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Abstract

The rejection sampling method is one of the most popular methods used in Monte Carlo methods. In this paper,
we investigate and improve the performance of using a deterministic version of rejection method in quasi-Monte Carlo
methods. It turns out that the “quality” of the point set generated by deterministic rejection method is closely related to the
problem of quasi-Monte Carlo integration of characteristic functions, whose accuracy may be lost due to the discontinuity
of the characteristic functions. We propose a method of smoothing characteristic functions in a rather general case. We
replace the characteristic functions by continuous ones, without changing the value of the integrals. Using this smoothing
technique, we modify the rejection method. An extended smoothed rejection method is described. Numerical experiments
show that the extended smoothed rejection method is much more e�cient than the standard quasi-Monte Carlo and the
unsmoothed rejection method when used with low discrepancy sequences. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

1.1. Quasi-Monte Carlo methods

Evaluation of complicated multidimensional integrals is a common computational problem oc-
curring in many areas of science such as computational physics, statistics, computer graphics and
mathematical �nance [2,4,8,9,14].
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To estimate the integral

I(f) =
∫
I s
f(x) dx (1)

where I s = [0; 1]s is the s-dimensional unit cube, and f : I s → R, one chooses a point set PN =
{x1; : : : ;xN} in I s and compute the estimate

IN =
1
N

N∑
i=1

f(xi): (2)

For Monte Carlo (MC) method, the points of P are independent identically distributed (i.i.d.) sam-
ples from the uniform distribution on I s. For the Quasi-Monte Carlo (QMC) method, PN is a low
discrepancy point set [13] or lattice rules [15]. The error bound of the QMC estimate is the form
(see [7])∣∣∣∣∣

∫
I s
f(x) dx− 1

N

N∑
i=1

f(xi)

∣∣∣∣∣6V (f)D(PN ); (3)

where D(PN ) is the discrepancy of PN , which measures the regularity of PN , and V (f) is the
variation of f over I s, which measures the variability of the integrand f. To make the above
statement more precise, the star-discrepancy D∗(PN ) (see the next section) and the variation in the
sense of Hardy and Crause are de�ned; and the inequality (3) reduces to the classical Koksma–
Hlawka inequality [13]. In�nite low discrepancy sequences with star-discrepancy O(N−1(logN )s)
have been constructed [5,6,13,16]. So QMC integration for integrands of bounded variation (in the
sense of Hardy and Crause) has theoretical error bound O(N−1(logN )s), which is much faster than
the probabilistic error bound O(N−1=2) of the MC methods.
When the integrand has unbounded variation, the Koksma–Hlawka inequality cannot be used to

derive an upper bound. The computational experiments (see [1,11]) show that for some integrands
of unbounded variation, the observed convergence rate is only between O(N−1=2) and O(N−2=3). The
limitation of QMC on smoothness of integrand is signi�cant, because many applications involve
decisions of some sort, which usually corresponds to characteristic functions.

1.2. The importance sampling and the rejection sampling

Importance sampling is probably the most widely used variance reduction technique in MC meth-
ods. Rewrite the integral I(f) as

I(f) =
∫
I s
f(x) dx=

∫
I s

f(x)
p(x)

p(x) dx; (4)

where p(x) is an importance function, which is chosen such that it mimics the behavior of f(x)
over I s. The importance-sampled estimate is

I (IS)N =
1
N

N∑
i=1

f(xi)
p(xi)

; (5)

where x1; : : : ;xN are i.i.d. samples from the density p(x).
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A crucial part in this method is that sampling from the density p(x) is required. If the density
p(x) is simple, the transformation method or the conditional distribution method can be used [3].
For more general density, some other generation procedures must be used, such as the rejection
sampling method.
The importance sampling and the rejection sampling have obvious deterministic analogies in

QMC methods. However, it was found [12] that the rejection sampling technique lose its e�ec-
tiveness in QMC setting (means QMC performs no better than standard MC). The reason is that the
rejection-sampling-based estimate (5) can be interpreted as the integration of a discontinuous inte-
grand, which involves a characteristic function coming from the decision of acceptance or rejection.
Attempts have been made to modify the rejection sampling. The smoothed version of the standard

rejection method is described in [12].
In this paper, we investigate and improve the performance of deterministic rejection method in

QMC methods. We study the “quality” of the point sets generated by standard deterministic rejection
method in Section 2. It turns out that the quality is closely related to the problem of QMC integration
of characteristic functions, whose accuracy may be lost due to the discontinuity of the characteristic
functions. In Section 3, in a rather general case, a method of smoothing characteristic functions
is proposed. The characteristic functions are replaced by continuous ones, which have the same
value of integral. This smoothing method is used to improve the rejection method in Section 4. An
extended smoothed version is described, which is a generalization of the method in [12]. Numerical
experiments are given in Section 5.

2. Deterministic rejection in quasi-Monte Carlo methods — how well does it behave?

2.1. Discrepancy and F-discrepancy

De�nition 2.1. The star-discrepancy of a point set PN = {x1; : : : ;xN} in I s is de�ned by

D∗(PN ) = sup
J∈J∗

∣∣∣∣∣ 1N
N∑
i=1

cJ (xi)− m(J )
∣∣∣∣∣ ;

where J∗ is the family of all subintervals of I s of the form
∏s
i=1 [0; ui); cJ (x) is the characteristic

function of J , and m(J ) is the volume of J with respect to the Lebesque measure.
Star-discrepancy can be seen as maximum integration error for the characteristic functions of the

set in the family J∗.

De�nition 2.2. An in�nite sequence {xi} in I s is called uniformly distributed (or equidistributed)
if for all Riemann integrable function f(x),

lim
N→∞

1
N

N∑
i=1

f(xi) =
∫
I s
f(x) dx:

It should be observed that an in�nite sequence x1; x2; : : : of points on I s is uniformly distributed
if and only if limN→∞D∗(PN ) = 0 (see [13]).
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Now let x = (X1; X2; : : : ; Xs) be a random vector with probability density function p(x) and cu-
mulative distribution function (c.d.f.) F(x) de�ned on I s. We introduce the more general concept of
discrepancy [4].

De�nition 2.3. Assume that PN={xi ; i=1; : : : ; N} is a set of points in I s, and FN (x) is the empirical
distribution of PN , i.e., FN (x) = (1=N )

∑N
i=1 c{xi6x}. The F-discrepancy of PN with respect to F(x)

is de�ned by

DF(PN ) = sup
x∈I s

|FN (x)− F(x)|:

The F-discrepancy is a measure for the quality of the representation of F(x) by a point set PN .
It is in fact the Smirnov–Kolmogorov statistic for goodness-of-�t. When F(x) is the uniform dis-
tribution on I s, the F-discrepancy reduces to the star-discrepancy. Another reasonable measure of
representation is the so-called quasi-F-discrepancy (see [4]).
Points that aim for minimizing F-discrepancy or quasi-F-discrepancy are called representative

points of F(x). The generation of such points is a central part in many applications (such as
integration, optimization, experimental design, etc.).

2.2. Standard deterministic rejection method

Let p(x) be a probability density function de�ned on I s, and suppose that 0¡p(x)¡M . The
algorithm of standard rejection can be described as follows:

1. Generate (x; y) from the uniform distribution on I s+1 (x ∈ I s; y ∈ [0; 1]).
2. If y¡M−1p(x), accept the point x; otherwise, reject the point x.
3. Repeat Steps 1 and 2, until the necessary number of points have been accepted.

This random rejection sampling algorithm has the following deterministic version in QMC methods
(“deterministic rejection algorithm”):

1. Generate a low discrepancy sequence P of points in I s+1:

P = {(xi ; yi) ∈ I s+1: xi ∈ I s; yi ∈ [0; 1]; i = 1; 2; : : :}:
The point set consisting of the �rst N elements of P is denoted by PN .

2. For i = 1; 2; : : : ; if yi ¡M−1p(xi), accept the point xi; otherwise, reject it.

This algorithm produces a sequence Q of accepted points in I s. Let QK(N ) denote the set of
accepted points in the �rst N “acceptance–rejection decisions”. K(N ) is the number of points in the
set QK(N ). Now we investigate the goodness of representation of the sequence Q for F(x). For any
point x∗ ∈ I s, de�ne the set

E(x∗) = {(x; y) ∈ I s+1: x¡ x∗; y¡M−1p(x); x ∈ I s; y ∈ [0; 1]}: (6)

Let A([0; x∗); QK(N )) denote the number of points of QK(N ) falling in the subinterval [0; x∗), and
A(E(x∗); PN ) denote the number of points of PN falling in the set E(x∗). Then for any point x∗ ∈ I s,
we have A([0; x∗); QK(N )) = A(E(x∗); PN ).
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The absolute di�erence between the empirical distribution FK(N )(x) of the accepted point set QK(N )
and the distribution F(x) can be estimated as follows:

|FK(N )(x∗)− F(x∗)| =
∣∣∣∣A([0; x∗); QK(N ))K(N )

− F(x∗)
∣∣∣∣

6
N

K(N )

{∣∣∣∣A(E(x∗); PN )N
− F(x∗)

M

∣∣∣∣+ F(x∗)
∣∣∣∣K(N )N

− 1
M

∣∣∣∣
}
: (7)

Note that the volume of the set E(x∗) is

Vol(E(x∗)) =
∫
[0;x∗]

(∫ M−1p(x)

0
dy

)
dx=

F(x∗)
M

:

If the sequence P is uniformly distributed over I s+1, then for any point x∗ ∈ I s,∣∣∣∣A(E(x∗); PN )N
− F(x∗)

M

∣∣∣∣→ 0 as N→∞:

Speci�cally, put x∗ = (1; : : : ; 1), then F(x∗) = 1 and A(E(x∗); PN ) = K(N ). So∣∣∣∣K(N )N
− 1
M

∣∣∣∣→ 0 as N→∞;

and for su�ciently large N; N=K(N )6M + 1. Therefore, from (7), we have

|FK(N )(x∗)− F(x∗)| → 0 as N→∞:

Theorem 2.4. Let P be a uniformly distributed sequence of points in I s+1; and Q the sequence
obtained by the deterministic rejection algorithm. Then for any x∗ ∈ I s;

|FK(N )(x∗)− F(x∗)| → 0 as N→∞: (8)

where FK(N )(x∗) is the empirical distribution of the “accepted” point set QK(N ).

Suppose that PN is a low discrepancy point set with discrepancy O(N−1(logN )s+1). What is the
convergence rate of (8)? As we see that the “quality” of the sequence Q is determined by the term∣∣∣∣A(E(x∗); PN )N

− Vol(E(x∗))
∣∣∣∣ : (9)

This term is in fact the error of QMC integration of the characteristic function of the set E(x∗) over
I s+1, that is∣∣∣∣A(E(x∗); PN )N

− Vol(E(x∗))
∣∣∣∣=

∣∣∣∣∣ 1N
N∑
i=1

cE(x∗)(xi ; yi)−
∫
I s

∫ 1

0
cE(x∗) dx dy

∣∣∣∣∣ ; (10)

where cE(x∗) is the characteristic function of E(x∗). In general, the Koksma–Hlawka inequality cannot
be used here to derive an upper bound for the right-hand side of (10), because the variation of cE(x∗)
can be in�nite (the variation is �nite, only if the set E(x∗) is rectangles with sides parallel to the
coordinate axes).
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The known theoretical bounds for (9) (see [13]) may only be O(N−1=(s+1)), which is too pes-
simistic. Now we provide an informal argument similarly as in [1], which leads to the conver-
gence rate of the integration error (10) to be of the order O(N−(s+2)=2(s+1)). Consider the case of
x∗ = (1; : : : ; 1). In this case the set de�ned in (6) is

E∗ = {(x; y) ∈ I s+1: y¡M−1p(x); x ∈ I s; y ∈ [0; 1]}:
Choose A(x) and B(x) to be step functions, such that 06A(x)6M−1p(x)6B(x)61, for all x∈
[0; 1], and such that B(x)− A(x) is of the order O(N−1=(s+1)) (this is the size of the mean distance
of the neighbouring points of PN ). The set

Eba = {(x; y) ∈ I s+1: A(x)6y6B(x); x ∈ I s}
is called the domain of discontinuity. Decompose the characteristic function cE∗ into two functions,
cE∗ = fc + fd, where fc equals to cE∗ outside Eba , and equals to zero inside E

b
a ; fd equals to cE∗

inside Eba , and zero outside E
b
a . So fc has �nite variation and fd inherits the discontinuity of cE∗ .

The volume of the domain of discontinuity Vol(Eba) is of the order O(N
−1=(s+1)), and the number of

points falling in Eba ; A(E
b
a ; PN ), is of the order O(N

s=(s+1)). We can suppose that in the domain of
discontinuity Eba low discrepancy points behave like pseudo-random ones [1,11], then∣∣∣∣∣

∫
I s

∫ 1

0
fd dx dy − 1

N

N∑
i=1

fd(xi ; yi)

∣∣∣∣∣=O(Vol(Eba)(A(Eba ; PN ))−1=2) = O(N−(s+2)=2(s+1)):

Taking into account that fc has �nite variation, one can conclude that the integration error (10) is
of the order O(N−(s+2)=2(s+1)).
The experiments in [1,11] show that the integration errors of characteristic functions (i.e., the error

term (9)) can be approximated by cN−� for a real constant c and 1
26�61.

Now suppose that for all x∗ ∈ I s∣∣∣∣A(E(x∗); PN )N
− Vol(E(x∗))

∣∣∣∣6c N−� (1=26�¡ 1): (11)

Then ∣∣∣∣A(E(x∗); PN )N
− F(x∗)

M

∣∣∣∣6cN−�;

and speci�cally∣∣∣∣KNN − 1
M

∣∣∣∣6cN−�:

Therefore, from (7), for some constant C, we have for all x∗ ∈ I s

|FK(N )(x∗)− F(x∗)|6CN−�:

Theorem 2.5. Let P be a low discrepancy sequence of points in I s+1. Under the assumption of
(11); the sequence Q obtained by the deterministic rejection algorithm has F-discrepancy of the
order O(N−�) (where 1

26�¡ 1).
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We have showed that the quality of the point sets generated by deterministic rejection algorithm is
closely related to the errors of QMC integration of characteristic functions. An informal argument and
practical experiences show that even for characteristic functions, QMC methods can be better than
MC, but their advantages seem to be less than predicted by the theory for functions of �nite variation.
Consequently, the F-discrepancy of the point set generated by deterministic rejection algorithm is
smaller than that of the point set generated by random rejection algorithm, but we cannot expect
that it is of the order of nearly O(N−1). Recall that the F-discrepancy of the point set generated by
the transformation method or the conditional distribution method may in the order of nearly O(N−1)
(see [17]).

3. Smoothing of characteristic functions

Let B be a Jordan-measurable subset (i.e., subset for which the characteristic function is Riemann
integrable) of I s, and {x1; : : : ;xN} be a low discrepancy set of points in I s. As was suggested in
[4,10,13], the integral∫

I s
cB(x) dx;

(that is the volume of B) can be approximated by standard QMC estimate

1
N

N∑
i=1

cB(xi);

where cB(x) is the characteristic function of B. But this approximation often leads to large errors.
The loss of accuracy is due to the discontinuity or lack of smoothness in the integrand. How to
improve the performance of QMC integration of characteristic functions? Our attempt is to replace
the characteristic function by a continuous one, without changing the value of the integral.
The following case deserves special attention. Let h(x) be a continuous function de�ned on I s.

Without loss of generality, assume that 0¡h(x)¡1. De�ne the set

E = {(x; y) ∈ I s+1: y¡h(x); x ∈ I s; y ∈ [0; 1]}: (12)

For convenience of notation, here E is a subset of (s+1)-dimensional unit cube I s+1. Note that the
integration of the characteristic function of the set E over I s+1 is related to the integration of h(x)
over I s:∫

I s
h(x) dx=

∫
I s

∫ 1

0
cE(x; y) dy dx: (13)

We will smooth the characteristic function of E; cE(x; y), without changing the value of the
integral. Choose functions a(x) and b(x), such that

06a(x)¡h(x)¡b(x)61 for all x ∈ I s;
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and such that a(x) and b(x) are easy to evaluate. De�ne the smoothed function w(x; y) as follows:

w(x; y) =




1 if y ∈ [0; a(x));
1 +

h(x)− b(x)
(b(x)− a(x))(h(x)− a(x))(y − a(x)) if y ∈ [a(x); h(x));

h(x)− a(x)
(b(x)− a(x))(h(x)− b(x))(y − b(x)) if y ∈ [h(x); b(x));
0 if y ∈ [b(x); 1]:

(14)

Theorem 3.1. Let the function w(x; y) be de�ned by (14). Then

(i) The function w(x; y) is continuous with respect to y over [0; 1].
(ii) The integration of w(x; y) over I s+1 is the same as that of the characteristic function cE(x; y):∫

I s

∫ 1

0
w(x; y) dy dx=

∫
I s

∫ 1

0
cE(x; y) dy dx: (15)

Proof. The continuity of w(x; y) with respect to y is obvious. We now prove (15). Since∫ 1

0
w(x; y) dy =

∫ a(x)

0
1 · dy +

∫ h(x)

a(x)
w(x; y) dy +

∫ b(x)

h(x)
w(x; y) dy:

According to the construction of w(x; y), by direct computation we obtain∫ h(x)

a(x)
w(x; y) dy = h(x)− a(x) + (h(x)− a(x))(h(x)− b(x))

2(b(x)− a(x))
and ∫ b(x)

h(x)
w(x; y) dy =−(h(x)− a(x))(h(x)− b(x))

2(b(x)− a(x)) :

So we have∫ 1

0
w(x; y) dy = h(x): (16)

Therefore, integrating both sides of (16) with respect to x over I s, we have∫
I s

∫ 1

0
w(x; y) dy dx=

∫
I s
h(x) dx:

The relation (15) follows immediately from (13).

The function w(x; y) is continuous, but may not be di�erentiable at y=a(x); y=h(x), or y=b(x).
Many authors point out that the continuity of the integrand is important for QMC integration, but the
di�erentiability does not seem to have any advantage [1]. This fact gives us con�dence to replace
the characteristic function cE(x; y) by the continuous one w(x; y). The choice of functions a(x)
and b(x) may inuence on the e�ect of smoothing. In general, the di�erences h(x) − a(x) and
b(x)− h(x) should not be made too small. Otherwise, we will make the integrand only “formally”
continuous (i.e., with sharp edges), and cannot expect too much gain in accuracy. In practice, if
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h(x) is relatively easy to evaluate, we can choose a(x) = h(x) − �, and b(x) = h(x) + � (�¿0).
We can also choose a(x) and b(x) to be piecewise constant functions. Another simple choice is
a(x) = 0, and b(x) = 1.
The smoothing method described in this section will be demonstrated on the rejection sampling

method, which involves a characteristic function in the integrand, coming from the decision to accept
or reject.

4. Improved rejection sampling procedure in quasi-Monte Carlo methods

Now suppose that our aim is to estimate the integral I(f) de�ned by (1). To speed up the
standard MC and QMC estimates (2), the importance sampling technique is often used. Suppose the
importance function p(x) has been chosen, such that it models the behavior of the integrand f(x).
Rewrite the integral I(f) as in (4). The corresponding estimate of the integral I(f) is I (IS)N de�ned
in (5). For MC, the points x1; : : : ;xN are i.i.d. samples from density p(x). For QMC, these points
are deterministic, which aim for minimizing the F-discrepancy or quasi-F-discrepancy.
To use importance sampling, it is required to sample from the distribution p(x). “Simple” density

can be sampled by the transformation or the conditional distribution methods. For more general
density, the rejection sampling method is widely used. The advantage of rejection sampling is that
it does not require inverse of the cumulative distribution function.
However, the rejection sampling method in its standard form is not well suited for low discrepancy

sequences [12].
The estimate (5), in which the points x1; : : : ;xN are generated from p(x) by rejection sampling

method, is in fact a slight modi�cation of the standard MC estimates for the following integral:

I(f) =M
∫
I s

∫ 1

0

f(x)
p(x)

· cE∗(x; y) dy dx; (17)

where

E∗ =
{
(x; y) ∈ I s+1: y¡M−1p(x); x ∈ I s; y ∈ [0; 1]} : (18)

Direct use of low discrepancy sequences (instead of pseudo-random numbers) to the integrand in
(17) may lead to large errors, because the integrand in (17) contains a characteristic function, corre-
sponding to the decision of accept or reject.
To e�ectively use importance sampling in QMC setting for estimating integral (4), the rejection

method is modi�ed by replacing the accept=rejection decision with the assignment of an appropriate
“acceptance” weight to each sample point.
Choose functions A(x) and B(x), such that

06A(x)¡p(x)¡B(x)6M for all x ∈ I s;

and such that A(x) and B(x) are cheaper to evaluate than p(x).
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Note that the set E∗ de�ned by (18) has the form of (12) (corresponding to h(x) =M−1p(x)).
According to (14), the smoothed function of cE∗(x; y) has the next form

W (x; y) =




1 if My ∈ [0; A(x));
0 if My ∈ [B(x); M ];

1 +
p(x)− B(x)

(B(x)− A(x))(p(x)− A(x))(My − A(x)) if My ∈ [A(x); p(x));
p(x)− A(x)

(B(x)− A(x))(p(x)− B(x))(My − B(x)) if My ∈ [p(x); B(x)):

(19)

This is obtained by putting h(x) =M−1p(x); a(x) =M−1A(x), and b(x) =M−1B(x) in (14).
Based on Theorem 3.1 and the relation (16), the function W (x; y) is continuous with respect to y,

and satis�es∫ 1

0
cE∗(x; y) dy =

∫ 1

0
W (x; y) dy =M−1p(x): (20)

Therefore, the integral I(f) can be rewritten as

I(f) =M
∫
I s

∫ 1

0

f(x)
p(x)

· cE∗(x; y) dy dx=M
∫
I s

∫ 1

0

f(x)
p(x)

·W (x; y) dy dx: (21)

The standard MC approximation of the integral on the right-hand side of (21) corresponds to the
following extended smoothed rejection procedure.

Step 1. Choose functions A(x) and B(x) as indicated above.
Step 2. Generate (xi ; yi) from the uniform distribution on I s+1.
Step 3. Assign each sample point an acceptance weight W (xi ; yi), de�ned by (19).
Step 4. Repeat Steps 2 and 3, until

N∗∑
i=1

W (xi ; yi) ≈ N; (22)

where N ∗ is the total number of trial points.

The theory behind this procedure is based on the following theorem, which is a generalization of
the result in [12].

Theorem 4.1. The density function of accepted points x using the extended smoothed rejection
procedure is p(x).

Proof. Because an “a priori” distribution of x is uniform distribution on I s (Step 2), and its accep-
tance probability (given x) is

∫ 1

0
W (x; y) dy =M−1p(x)
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(Step 3, and see (20)). So by Bayes’ formula, the density function of accepted points x is given by

1 · ∫ 10 W (x; y) dy∫
I s{1 ·

∫ 1
0 W (u; y) dy} du

=
M−1p(x)∫

I s M
−1p(u) du

=
M−1p(x)
M−1 = p(x):

By comparison with the original smoothed rejection method [12], the extended smoothed rejection
method gives more freedom to construct functions A(x) and B(x) which model the importance
function from below and from above. Under the special choices of A(x)=p(x)− 1

2M�, and B(x)=
p(x) + 1

2M�; (�¿0), our procedure reduces to the original smoothed rejection method in [12].
Another advantage of the extended smoothed rejection method is that it economizes some com-

putation of the density function. Because in Step 3 of our procedure, if My¿B(x), then according
to (19), W (x; y)=0, there is no need to calculate the density p(x). This will become more clear in
the following estimate (23). This is a great economy, especially when p(x) is expensive to calcu-
late (this often occurs in practice). In the original technique [12], it is always required to calculate
the density p(x). Therefore, the extended smoothed rejection method is a more exible and more
economic procedure than the original one.
The extended smoothed rejection method can be used both in MC and QMC setting. In QMC

setting, the points (xi ; yi) in Step 2 are the points of certain low discrepancy sequence on I s+1.
The estimate for the integral I(f) using the extended smoothed rejection is

1
N

N∗∑
i=1

W (xi ; yi)
f(xi)
p(xi)

; (23)

where W (xi ; yi) is de�ned by (19), and the N ∗ is chosen such that the sum of the acceptance weights
is approximately equal to N (see (22)).
The estimate (23) is a slight modi�cation of the next standard MC or QMC approximations

I(f) =M
∫
I s

∫ 1

0

f(x)
p(x)

·W (x; y) dy dx ≈ M
N ∗

N∗∑
i=1

f(xi)
p(xi)

·W (xi ; yi):

When one uses the estimate (23), there is no need to determine which sample points are accepted
or rejected, this decision is replaced by allowing each sample point to have appropriate acceptance
weight, which has corresponding contribution in the sum of the estimate (23).
Similarly as in Section 3, the di�erences B(x)− p(x) and p(x)− A(x) should not be made too

small. Moreover, they should not be made too large, because they determine the number of necessary
sample points in order to reach a total acceptance weight of size N and so determine the necessary
evaluations of p(x) and f(x).

5. Computational experiments

In this section, the standard MC and QMC estimates, the standard rejection method and the
extended smoothed methods will be compared on several examples. The following estimates will be
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computed:

Standard : Y (1)N = (1=N )
N∑
i=1

f(xi); xi ∼ U([0; 1]s);

Rej: Meth: : Y (2)N = (1=N )
N∑
i=1

f(xi)=p(xi); xi ∼ p(x); accepted points;

Ex: Sm: Rej: : Y (3)N = (1=N )
N∗∑
i=1

W (xi ; yi)f(xi)=p(xi):

All three of these methods are performed both in MC setting and in QMC setting. For a given
value of N , take m samples of these estimates, denoted by Y ( j)N (k) for 16k6m. In QMC setting,
we use multiple random-start Halton sequences, which have the additional advantage of practical
error estimation [18].
The �nal approximation of integral I(f) is given by Î ( j) = (1=m)

∑m
k=1 Y

( j)
N (k). In all cases the

errors can be estimated by sample variance:

�̂2j =
1

m(m− 1)
m∑
k=1

[Y ( j)N (k)− Î ( j)]2; j = 1; 2; 3: (24)

All these estimates (both in MC and QMC setting) are compared with the standard MC estimate
(with the same sample size) by comparing their relative e�ciencies, de�ned by

RE�(Î ( j)) =
�2(Î (mc))

�2(Î ( j))
; j = 1; 2; 3:

Here Î (mc) is the standard MC estimate (it is the same as Î (1) in MC setting).

Example 1. Consider the evaluation of the following integral, which is a modi�cation of the test
integral introduced in [12]:∫

I5
exp


 5∑
i=1

aix2i


1 + 1

2
sin


 5∑

j=1; j 6=i
xj






 dx:

Three di�erent choices of the parameters a1; : : : ; a5 will be considered:

(i) a1 = 1; a2 = 1
2 ; a3 = a4 = a5 =

1
5 (this is the case considered in [12]);

(ii) ak = 1=k; 16k65;
(iii) ak = 1=k2; 16k65.

Choose the importance distribution

p(x) =
1
C
exp

(
5∑
i=1

aix2i

)
;

where C =
∫
I5 exp(

∑5
i=1 aix

2
i ) dx is the normalized constant, which can be easily computed as the

product of 5 one-dimensional integrals. We can choose functions A(x) and B(x) as follows:

A(x) =
1
C

(
1 +

5∑
i=1

aix2i

)
; B(x) =

1
C
exp

(
5∑
i=1

ai

)
:
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Table 1
Comparison of the estimated standard derivation �̂j and the relative e�ciency (in parentheses) for Example 1, case (i),
with 64 runs

Monte Carlo Quasi-Monte Carlo

N St. MC Rej. Meth. Ex. Sm. Rej. St. QMC Rej. Meth. Ex. Sm. Rej.

256 9.68e-3 3.44e-3 2.95e-3 1.27e-3 1.24e-3 7.99e-4
(1.00) (7.90) (10.77) (58.33) (61.25) (146.82)

1024 4.95e-3 1.71e-3 1.31e-3 3.57e-4 5.05e-4 2.63e-4
(1.00) (8.38) (14.38) (192.36) (96.07) (352.12)

4096 2.91e-3 9.04e-4 6.88e-4 8.72e-5 2.14e-4 7.03e-5
(1.00) (10.35) (17.91) (1113.73) (184.26 (1713.40)

16384 1.65e-3 4.39e-4 3.52e-4 2.23e-5 9.01e-5 2.16e-5
(1.00) (14.05) (21.84) (5049.30) (333.73) (5833.77)

Table 2
Comparison of the estimated standard derivation �̂j and the relative e�ciency (in parentheses) for Example 1 with ak=1=k
and 64 runs

Monte Carlo Quasi-Monte Carlo

N St. MC Rej. Meth. Ex. Sm. Rej. St. QMC Rej. Meth. Ex. Sm. Rej.

256 1.08e-2 4.20e-3 3.72e-3 1.43e-3 1.42e-3 9.54e-4
(1.00) (6.70) (8.52) (57.23) (58.86) (130.19)

1024 5.50e-3 1.86e-3 1.42e-3 3.99e-4 5.27e-4 3.01e-4
(1.00) (8.75) (14.95) (189.99) (108.87) (333.89)

4096 3.22e-3 1.05e-3 8.86e-4 1.02e-4 2.07e-4 8.83e-5
(1.00) (9.38) (13.21) (996.57) (242.65) (1331.48)

16384 1.75e-3 4.92e-4 3.86e-4 2.64e-5 9.05e-5 2.35e-5
(1.00) (12.69) (20.64) (4429.01) (375.73) (5545.94)

The estimated standard derivation �̂j and the relative e�ciencies (in parentheses) are given in
Tables 1–3.

Example 2. The second example is the evaluation of the following integral [12]:

∫
I7
exp

(
1−

(
sin2

(�
2
x1

)
+ sin2

(�
2
x2

)
+ sin2

(�
2
x3

)))
arcsin

(
sin(1) +

x1 + · · ·+ x7
200

)
dx:

Choose the importance function

p∗(x) =
1
C∗ exp

(
1−

(
sin2

(�
2
x1

)
+ sin2

(�
2
x2

)
+ sin2

(�
2
x3

)))
;
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Table 3
Comparison of the estimated standard derivation �̂j and the relative e�ciency (in parentheses) for Example 1 with ak=1=k2

and 64 runs

Monte Carlo Quasi-Monte Carlo

N St. MC Rej. Meth. Ex. Sm. Rej. St. QMC Rej. Meth. Ex. Sm. Rej.

256 6.87e-3 2.71e-3 2.55e-3 6.88e-4 7.87e-4 5.22e-4
(1.00) (6.44) (7.25) (99.81) (76.29) (173.04)

1024 3.81e-3 1.32e-3 1.11e-3 1.90e-4 2.81e-4 1.43e-4
(1.00) (8.34) (11.62) (402.73) (184.66) (710.92)

4096 2.05e-3 6.11e-4 4.93e-4 4.14e-5 1.04e-4 4.31e-5
(1.00) (11.32) (17.38) (2459.01) (392.27) (2269.63)

16384 1.21e-3 2.60e-4 2.38e-4 1.29e-5 4.36e-5 1.00e-5
(1.00) (21.72) (25.91) (8892.91) (774.19) (14752.43)

Table 4
Comparison of the estimated standard derivation �̂j and the relative e�ciency (in parentheses) for Example 2 with 64
runs

Monte Carlo Quasi-Monte Carlo

N St. MC Rej. Meth. Ex. Sm. Rej. St. QMC Rej. Meth. Ex. Sm. Rej.

256 3.93e-3 5.80e-4 4.61e-4 3.46e-4 1.82e-4 1.22e-4
(1.00) (45.77) (72.37) (128.59) (463.29) (1024.14)

1024 1.99e-3 3.36e-4 2.63e-4 7.48e-5 6.60e-5 3.91e-5
(1.00) (35.19) (57.40) (711.32) (911.47) (2601.38)

4096 9.77e-4 1.34e-4 1.12e-4 2.50e-5 2.69e-5 1.04e-5
(1.00) (53.16) (74.98) (1525.33) (1317.08) (8908.90)

16384 5.39e-4 6.82e-5 5.22e-5 4.92e-6 1.18e-5 2.60e-6
(1.00) (62.46) (106.86) (11997.50) (2078.36) (43174.52)

where

C∗=
∫
I7
exp

(
1−

(
sin2

(�
2
x1

)
+ sin2

(�
2
x2

)
+ sin2

(�
2
x3

)))
dx

=e

(∫ 1

0
exp

(
−sin2

(�
2
x
))

dx

)3
;

which can be easily computed with high accuracy as a one-dimensional integral. Choose functions
A(x) and B(x) as follows:

A(x) =
1
C∗ e

−2; B(x) =
1
C∗ e:

The computational results are given in Table 4.
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The computational results show the following.

• QMC methods give much smaller errors than MC (with or without importance sampling) with
the same sample size.

• For MC, smoothing has a little e�ect on errors (the smoothing method is always a little, but not
signi�cantly, better than the unsmoothed method).

• For QMC, importance sampling with the unsmoothed rejection may not improve upon standard
QMC (the former may even worse than the later).

• For QMC, importance sampling combining with the extended smoothed rejection is always the best
one in our experiments. It behaves much better than the standard QMC and than the unsmoothed
rejection method.

The computational results seem quite encouraging. Smoothing can improve the performance of
rejection sampling method, and make the importance sampling more e�cient in QMC methods.
There is strong reason to use extended smoothed rejection procedures in QMC integration.
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