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a b s t r a c t

We quantify the effect of Bayesian ignorance by comparing the social cost obtained in a
Bayesian game by agentswith local views to the expected social cost of agents having global
views. Both benevolent agents, whose goal is tominimize the social cost, and selfish agents,
aiming atminimizing their own individual costs, are considered.When dealingwith selfish
agents, we consider both best and worst equilibria outcomes. While our model is general,
most of our results concern the setting of network cost sharing (NCS) games. We provide
tight asymptotic results on the effect of Bayesian ignorance in directed and undirected NCS
games with benevolent and selfish agents. Among our findings we expose the counter-
intuitive phenomenon that ‘‘ignorance is bliss’’: Bayesian ignorance may substantially
improve the social cost of selfish agents. We also prove that public random bits can replace
the knowledge of the common prior in attempt to bound the effect of Bayesian ignorance
in settings with benevolent agents. Together, our work initiates the study of the effects of
local vs. global views on the social cost of agents in Bayesian contexts.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is very common that the participants of a distributed system are required to make decisions which are based on their
own local views2 rather than on a global view of the system. This lack of global view may have severe implications on the
overall system’s performance. In this paper we introduce a novel approach for quantifying these implications. Our approach
relies on the notion of Bayesian games that we now turn to describe.

Consider some k agents, where each agent i is associated with an action space Ai and a type space Ti. Every type profile
t ∈ T = T1 × · · · × Tk (a.k.a. the state of the system) induces an underlying game Gt defined by a cost function Ci,t , i ∈ [k],
that maps each action profile a ∈ A = A1 × · · · × Ak to the cost incurred by agent i on a under t . A Bayesian game is merely
a probability distribution p, referred to as the common prior, over the underlying games or, more formally, over the type
profiles.

It is assumed that some type profile t = (t1, . . . , tk) ∈ T is chosen with respect to the common prior p. The crux of the
model is that although p is common knowledge, the agents have local views of the actual instantiation t so that each agent
i knows only her own type ti within the type profile t and should decide on her action based upon that local view alone.

∗ Corresponding author. Tel.: +972 54 3020222.
E-mail address:mfeldman@huji.ac.il (M. Feldman).

1 This work was done when the author was at Microsoft Research, Israel.
2 The term local view in this context refers to an absence of information regarding the (global) system’s state. It should not be confused with a limited
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Therefore, a strategy of agent i is a function si : Ti → Ai that maps each type to one of her actions. The social cost incurred
by a strategy profile is defined as the expected sum of the agents’ costs.

In light of the above, themain principle of Bayesian games is that the agents cannot coordinate their actions on the global
state of the system as each agent’s action is dictated by her own local view. Obviously, the privilege of bearing global views
could have dramatically affected the agent’s behavior and in particular, improve the social cost (assuming that this is the
agent’s goal). We refer to this lack of global view as Bayesian ignorance and our goal is to quantify its effect by comparing the
social cost attained in the Bayesian game, i.e., under local views, to the expected social cost of agents having global views,
where the expectation is taken with respect to the common prior distribution on the underlying games. In particular, we
will focus on the ratio of the social cost of the optimal strategy profile in the Bayesian game to the expected optimal social
cost in the underlying games.

The aforementioned discussion assumes that the agents are benevolent in the sense that their goal is to minimize the
social cost. We will also consider selfish agents whose aim is to minimize their own individual costs. When dealing with
selfish agents, we restrict attention to the set of equilibrium profiles.3 Specifically, we study the ratio of the social cost of a
best equilibrium strategy profile in the Bayesian game to the expected social cost of the best equilibrium in the underlying
games. Finally, we also study the same ratio with respect to a worst equilibrium. (Refer to Section 2 for a formal definition
of the model.)

In our opinion, the effect of Bayesian ignorance must be taken into account when one attempts to design a distributed
system with prior beliefs on the system’s global state. Specifically, if the social cost in the Bayesian setting is significantly
higher than the expected social cost in the underlying complete-information setting, then the system’s performance still has
much ‘‘room for improvement’’. In such a scenario, the system’s designer may wish to invest into some sort of a correlation
device that would reduce the effect of Bayesian ignorance, or alternatively, to redesign the system.

While ourmodel and qualitymeasures are general, most of the technical results established in the current paper concern
the setting of network cost sharing (NCS) games. An NCS game is specified by a (directed or undirected) graph in which every
edge is associated with a non-negative cost, and a set of k agents, each associated with a source vertex and a destination
vertex. Each agent should buy a subset of the edges so as to connect her source to her destination. The cost of each edge
is shared equally among all agents who bought it; the cost incurred by an agent is merely the sum of (partial) payments it
made for the edges she bought. An NCS game is a congestion game [14], therefore it always admits an equilibrium in pure
strategies. The social cost, which by definition, equals the sumof the agents’ costs, is just the total cost of the edges bought by
all agents. In a Bayesian NCS game each agent knows her own source and destination, but not the sources and destinations
of the others.

In Section 3 we provide tight asymptotic results on the effect of Bayesian ignorance in directed and undirected NCS
games with benevolent and selfish agents. Among our results we expose two interesting phenomena. First, while allowing
benevolent agents to bear global views is clearly socially beneficial, in selfish agent settings ignorance may be bliss. In
particular, we present a Bayesian NCS game in which the social cost of the worst Bayesian equilibrium is asymptotically
smaller than the expected social cost of the best equilibrium in the underlying games. In fact, in that Bayesian game the
worst Bayesian equilibrium achieves the expected cost of the globally optimal outcome. Second, in settings with benevolent
agents we find that public random bits can replace the knowledge of the common prior in attempt to bound the effect of
Bayesian ignorance (see Section 4).

Related work. The effect of Bayesian ignorance is closely related to the notion of the value of information [10], defined as
the amount a decision maker would be willing to pay for information prior to making a decision. This notion has been
axiomatized by Gilboa and Lehrer [8]. Another work that is conceptually close to our study is that of Ashlagi et al. [5], which
quantifies the loss or value that can be obtained due to lack of information about the number of agents in a resource selection
game, alas not in a Bayesian setting. Similar in spirit to our observation, ignorance may improve the social welfare in their
setting as well.

The network cost sharing game has been originally introduced by Anshelevich et al. [4] and has been extensively studied
in a non-Bayesian setting in recent years. Within the context of NCS games, a great deal of attention has been given to the
price of anarchymeasure [12,13], defined as the ratio of the cost of a worst Nash equilibrium to the social optimum and the
price of stability measure [4], defined as the ratio of the cost of a best Nash equilibrium to the social optimum [6,3,1]. These
measures can be thought of as quantifying the loss obtained due to selfish behavior. In contrast, the Bayesian ignorance
measures introduced in the current paper quantify the loss (or gain) obtained due to local views (in either benevolent or
selfish behaviors).

2. The model

Bayesian games. A Bayesian game G is a 5-tuple

G =

k, {Ai}i∈[k], {Ti}i∈[k], {Ci,t}i∈[k],t∈T , p


,

3 The assumption that selfish agents converge to an equilibrium profile (at least to a pure equilibrium profile when one exists) is among the most
fundamental concepts in game theory.
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where k ∈ Z>0 is the number of agents, Ai is the (finite) action space of agent i, Ti is the (finite) type space of agent i,
Ci,t : A → R is the cost function of agent i under the type profile t ∈ T = T1 × · · · × Tk that maps each action profile
a ∈ A = A1 × · × Ak to the cost incurred by agent i from a under t , and p ∈ ∆(T ) is a probability distribution over the type
profiles T , referred to as the common prior.

It is assumed that a type profile t = (t1, . . . , tk) ∈ T is chosen with probability p(t). The fundamental principle of
Bayesian games is that the common prior p (in fact, the whole 5-tuple G) is common knowledge, but each agent i knows
only her own type ti out of the actual instantiation t and should decide on her action ai ∈ Ai based on that partial knowledge.
A pure strategy of agent i in the Bayesian game G is therefore a function si : Ti → Ai that maps her type to some action. We
denote the strategy space of agent i by Si = ATi

i and the collection of all strategy profiles by S = S1 × · · · × Sk.
Fix some strategy profile s = (s1, . . . , sk) ∈ S. Let Xi(s) be the random variable (defined over the probability space p)

that takes on the cost incurred by agent i ∈ [k] from the strategy profile s, i.e., Xi(s) = Ci,t({sj(tj)}j∈[k]) with probability p(t).
The expected cost incurred by agent i from the strategy profile s (a.k.a. the ex-ante cost) is then defined as

Ci(s) = E[Xi(s)] =


t∈T

p(t) · Ci,t

{sj(tj)}j∈[k]


.

The strategy profile s is a (pure) Bayesian equilibrium of the Bayesian game G if no agent gains on expectation from a
unilateral deviation, that is, if for every i ∈ [k] and for every s′i ∈ Si, Ci(s) ≤ Ci(s−i, s′i). Alternatively, s is a Bayesian
equilibrium if for every i ∈ [k], for every ti ∈ Ti, and for every s′i ∈ Si that agrees with si on all types in Ti except (maybe) ti,
E[Xi(s) | ti] ≤ E[Xi(s−i, s′i) | ti].

Potential functions. We say that a Bayesian game G is a Bayesian potential game if there exists a function Q : S → R
that satisfies Ci(s) − Ci(s−i, s′i) = Q (s) − Q (s−i, s′i) for every s ∈ S, i ∈ [k], and s′i ∈ Si. In this case Q is referred to as
a Bayesian potential function for G. Since the strategy profile space S is finite, there must exist some s ∈ S such that the
Bayesian potential function Q is minimized at s, i.e., Q (s) ≤ Q (s′) for every s′ ∈ S; by definition, this strategy profile
s is a (pure) Bayesian equilibrium.4 A function qt : A → R is called a potential function for the type profile t ∈ T if
Ci,t(a) − Ci,t(a−i, a′

i) = qt(a) − qt(a−i, a′

i) for every i ∈ [k], a = (a1, . . . , ak) ∈ A, and a′

i ∈ Ai.

Observation 2.1. If a potential function qt exists for every type profile t ∈ T , then the function Q : S → R defined by mapping
each strategy profile s = (s1, . . . , sk) ∈ S to

Q (s) =


t∈T

p(t) · qt

{sj(tj)}j∈[k]


is a Bayesian potential function for the Bayesian game G.

Proof. Consider some strategy profile s = (s1, . . . , sk) ∈ S, agent i ∈ [k], and strategy s′i ∈ Si. We have

Ci(s) − Ci(s−i, s′i) =


t∈T

p(t) ·

Ci,t


{sj(tj)}j∈[k]


− Ci,t


{sj(tj)}j∈[k]−i, s′i(ti)


=


t∈T

p(t) ·

qt


{sj(tj)}j∈[k]


− qt


{sj(tj)}j∈[k]−i, s′i(ti)


=Q (s) − Q (s−i, s′i).

The assertion follows. �

Ignorance. A Bayesian game G =

k, {Ai}i∈[k], {Ti}i∈[k], {Ci,t}i∈[k],t∈T , p


is a partial-information game in which every type

profile t ∈ T induces a complete-information gameGt specified by the cost functions C1,t , . . . , Ck,t . The complete-information
games Gt are referred to as the underlying games. We restrict our attention to Bayesian games admitting pure Bayesian
equilibria in which all underlying games admit pure Nash equilibria (e.g., when the underlying games have potential
functions).

Fixing some type profile t ∈ T , the social cost induced on t by the action profile a ∈ A is defined as Kt(a) =


i∈[k] Ci,t(a).
The social cost of the strategy profile s ∈ S is then defined as

K(s) =


t∈T

p(t) · Kt

{si(ti)}i∈[k]


=


i∈[k]

Ci(s).

To avoid cumbersome notation, in what follows we denote Kt({si(ti)}i∈[k]) = K(s, t).
We are interested in comparing the social cost of some strategy profiles in the partial-information Bayesian setting to the

average social cost of some action profiles in the complete-information underlying games. More formally, we shall establish
lower and upper bounds on ratios in which the numerator is either

4 Since every complete information game can be viewed as a (degenerate) Bayesian game, it follows that the existence of a potential function in a
complete information game implies the existence of a Nash equilibrium.
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• optP(G) = mins∈S K(s),
• best-eqP(G) = minBayesian equilibrium s of G K(s), or
• worst-eqP(G) = maxBayesian equilibrium s of G K(s);

and the denominator is either

• optC(G) =


t∈T p(t) · mina∈A Kt(a),
• best-eqC(G) =


t∈T p(t) · minNash equilibrium a of Gt Kt(a), or

• worst-eqC(G) =


t∈T p(t) · maxNash equilibrium a of Gt Kt(a).

These ratios can be thought of as reflecting the effect of ignorance on behalf of the agents: the numerator captures the social
cost of a strategy profile in a partial-information setting where each agent knows only her own type (and the common prior
p), while the denominator captures the average (with respect to p) social cost of action profiles in complete-information
settings. In other words, we think of the numerator as a measure for the (expected) performance of the system depicted
by the Bayesian game (where nature chooses the system’s state according to the common prior p) in a partial-information
setting; the denominator is thought of as measure for the (average) performance of the same system assuming a complete-
information setting.

Observation 2.2. Every Bayesian game G admitting a pure Bayesian equilibrium satisfies

optC(G) ≤ optP(G) ≤ best-eqP(G) ≤ worst-eqP(G).

Network cost sharing. A network cost sharing (NCS) game is specified by a graph G = (V , E) (may be directed or undirected),
a non-negative real cost c(e) associated with each edge e ∈ E, and a vertex pair (xi, yi) ∈ V 2 associated with each agent
i ∈ [k], where xi (respectively, yi) is referred to as the source (resp., destination) of agent i. The action space of each agent
is 2E ; it is convenient to think of action ai ⊆ E of agent i as if the agent buys the edges in ai. Given some action profile
a = (a1, . . . , ak), the payment πi(e) of agent i for edge e ∈ E is

πi(e) =


c(e)

|{j∈[k]|e∈aj}|
if e ∈ ai;

0 if e /∈ ai.

The total payment of agent i for the action profile a is defined to be πi(a) =


e∈E πi(e). An NCS game is then defined by
setting the cost incurred by agent i to be its total payment if ai contains a path from xi to yi; and ∞ otherwise.

NCS games fall into a more general family of games called congestion games. Rosenthal [14] shows that every congestion
game admits a potential function, and hence also a pure Nash equilibrium. In the context of the NCS games, this potential
function turns out to be

q(a) =


e∈E

c(e) · H (|{i ∈ [k] | e ∈ ai}|) ,

where H(n) = 1 + 1/2 + · · · + 1/n is the nth harmonic number (cf. [4]).
A Bayesian NCS game is depicted by a probability distribution p over NCS games with the same graph G = (V , E) and

edge costs c(e). That is, the action space of each agent i ∈ [k] is Ai = 2E , the type space of each agent i is Ti = V × V ,
and the cost functions Ci,t are determinedwith respect to the complete-information NCS games induced by the type profiles

t ∈ T = (V ×V )k. By Observation 2.1, the functionQ : S → R defined bymapping each strategy profile s ∈ S =


2E

V×V
k

to

Q (s) =


t∈T

p(t) ·


e∈E

c(e) · H (|{i ∈ [k] | e ∈ si(ti)}|)

is a Bayesian potential function for that Bayesian NCS game, which implies the existence of a (pure) Bayesian equilibrium.

3. Bayesian ignorance in NCS games

In this section we establish various bounds regarding the effect of Bayesian ignorance on NCS games. These bounds are
summarized in Table 1. Observe that the bounds we establish are asymptotically tight in all cases except for the best-eqP

best-eqC
ratio

in undirected graphs for which logarithmic gaps still exist. It is quite easy to design a Bayesian NCS game over an undirected
graph for which best-eqP

best-eqC
< 1. However, designing a sequence of such games for which best-eqP

best-eqC
= o(1) (i.e., the ratio decreases

asymptotically with the number of agents) seems to be a more difficult task; in particular, this would imply the existence
of an NCS game with o(1) price of stability. Whether or not such an NCS game exists is still an open question.5

5 Albers [1] shows such an example for a variant of the NCS game in which the agents have different weights. This variant is beyond the scope of the
current paper.
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Table 1
Bounds for k-agent Bayesian NCS games in n-vertex (directed or undirected) graphs. The universal
columns correspond to absolute bounds holding for all Bayesian NCS games, while the existential
columns correspond to the existence of some (infinitely many) Bayesian NCS games that satisfy the
desired bounds. For example, the best-eqP

best-eqC
ratio in directed graphs is always at most O(k) and at least

Ω(1/ log k). These bounds are tight since there exists a BayesianNCS gamedefined over aΘ(k2)-vertex
(respectively, Θ(k)-vertex) directed graph for which best-eqP

best-eqC
= Ω(k) (resp., best-eqP

best-eqC
= O(1/ log k)).

Directed graphs Undirected graphs
Universal Existential Universal Existential

optP

optC
O(k) Ω(k), n = Θ(k2) O(log n) Ω(log n), k = Θ(n)
≥ 1 = 1 ≥ 1 = 1

best-eqP

best-eqC
O(k) Ω(k), n = Θ(k2) O(min{k, log k log n}) Ω(log n), k = Θ(n)
Ω(1/ log k) O(1/ log k), n = Θ(k) Ω(1/ log k) < 1, n = O(1)

worst-eqP

worst-eqC
O(k) Ω(k), n = O(1) O(k) Ω(k), n = O(1)
Ω(1/k) O(1/k), n = O(1) Ω(1/k) O(1/k), n = O(1)

Remark 1. It is interesting to point out that the best-eqP

best-eqC
= O(1/ log k) existential bound for directed graphs is established

via a k-agent Bayesian NCS game G such that optC(G) = worst-eqP(G) = O(1), while best-eqC(G) = Ω(log k). This
demonstrates the potential usefulness of Bayesian ignorance to the benefit of the society (à la ‘‘ignorance is bliss’’) as it
means that in some scenarios the social cost of any equilibrium of selfish agents holding local views is (asymptotically)
better than all equilibria of selfish agents with global views.

We now turn to establish the bounds exhibited in Table 1. We first observe that the universal lower bounds on the optP

optC

ratio in directed and undirected graphs simply follow from Observation 2.2. The matching existential bounds are trivial
as every complete-information game is also a Bayesian game. We now turn to show that the effect of Bayesian ignorance
cannot be too devastating.

Lemma 3.1. Every k-agent Bayesian NCS game G satisfies worst-eqP(G)/optC(G) ≤ k.

Proof. Consider some k-agent Bayesian NCS game G on a (directed or undirected) graph G = (V , E). For every type profile
t ∈ T , an action profile a ∈ A that minimizes Kt(a) must contain a ti-path for every i ∈ [k]. Hence, Kt(a) ≥ maxi∈[k] distG(ti)
and

optC(G) ≥


t∈T

p(t) · max
i∈[k]

distG(ti),

where distG(ti) denotes the distance in G from the source to the destination dictated by ti.
Let s ∈ S be a strategy profile that realizes worst-eqP(G) and fix some agent i ∈ [k] and type ti = (xi, yi) ∈ Ti. Since s is

a Bayesian equilibrium, we must have E[Xi(s) | ti] ≤ distG(ti) as otherwise, agent i is better off deviating from her strategy
si to a strategy s′i ∈ Si that agrees with si on all types except ti for which s′i buys a shortest (xi, yi)-path and pays at most
distG(ti). It follows that

worst-eqP(G) =


i∈[k]

E[Xi(s)] =


i∈[k]


ti∈Ti

P(ti) · E[Xi(s) | ti]

≤


i∈[k]


ti∈Ti

P(ti) · distG(ti) =


i∈[k]


t∈T

p(t) · distG(ti)

=


t∈T

p(t) ·


i∈[k]

distG(ti) ≤ k ·


t∈T

p(t) · max
i∈[k]

distG(ti),

which establishes the assertion. �

CombinedwithObservation 2.2, Lemma3.1 establishes the universal upper bounds on the optP

optC
, best-eqP

best-eqC
, and worst-eqP

worst-eqC
ratios

in directed graphs and the universal upper bound on the worst-eqP

worst-eqC
ratio in undirected graphs. Since complete-information

games are a special case of Bayesian games, Lemma 3.1 also establishes the universal lower bounds on the worst-eqP

worst-eqC
ratio in

directed and undirected graphs.
The following lemma implies the existential lower bounds on the optP

optC
and best-eqP

best-eqC
ratios in directed graphs.

Lemma 3.2. For every k0, there exist some k ≥ k0 and a k-agent Bayesian NCS game G on a directed Θ(k2)-vertex graph such
that optP(G)/worst-eqC(G) = Ω(k).
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Fig. 1. The directed graph Gk . The cost of the edge (x, yi) is 1/i for every 1 ≤ i ≤ k − 1; the cost of the edge (x, z) is 1 + ϵ; all edges (z, yi) cost 0.

Proof. Let m ≥ k0 be a prime power and consider a finite affine plane (X, L) of order m: X is a set of m2 points; L ⊆ 2X is a
set ofm2

+ m lines. The affine plane (X, L) satisfies the following four properties.
(1) Each line in L contains exactlym points.
(2) Each point in X is contained in exactlym + 1 lines.
(3) Given any two distinct points in X , there is exactly one line in L that contains both points.
(4) Given any two lines in L, there is at most one point in X which is contained in both lines.

We construct a directed graph G = (V , E) by setting V = {u} ∪ {vℓ | ℓ ∈ L} ∪ {wp | p ∈ X} and E = {(u, vℓ) | ℓ ∈

L} ∪ {(vℓ, wp) | ℓ ∈ L, p ∈ ℓ}. That is, G consists of a source vertex u, m2
+ m intermediate vertices uℓ indexed by the lines

in L, andm2 sink vertices wp indexed by the points in X . There are edges connecting the source vertex to every intermediate
vertex and edges connecting each intermediate vertex vℓ to every sink vertex wp such that p ∈ ℓ. The cost associated with
the former type of edges is 1, while the cost associated with the latter is 0.

Fix k = m + 1. Our Bayesian NCS game G is defined over the directed graph G and includes k agents. Each type profile
t ∈ T is characterized by some line ℓ ∈ L and by some permutation π of [m]. The source of all agents is always the source
vertex u. Under the type profile t(ℓ, π), the destination of agent i ∈ [m] iswp so that p is theπ(i)th point in ℓ; the destination
of agent k = m + 1 is vℓ.

Now, consider some strategy profile s ∈ S and fix some agent i ∈ [m]. By symmetry considerations, given some type
profile t ∈ T , characterized by the line ℓ ∈ L, agent i buys the ’right’ edge (u, vℓ) with probability 1/m; otherwise, she
buys some edge (u, vℓ′), ℓ′

≠ ℓ, in which case she must be the only agent buying this edge since by definition of the affine
plane, if her destination under t is the sink vertex up, then p is the unique point in the intersection of ℓ and ℓ′. It follows that
K(s) = m(1 − 1/m) = m − 1.

On the other hand, we argue that for every type profile t ∈ T characterized by the line ℓ ∈ L, the unique Nash equilibrium
in Gt is the action profile a ∈ A under which all agents buy the edge (u, vℓ); observe that Kt(a) = 1. It is easy to verify that a
is indeed a Nash equilibrium. For every action profile a′

∈ A such that Kt(a′) < ∞, every edge (u, vℓ′), ℓ′
≠ ℓ, is bought by

at most one agent i (this, once again, follows from the definition of the affine plane). Since the ’right’ edge (u, vℓ) is already
bought by agent k, such an agent i is better off deviating from her previous action, for which the cost she incurred was 1,
and switch to buying the ’right’ edge for which she would pay at most 1/2. The assertion follows. �

The existential upper bound on the best-eqP

best-eqC
ratio in directed graphs is established in the next lemma whose implications

are discussed in Remark 1.

Lemma 3.3. For every k0, there exist some k ≥ k0 and a k-agent Bayesian NCS game G on a directed Θ(k)-vertex graph such
thatworst-eqP(G)/best-eqC(G) = O(1/ log(k)).

Proof. Consider the directed graph Gk illustrated in Fig. 1. This graph was first presented by Anshelevich et al. [4] in order
to establish a lower bound on the price of stability of NCS games. We design a k-agent Bayesian NCS game G over Gk. Vertex
x serves as a common source for all agents. The destination of agent i is vertex yi for 1 ≤ i ≤ k− 1 with probability 1. Agent
k has vertex z as her destination with probability 1/2; otherwise her destination is vertex x (same as her source).

We argue that the strategy profile s = (s1, . . . , sk) ∈ S under which agent i buys the edges (x, z) and (z, yi) for every
1 ≤ i ≤ k − 1 is the unique Bayesian equilibrium in G. Indeed, since the edge (x, z) is bought by agent k with probability
1/2, agent 1 prefers the strategy s1 over buying the edge (x, y1). By induction on i, agent i prefers the strategy si over buying
the (x, yi). Therefore, K(s) = 1 + ϵ.

In the underlying games on the other hand, when agent k’s destination is x, the unique Nash equilibrium is the action
profile a ∈ A under which each agent 1 ≤ i ≤ k − 1 buys the edge (x, yi). It follows that best-eqC(G) > H(k − 1)/2 =

Ω(log k). The assertion follows. �

Next, Lemma 3.4 yields the universal upper bound on the optP

optC
ratio in undirected graphs.

Lemma 3.4. Every Bayesian NCS game G on an undirected n-vertex graph satisfies optP(G)/optC(G) ≤ O(log n).
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Proof. Let G = (V , E) be some n-vertex undirected graph with edge costs c(e). We say that a weighted tree τ = (Vτ , Eτ )
with Vτ ⊇ V dominates G if distτ (u, v) ≥ distG(u, v) for every two vertices u, v ∈ V , where distτ (·, ·) and distG(·, ·) stand for
distances in τ andG, respectively. Fakcharoenphol et al. [7] prove that there exists a probability distribution T over the set of
dominating trees of G such that Eτ∈T [distτ (u, v)] = O(log n) · distG(u, v) for every two vertices u, v ∈ V . By employing the
technique of Gupta [9], we may remove from the dominating trees τ the vertices not in V without increasing the distortion
by more than a constant factor, so in what follows we assume that Vτ = V for every dominating tree τ in the support of T
(τ may still include edges that do not exist in G and edges that do exist in G but with arbitrary weights).

Let τ = (V , Eτ ) be a random dominating tree of G chosen according to T . For each edge e = (u, v) ∈ Eτ , let Pe be some
(designated) shortest (u, v)-path in G. This is extended to every vertex pair x, y ∈ V by setting

P(x,y) =


e∈τ(x,y)

Pe,

where τ(x, y) denotes the unique (x, y)-path in τ . Consider the strategy profile s that instructs each agent i ∈ [k] to buy
the edges in P(xi,yi) for the type (xi, yi) ∈ Ti. Note that in order to execute the strategy profile s, we have to assume that the
agents have access to public random bits (all agents have to agree on the same random dominating tree τ ); this assumption
will be lifted soon.

Fix some type profile t = ((x1, y1), . . . , (xk, yk)) ∈ (V × V )k. Let Ft be the (unique) minimal Eτ subset that includes an
(xi, yi)-path for every i ∈ [k] and let FG

t be an E subset of minimum total cost among all E subsets that include an (xi, yi)-path
for every i ∈ [k]. By definition, an action profile at ∈ A that buys FG

t is optimal for the underlying game Gt . Note that the
action profile {si(ti)}i∈[k] buys


e∈Ft Pe.

We will soon argue that ET [K(s, t)] = O(log n) · Kt(at). This implies that for every common prior p ∈ ∆(T ), we have

ET [K(s)] =ET


t∈T

p(T ) · K(s, t)


=


t∈T

p(T ) · ET [K(s, t)] = O(log n) ·


t∈T

p(t) · Kt(at).

The assertion follows since there must exist some dominating tree τ in the support of T that meets the expectation and
satisfies the desired bound. In other words, the assumption that the agents need access to public random bits is lifted as
promised.

It remains to show that ET [K(s, t)] = O(log n) · Kt(at). The random choice of τ guarantees that E[distτ (e)] =

O(log n) · c(e) for every edge e ∈ FG
t , thus

O(log n) · Kt(at) ≥


e∈at

ET [distτ (e)] = ET


e∈at

distτ (e)


≥ ET


e∈Ft

c(e)


.

Since τ dominates G, it follows that c(e) ≥


e′∈Pe c(e
′) for every tree edge e ∈ Ft , hence

O(log n) · Kt(at) ≥ ET


e∈Ft


e′∈Pe

c(e′)


≥ ET [K(s, t)] ,

as promised. �

The following lemma implies the existential lower bound on the optP

optC
ratio in undirected graphs.

Lemma 3.5. For every n0, there exist some n ≥ n0 and aΘ(n)-agent Bayesian NCS game G on an undirected n-vertex graph such
that optP(G)/optC(G) = Ω(log n).

Proof. Our lower bound is established via a reduction from (a probabilistic variant of) the online Steiner tree problem. An
instance of the online Steiner tree problem consists of an undirected graph G = (V , E)with edge costs c(e), a root vertex v0,
and an input sequence σ = ⟨v1, . . . , v|σ |⟩ ∈ V≤n, where n = |V | and V≤n

= {σ ∈ V ∗
: |σ | ≤ n}. An online algorithm ALG

receives the sequence σ step by step. In each step 1 ≤ i ≤ |σ |, the algorithmmust react by connecting vi to the root vertex.
This is done by buying some edge subset Fi ⊆ E so that


1≤j≤i Fj includes a path connecting vi to v0. The cost incurred

by ALG on the input sequence σ is defined as ALG(σ ) =


1≤i≤|σ |


e∈Fi

c(e). A randomized online Steiner tree algorithm
ALG is said to be α-competitive if maxσ∈V≤n E[ALG(σ )]/OPT(σ ) ≤ α, where OPT(σ ) is the cost of a minimum Steiner tree
spanning all vertices in σ .

Imase and Waxman [11] establish an Ω(log n) lower bound on the competitiveness of deterministic online Steiner tree
algorithms for the n-vertex diamond graph G = (V , E). Their lower bound can be generalized to hold against randomized
algorithms by designing a probability distribution q ∈ ∆(V≤n) so that


σ∈V≤n q(σ ) · ALG(σ ) = Ω(log n) for every

deterministic online Steiner tree algorithm ALG, while OPT(σ ) = O(1) for every sequence σ in the support of q.
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Consider some n-vertex undirected graph G = (V , E) with edge costs c(e). We argue that for every probability
distribution q ∈ ∆(V≤n), there exists an n-agent Bayesian NCS game Gq defined over the graph G and a deterministic online
Steiner tree algorithm ALGq such that

optP(Gq)

optC(Gq)
≥


σ∈V≤n

q(σ ) · ALG(σ )
σ∈V≤n

q(σ ) · OPT(σ )
.

By the aforementioned lower bound on the competitiveness of randomized online Steiner tree algorithms, we obtain an
Ω(log n) lower bound on the ratio optP(Gq)/optC(Gq) for n-agent Bayesian NCS games defined over the n-vertex diamond
graph.

Fix some probability distribution q ∈ ∆(V≤n). We design the n-agent Bayesian NCS game Gq with a common prior p as
follows. Each vertex sequence σ = ⟨v1, . . . , v|σ |⟩ ∈ V≤n corresponds to some type profile tσ = (tσ1 , . . . , tσn ) such that

tσi =


(vi, v1) if 1 ≤ i ≤ |σ |;

(v1, v1) if |σ | < i ≤ n.

The common prior of tσ is set to be p(tσ ) = q(σ ).
Now, suppose that optP(Gq)/optC(Gq) ≤ α and let s = (s1, . . . , sn) ∈ S be the strategy profile that realizes optP(Gq). We

design the deterministic online Steiner tree algorithm ALGq as follows: in step 1 ≤ i ≤ |σ |, ALGq buys all edges in si(vi, v0)
that were not bought beforehand. It follows that

σ∈V≤n

q(σ ) · ALGq(σ ) =


σ∈V≤n

p(tσ ) · K(s, tσ ) = K(s)

≤ α · optC(Gq) = α


σ∈V≤n

p(tσ ) · min
a∈A

Ktσ (a) = α


σ∈V≤n

q(σ ) · OPT(σ )

which completes the proof. �

In fact, it is not difficult to show that ifG is the BayesianNCS game obtained by following the construction described in the
proof of Lemma 3.5 for the diamond graph, then the action profile that minimizes Kt is a Nash equilibrium of the underlying
game Gt for every type profile t ∈ T . Therefore, the existential lower bound on the best-eqP

best-eqC
ratio in undirected graphs is

also established. Moreover, by applying the same line of arguments to the construction of Alon and Azar [2], we obtain an
existential Ω(log k/ log log k) lower bound on the optP

optC
ratio of k-agent Bayesian NCS games in the Euclidean plane.6

The following two lemmata yield the existential lower and upper bounds on the worst-eqP

worst-eqC
ratio in undirected graphs. The

same bounds in directed graphs are obtained by a trivial modification of their proofs.

Lemma 3.6. For every k0, there exist some k ≥ k0 and a k-agent Bayesian NCS game G on an undirected O(1)-vertex graph such
thatworst-eqP(G)/worst-eqC(G) = Ω(k).

Proof. Fix some 1
k < ϵ < 3

2k and consider the graph Gworst depicted in Fig. 2. Let G be the (k + 1)-agent Bayesian NCS
game defined over the graph Gworst as follows. Agent i has vertex u as her source and vertex w as her destination for every
1 ≤ i ≤ k. The source of agent k + 1 is always vertex u; her destination is vertex v with probability 1

2 and vertex u with
probability 1

2 .
Since k+1

k+1 +
1
k < 1 + ϵ, the action profile a under which agents 1, . . . , k buy the edges (u, v) and (v, w) is a Nash

equilibrium of the underlying game obtainedwhen the destination of agent k+1 is vertex v. Thus, worst-eqC(G) ≥
1
2 (k+2).

On the other hand, the strategy profile s under which agents 1, . . . , k buy the edge (u, w) and agent k + 1 buys the edges
(u, w) and (w, v) if her destination is vertex v is the unique Bayesian equilibrium of G as

1
2


k + 1
k + 1

+
1
k


+

1
2


k + 1
k

+
1
k


=

1
2


2 +

3
k


> 1 + ϵ.

The assertion follows since K(s) = 1 + ϵ +
1
2 . �

Lemma 3.7. For every k0, there exist some k ≥ k0 and a k-agent Bayesian NCS game G on an undirected O(1)-vertex graph such
thatworst-eqP(G)/worst-eqC(G) = O(1/k).

6 Of course, the Euclidean plane is not a finite graph, so for the sake of formality, one can replace it with a very fine grid.
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Fig. 2. The graph Gworst .

Proof. Fix some 2
k −

1
k2

< ϵ < 2
k and consider the graph Gworst depicted in Fig. 2. Let G be the (k + 1)-agent Bayesian NCS

game defined over the graph Gworst as follows. Agent i has vertex u as her source and vertex w as her destination for every
1 ≤ i ≤ k. The source of agent k + 1 is always vertex u; her destination is vertex v with probability 1

k and vertex u with
probability 1 −

1
k .

Since k+1
k +

1
k > 1 + ϵ, the unique Nash equilibrium of the underlying game obtained when the destination of

agent k + 1 is vertex u is the action profile under which agents 1, . . . , k buy the edge (u, v). Thus, worst-eqC(G) ≤
1 −

1
k


(1 + ϵ) +

1
k (k + 3 + ϵ) = O(1). On the other hand, the strategy profile s under which agents 1, . . . , k buy the

edges (u, v) and (v, w) and agent k + 1 buys the edge (u, v) is a Bayesian equilibrium of G as

1
k


k + 1
k + 1

+
1
k


+


1 −

1
k

 
k + 1
k

+
1
k


=

1
k

+
1
k2

+ 1 −
1
k

+
2
k

−
2
k2

= 1 +
2
k

−
2
k2

< 1 + ϵ.

The assertion follows since K(s) = k + 2. �

Anshelevich et al. [4] prove a logarithmic upper bound on the price of stability in (complete-information) NCS games.
CombinedwithObservation 2.2, this yields the universal lower bounds on the best-eqP

best-eqC
ratio in directed andundirected graphs.

The next lemma extends the technique of Anshelevich et al. to Bayesian games. Combined with Lemmata 3.1 and 3.4, it
establishes the universal upper bound on the best-eqP

best-eqC
ratio in undirected graphs.

Lemma 3.8. Every k-agent Bayesian NCS game G satisfies best-eqP(G) ≤ H(k) · optP(G).

Proof. Consider some k-agent Bayesian NCS gameG on a (directed or undirected) graphG = (V , E). Recall that the potential
of a strategy profile s ∈ S is given by

Q (s) =


t∈T

p(t) ·


e∈E

c(e) · H (|{i ∈ [k] | e ∈ si(ti)}|) ,

while the social cost of s is

K(s) =


t∈T

p(t) ·


e∈E

c(e) · 1 (∃i ∈ [k] s.t. e ∈ si(ti)) .

Thus, Q (s)/H(k) ≤ K(s) ≤ Q (s) for every strategy profile s ∈ S. Let s be a strategy profile that minimizes Q (s) and let s∗ be a
strategy profile that realizes optP(G). The assertion is established by recalling that s is a Bayesian equilibrium and observing
that K(s) ≤ Q (s) ≤ Q (s∗) ≤ K(s∗) · H(k). �

4. Public random bits as a substitute for the common prior

In this section we show that in the presence of public random bits, the agents can waive the knowledge of the common
prior and still guarantee the same optP

optC
ratio. Formally, consider some 4-tuple φ = ⟨k, {Ai}i∈[k], {Ti}i∈[k], {Ci,t}i∈[k],t∈T ⟩, where

Ci,t(a) ∈ R>0 for every i ∈ [k], t ∈ T , and a ∈ A. Every common prior p ∈ ∆(T ) defines the Bayesian game Gp
= ⟨φ, p⟩.

Let R(φ) be the minimum r such that optP(Gp)
optC(Gp)

≤ r for every common prior p ∈ ∆(T ), namely, the minimum r such that for
every p ∈ ∆(T ), there exists some s ∈ S such that

t∈T
p(t) · K(s, t)

t∈T
p(t) · min

s′∈S
K(s′, t)

≤ r

(this is well defined due to the compactness of ∆(T )).
Our goal in this section is to prove that there exists a probability distribution q ∈ ∆(S) (that depends only on φ) so that

the benevolent agentsmay commit to choosing a strategy profile s ∈ S according to q and still guarantee that on expectation
(taken with respect to the choice of s), optP(Gp)

optC(Gp)
≤ R(φ) for every p ∈ ∆(T ). In other words, the benevolent agents decide
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on their strategy profile regardless of the common prior p and still achieve the same optP

optC
ratio. This is cast in the following

lemma.
Lemma 4.1. For every 4-tuple φ, there exists a probability distribution q ∈ ∆(S) such that for every common prior p ∈ ∆(T ),

s∈S
q(s)


t∈T

p(t) · K(s, t)
t∈T

p(t) · min
s′∈S

K(s′, t)
≤ R(φ) .

Wewill soon prove Lemma 4.1, but first let us introduce the following notation. LetR(φ) be the minimum r such that for
every common prior p ∈ ∆(T ), there exists some s ∈ S such that

t∈T

p(t) ·
K(s, t)

min
s′∈S

K(s′, t)
≤ r

(again, this is well defined due to the compactness of ∆(T )). We begin by showing that R(φ) = R(φ); this turns out to be a
special case of the following proposition.
Proposition 4.2. Consider some matrix M ∈ Rm×n

>0 and some vector v ∈ Rn
>0. Let r

∗ be the minimum real r such that

∀p ∈ ∆(n), ∃i ∈ [m] s.t.


j∈[n]

p(j) · M(i, j)
j∈[n]

p(j) · v(j)
≤ r

and let r∗∗ be the minimum real r such that

∀p ∈ ∆(n), ∃i ∈ [m] s.t.

j∈[n]

p(j) ·
M(i, j)
v(j)

≤ r.

Then r∗
= r∗∗.

Proof. We show that r∗∗ must be at least as large as r∗ by designing a probability distribution p′
∈ ∆(n) such that

∀i ∈ [m],

j∈[n]

p′(j)
M(i, j)
v(j)

≥ r∗.

By definition, there exists some probability distribution p ∈ ∆(n) such that

∀i ∈ [m],


j∈[n]

p(j) · M(i, j)
j∈[n]

p(j) · v(j)
≥ r∗.

We define p′ by setting p′(j) =
p(j)·v(j)

α′ for every j ∈ [n], where α′
=


j∈[n] p(j) · v(j). On the other hand, we show that r∗

must be at least as large as r∗∗ by designing a probability distribution p′′
∈ ∆(n) such that

∀i ∈ [m],


j∈[n]

p′′(j) · M(i, j)
j∈[n]

p′′(j) · v(j)
≥ r∗∗.

By definition, there exists some probability distribution p ∈ ∆(n) such that

∀i ∈ [m],

j∈[n]

p(j)
M(i, j)
v(j)

≥ r∗∗.

We define p′′ by setting p′′(j) =
p(j)

α′′v(j) for every j ∈ [n], where α′′
=


j∈[n] p(j)/v(j). �

We are now ready to establish Lemma 4.1, thus concluding that public random bits can replace the knowledge of the
common prior when bounding the ratio optP

optC
.

Proof of Lemma 4.1. We shall establish this lemma by showing that for every 4-tuple φ, there exists a probability
distribution q ∈ ∆(S) such that for every common prior p ∈ ∆(T ),

s∈S
q(s)


t∈T p(t) · K(s, t)

t∈T
p(t) · min

s′∈S
K(s′, t)

≤ R(φ) ;
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the assertion follows due to Proposition 4.2. Note first that it is sufficient to consider common priors p ∈ ∆(T ) which are
concentrated on single type profiles, namely, to prove that there exists a probability distribution q ∈ ∆(S) such that for
every t ∈ T ,

s∈S
q(s) · K(s, t)

min
s′∈S

K(s′, t)
≤ R(φ) . (1)

Fix K ′(s, t) = K(s, t)/mins′∈S K(s′, t) for every s ∈ S and t ∈ T . The definition ofR(φ) implies that for every p ∈ ∆(T ),
there exists some s ∈ S such that

t∈T

p(t) · K ′(s, t) ≤R(φ) .

By von Neumann’s minimax theorem, we conclude that there exists some q ∈ ∆(S) such that for every t ∈ T ,
s∈S

q(s) · K ′(s, t) ≤R(φ) ,

which establishes Eq. (1) and thus, completes the proof. �

It can be easily shown that this conclusion also holds in the limit if Ci,t(a) → 0 for some i ∈ [k], t ∈ T , and a ∈ A. That is,
a probabilistic strategy profile that guarantees the best possible bound on the optP

optC
ratio still exists if we allow some of the

costs to be 0 and think of 0/0 as 1. Note that in this case, the optP

optC
ratio is not always defined, but if it is defined, then it can

be guaranteed by a single probabilistic strategy profile.

5. Conclusions

A quantitative approach for analyzing the implications of the agent’s local views in Bayesian distributed settings is
introduced. Our approach is applied to Bayesian NCS games, yielding an almost complete picture of the various asymptotic
bounds. It would be interesting to close the remaining gaps in the best equilibria undirected case (see Table 1) and in a
larger scope, to apply the Bayesian ignorance measures to other Bayesian games. Among our findings, we show that in a
benevolent agents setting, the knowledge of the common prior can be replaced by public random bits. In this context it
would be interesting to understand what can be achieved with private random bits.

The effect of Bayesian ignorance resembles the extensively studied ‘‘price of . . . ’’ measures, however, to the best of our
knowledge our approach is the first to use such measures in attempt to compare the social cost in a Bayesian game to the
expected social cost in the underlying complete-information games. Moreover, unlike the ‘‘price of . . . ’’ measures, the effect
of Bayesian ignorance makes sense outside the game theoretic (selfish agents) context.
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