sheaf

R1π1∗
(
E ⊗ π∗

2

(
KC ⊗ L−1)),

that is, in the points q ∈ RC,d such that h1(E ⊗ π∗
2 (KC ⊗ L−1)|{q}×C) � 1, or equivalently

in RC,d,s(L) by Serre duality. In other words, by semicontinuity there is an open set Ps ⊂
P(R1π1∗(E ⊗ π∗

2 (KC ⊗ L−1))) parametrizing classes of quotients O4
C → Es → 0 such that Es

is a rank 2 bundle with Segre invariant s, modulo the canonical operation of k∗.

Let Ps
f→ RC,d,s be the surjective morphism such that the image by f of each quotient is its

class of isomorphism in RC,d,s(L). The fibers are isomorphic to P(Aut(Es)).This proves that the
subschemes RC,d,s(L), being the image of an irreducible variety by a morphism, are irreducible.

By Serre duality it follows that(
R1π1∗

(
K⊗ π∗

2

(
L−1 ⊗ KC

)))∨ ∼= π1∗
(
K∨ ⊗ π∗

2 L
)

and by the Base Change Theorem, their fibers are isomorphic to

H 0(C,K∨ ⊗ π∗
2 L|C×{p}

)
, p ∈ RC,d

and have dimension 2d +s+m(1−g), where m = rank(K∨). It is enough to take d +s > 2m(g−
1) to ensure the vanishing of h1(C,K∨ ⊗ π∗

2 L|C×{p}). As a consequence, π1∗(K∨ ⊗ π∗
2 L) is a

bundle of rank 2d + s + 2(1 − g) (note that we are specializing m and n to be 2, 4 respectively).
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Again by Serre duality we see that R1π1∗(On
RC,d×C ⊗π∗

2 (L−1 ⊗KC)) ∼= π1∗(On
RC,d

⊗π∗
2 L) and

it is a bundle with fiber isomorphic to

H 0(C,On
RC,d

⊗ π∗
2 L|C×{p}

)
of dimension 2d + 2s − 4g + 4. Therefore we have the following morphism of bundles:

π1∗
(
K∨ ⊗ π∗

2 L
) φ−→ O2d+2s−4g+4

RC,d
.

The expected codimension of RC,d,s as determinantal variety is

(
(2d − 2g + s + 2) − (2d + 2s − 4g + 3)

) · ((2d + 2s − 4g + 4) − (2d + 2s − 4g + 3)
)

= 2g − s − 1. �
Remark 3.3. Note that as s increases, the bundle E becomes more general, so the codimension
decreases. In particular when s = g − 1, the codimension is g for fixed L or 0 when we allow L

to vary.

4. Cohomology of the varieties RC,d,s

In this section we determine the cohomology classes of the Brill–Noether loci in terms of
some natural elements in the cohomology ring of RC,d defined by the universal bundle.

Let {1, δk,1 � k � 2g,η} be a basis for the cohomology of C, where η represents the class of
a point. We will also denote by {1, δk,1 � k � 2g,η} the pull-backs to RC,d by the projection
morphism.

Let us consider the classes ti , ui−1, s
j
i in H ∗(RC,d ;Q) defined by the Künneth decomposition

of the Chern classes of K∨:

ci

(
K∨) = ti +

2g∑
j=1

s
j
i δj + ui−1η, ti ∈ H 2i (RC,d ;Q), s

j
i ∈ H 2i−1(RC,d ;Q),

ui−1 ∈ H 2i−2(RC,d ;Q).

Every class z in the cohomology ring H ∗(RC,d ;Q) can be written in the form

z = c +
2g∑

j=1

bj δj + f η

where c = π∗(η z) and f = π∗(z) ∈ H ∗(RC,d ;Q). In particular, ti = π∗(η ci(K∨)) and ui−1 =
π∗(ci(K∨)), u0 = π∗(c1(K∨)) = d .

Conjecture 4.1. The elements t1, t2, u1, s
j

(1 � j � 2g, i = 1,2) generate H ∗(RC,d ;Q).
i
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The evidence for the conjecture is that in the genus 0 case it is true [Str] and s
j
i (1 � j � 2g,

i = 1,2) are the generators that appear when we consider curves in genus higher than 0. In
addition, for the ordinary moduli space M(2, d) with d odd, the s

j
i are all needed, together with

t2 and one of t1, u1 as well (see [Za]). For d even, the conjecture is less plausible, and it is
unlikely to be true for integer cohomology.

For L a line bundle over C of degree a = d+s
2 , its first Chern class is given by

c1
(
π∗

2 L
) = aη.

Theorem 4.2. If C is any smooth curve of genus g, and RC,d,s is either empty or generically
reduced and of the expected codimension 2g − s − 1, RC,d,s has fundamental class:

[RC,d,s] = −c2g−s−1
(
π1∗

(
K∨ ⊗ π∗

2 L
))

.

Proof. By assumption, RC,d,s has the expected codimension as a determinantal variety and is
irreducible as we have seen in Theorem 3.2; therefore, it does not have components contained at
infinity and the Porteous formula gives the fundamental class of the varieties RC,d,s in terms of
the Chern classes of the bundles given by Theorem 3.2. We get that

[RC,d,s] = Δ2g−s−1,1
(
ct

(−π1∗
(
K∨ ⊗ π∗

2 L
)))

,

where

Δp,q(a) = det

⎛⎜⎝ ap . . . ap+q−1
...

...

ap−q+1 . . . ap

⎞⎟⎠ ,

for any formal series a(t) = ∑k=+∞
k=−∞ akt

k . �
Remark 4.3. Note that the assumption that RC,d is generically reduced and of expected codi-
mension 2g − s − 1 is satisfied for large d (relative to s and g). In that case, RC,d is a smooth
projective bundle over the Jacobian J d of degree d line bundles, and the intersection numbers
on Quotd,r,n(C) correspond to certain counts of maps from C to G(r,n). The intersection of the
t classes has been studied extensively in [Ber], where it is shown that the evaluation of a top-
degree monomial in the t classes on the fundamental cycle has enumerative meaning. It is the
number of degree d maps from C to the Grassmannian G(r,n) which sends fixed points on C to
special Schubert varieties of G(r,n).

4.0.1. Computations of Chern classes
Applying Grothendieck–Riemann–Roch theorem to the projection morphism π1, it follows

that

ch
(
π1∗

(
K∨ ⊗ π∗

2 L
)) = π1∗

(
Td(RC,d × C)/RC,d

) · ch
(
K∨ ⊗ π∗

2 L
)
. (10)

First we compute the Chern classes of K∨ ⊗ π∗L:
2
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c1
(
K∨ ⊗ π∗

2 L
) = t1 +

( 2g∑
j=1

s
j

1 δj

)
+ (d + 2a)η,

c2
(
K∨ ⊗ π∗

2 L
) = t2 +

( 2g∑
j=1

s
j

2 δj

)
+ u1η + aηt1 + a

( 2g∑
j=1

s
j

1 δj

)
η.

Let α1 and α2 be the classes
∑2g

j=1 s
j

1 δj and
∑2g

j=1 s
j

2 δj respectively. The intersection numbers
for the δi imply the following relations:

α2
1 = −2Aη, A =

g∑
j=1

s
j

1 s
j+g

1 ∈ H 2(RC,d ;Q), α3
1 = 0,

α2
2 = −2γ η, γ =

g∑
i=1

s
j

2 s
j+g

2 ∈ H 6(RC,d ;Q), α3
2 = 0,

α1α2 = Bη, B =
(

g∑
i=1

−si
1s

i+g

2 + s
i+g

1 si
2

)
∈ H 4(RC,d ;Q).

Let E be a bundle of rank n and denote by x1, . . . , xn its Chern roots. The Chern character
ch(E) is defined by the formula:

ch(E) =
n∑

i=1

exi ,

where ex = ∑
n�0

xn

n! , and x1, . . . , xn are the Chern roots of E. The first few terms are:

ch(E) = r + c1 + 1

2

(
c2

1 − 2c2
) + 1

3

(
c3

1 − 3c1c2 + 3c3
) + · · · ,

where ci = ci(E). The nth term is pn

n! , where pn is determined inductively by Newton’s formula
(see [Mac]):

pn − c1pn−1 + c2pn−2 − · · · + (−1)n−1cn−1p1 + (−1)nncn = 0.

Finally, the Todd class td(E) of a bundle with Chern polynomial ct (E) = ∏
i (1 + xit) is

defined by

td(E) =
∏
i

xi

1 − e−xi
.

Let us denote by chi the i-homogeneous part of the Chern character of a bundle. Then, we
have
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ch0
(
K∨ ⊗ π∗

2 L
) = m = 2,

ch1
(
K∨ ⊗ π∗

2 L
) = t1 + α1 + η(d + 2a),

ch2
(
K∨ ⊗ π∗

2 L
) = 1

2

[
t2
1 + α2

1 + 2 t1 α1 + 2t1η(d + 2a) − 2t2 − 2α2 − 2u1η − 2aηt1
]
,

ch3
(
K∨ ⊗ π∗

2 L
) = 1

6

[
t3
1 + α1t

2
1 + 3(d + 2a)ηt2

1 + 2α1t
2
1 + 3α2

1 t1 + α3
1

− 3t1t2 − 3t1α2 − 3ηu1t1 − 3α1α2 − 3η(2a + d)t2 + 3aη t2
1 − 3α1t2

]
.

We observe that td(RC,d) = 1 and td(RC,d ×C) = 1 + (1 −g)η, putting this together with the
computations of the Chern classes of K∨ ⊗π∗

2 L and the Grothendieck–Riemann–Roch formula,
yields:

ch
(
π1∗

(
K∨ ⊗ π∗

2 L
)) = π1∗

(
1 + (1 − g)η

)(
ch

(
K∨ ⊗ π∗

2 L
))

.

The i-homogeneous term of ch(π1∗(K∨ ⊗ π∗
2 L)) is given by the formula:

chi

(
π1∗

(
K∨ ⊗ π∗

2 L
)) = (1 − g) chi

(
K∨ ⊗ π∗

2 L|{q}×RC,d

) + coeffη
(
chi+1

(
K∨ ⊗ π∗

2 L
))

.

The first few terms are:

ch0 = rank
(
π1∗

(
K∨ ⊗ π∗

2 L
)) = d + 2a + 2(1 − g),

ch1 = t1(d + 2a) + α1(d + 2a) − at1 − aα1 − u1 + (1 − g)α1,

ch2 = (1 − g)

[
1

2
t2
1 + 1

2
α2

1 + t1α1 − t2 − α2 + 3(d + 2a)t2
1 + 3(d + 2a)α2

1

]
+ 6(d + 2a)α1t1 − 3u1t1 − 3at2

1 − 3α2
1 − 6aα1t1 − 3u1α1 − 3(d + 2a)t2

− 3(d + 2a)α2 + 3u2 + 3at2 + 3α2,

ch3 = (1 − g)
[
t3
1 + α3

1 + 3t1α
2
1 + 3t2

1 α1 − 3t1t2 − 3α1α2 − 3α1t2 + 3t3 + 3α3
]
,

...

Finally, we get that the Chern classes of π1∗(K∨ ⊗ π∗
2 L) are given by the recursive formula:

cn

(
π1∗

(
K∨ ⊗ π∗

2 L
)) = −

n∑
r=1

(−1)r−1

n
r! chr

(
π1∗

(
K∨ ⊗ π∗

2 L
))

cn−r

(
π1∗

(
K∨ ⊗ π∗

2 L
))

.

Let σi be the i-symmetric function, that is,

n∑
r=0

σr t
r =

n∏
i=1

(1 + xit),

for each r � 1 the r th power sum is:

pr =
∑

xr = m(r).
i
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The generating function for the pr is:

p(t) =
∑
r�1

pr t
r−1 =

∑
i�1

∑
r�1

xr
i t

r−1 =
∑
i�1

d

dt
log

1

1 − xit
, (11)

P(t) = d

dt

∏
i�1

(1 − xit)
−1 = d

dt
logH(t) = H ′(t)

H(t)
,

P (−t) = d

dt
logE(t) = E′(t)

E(t)
. (12)

From (11) and (12), we get that

nσn =
n∑

r=1

(−1)r−1prσn−r .

This is a standard formula for symmetric functions (see [Mac]). The first Chern classes are:

c1
(
π1∗

(
K∨ ⊗ π∗

2 L
)) = (a + d + 1 − g)t1 + α1 − u1 + η(1 − g)(d + 2a),

c2
(
π1∗

(
K∨ ⊗ π∗

2 L
)) = 1

2
c2

1 − 1

2
(1 − g + d − a)t2

1 − 1

2
(1 − g)α2

1

− (1 − g)
(
α1 + t1 + (a + d)ηt1 − t2 − α2 − u1η

)
u1t1 − 1

2
(u2 + t2),

...

Corollary 4.4. If C is a curve of genus 1, then

[RC,d,0] = −c1
(
π1∗

(
K∨ ⊗ π∗

2 L
)) = −(d + a)t1 − α1 + u1,

[RC,d,−1] = −c2
(
π1∗

(
K∨ ⊗ π∗

2 L
))

= −1

2

(
(d + a)t1 + α1 − u1

)2 − 1

2
(d − a)t2

1 + u1t1 − 1

2
(u2 + t2).
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