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Abstract 

This paper deals with quasilinear reaction-diffusion equations for which a solution local in time exists. If the solution 
ceases to exist for some finite time, we say that it blows up. In contrast to linear equations blowup can occur even if the 
data are smooth and well-defined for all times. Depending on the equation either the solution or some of its derivatives 
become singular. We shall concentrate on those cases where the solution becomes unbounded in finite time. This can 
occur in quasilinear equations if the heat source is strong enough. There exist many theoretical studies on the question on 
the occurrence of blowup. In this paper we shall recount some of the most interesting criteria and most important methods 
for analyzing blowup. The asymptotic behavior of solutions near their singularities is only completely understood in the 
special case where the source is a power. A better knowledge would be useful also for their numerical treatment. Thus, 
not surprisingly, the numerical analysis of this type of problems is still at a rather early stage. The goal of this paper is 
to collect some of the known results and algorithms and to direct the attention to some open problems. ~) 1998 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

Parabol ic  equat ions  o f  the type  

u t - A u = f ( x , t , u ,  Vu)  i n D x R  +, (1 .1)  

u ( x , t ) = O  on  OD x R +, (1 .2)  

u(x, O ) = Uo(X) >~O. (1 .3)  

mode l  a great  n u m b e r  o f  phys ica l  problems.  The  mos t  c o m m o n  interpretat ion is to think o f  u as 
the tempera ture  o f  a substance  in a recipient  D E R N subject  to a chemica l  reaction.  A posi t ive  term 
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f represents a heat source due to an exothermic reaction. Otherwise the reaction is endothermic. 
If f depends on the gradient, then convection effects are taken into consideration. In population 
dynamics similar equations are used to describe the concentrations of species. The Laplace operator 
is often replaced by the nonlinear operator Au m, first studied in the context of  flows through porous 
media. It represents a slow or fast diffusion depending on whether m > 1 or m < 1. Several existence 
theories for local solutions are available. Classical solutions can be established in the setting of 
H61der continuous functions. If D is smooth and bounded and if f is locally Lipschitz and defined 
for all u and Vu, then for any Uo E Ca(D), u0 = 0 on OD there exists a unique classical solutions for 
small t, say t < T. If T=c~ ,  the solution will be called 9lobal. By the Schauder estimates [30, 14] the 
solution ceases to exist if  either limt~T_ SUPxED [u(x, t)[ = c~ or limt~r_ SUPxED [~7U(X, t)[ = cx~. In this 
case, we shall say that it blows up. In this survey we shall concentrate on the first case. It is much 
easier to treat, especially if the function f is independent of  the gradient. The more complicated 
case where f depends also on the gradient has received attention only recently [12, 42]. 

Let us first have a look at the pure reaction equation with a positive source term, du/dt=f(u)>>. 0, 
u(0) = u0. This solution blows up in finite time if and only if 

Y(Uo) = f - l ( s ) d s < c ~ .  (1.4) 

The diffusion and the boundary condition have the tendency to decrease the solution. Since in 
Problem (1.1)-(1.3) all mechanisms such as reaction, diffusion and the cooling at the boundary act 
together simultaneously, it is natural to ask which one prevails. Blow-up phenomena for reaction- 
diffusion problems in bounded domains have been studied for the first time in a seminal paper by 
Kaplan [26]. He showed that for convex source terms f = f ( u )  satisfying (1.4) diffusion cannot 
prevent blow up if the initial state is large enough. The next comer stone was the fundamental work 
of Fujita [17, 18]. He proved that the Cauchy problem (D = R N) with f = uP has no global positive 
nontrivial solutions if 1 < p < 1 ÷ 2/N. Every solution with arbitrarily small initial data blows up. 
The same is true for p = 1 + 2IN as it was shown by Hayakawa [24]. When p > 1 ÷ 2/N, solutions 
with small initial conditions tend to zero as time increases. Notice that for p E [0, 1] all solutions 
with bounded initial data are global. 

Several papers contain numerous references on blow-up results (cf., e.g., [32, 7, 15]). An extensive 
literature on quasilinear problems of the type U t - -  m ~ ) ( u )  -~- f ( u )  for various choices of tk and f is 
found in [44] (compare in particular the comments to Chapter 4). 

As we have already indicated in the Abstract, the purpose of  this survey is to highlight important 
results and tools in the analysis of  blowup; thus, it is not meant to provide a chronological description 
of the development of  the theory of  blowup in nonlinear parabolic equations. 

The physical interpretation of blowup is generally thought of  as a dramatic increase in temperature 
which leads to ignition of a chemical reaction. In this context the following questions come up: 
• When does blowup occur? 
• Where are the blow-up points? 
• What is the asymptotic behavior o f  the solutions at blow-up time? 
• Is it possible to extend the solution in some weak sense beyond the blow-up time? 
• Is it possible to compute a blow-up solution numerically? 
The first question is fairly well-understood. During the last two decades great progress has been 
made in establishing criteria for blowup. Kaplan and Fujita's results have been generalized to various 
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cases. Much more difficult is the location of  blow-up points and the discussion of  the nature of the 
asymptotics. I f  u can be continued after the blow-up time true ignition does not take place. As 
will be seen below and in Section 6.3, many problems remain open in the numerical treatment of 
blow-up problems. 

The numerical analysis and the computational solution of parabolic problems of the form (1.1)-  
(1.3) are still at a rather early stage, and most papers on these subjects have only dealt with the 
special case 

u t - A u = f ( u )  in Q r : = D x ( 0 ,  T), (1.5) 

u(x,t)=O in OQT x (0, T), (1.6) 

u(x,O) = Uo(X) in D, (1.7) 

where D C ~N is bounded. In fact, the discussion has almost exclusively been restricted to the 
case N = 1 (but compare [56, 58, 50]). The discretization of  (1.5)-(1.7)  (or, more generally, of  
(1.1)-(1.3))  usually involves two separate steps: semidiscretization in space leads to an initial-value 
problem for a (large) system of  nonlinear ordinary differential equations whose special structure 
(unbounded stiffness of  its linear part; large, rapidly increasing nonlinear part) requires special care 
in the choice of time discretization methods. To be more specific, let Dh be a mesh (or grid) for the 
spatial domain D, and denote the interior mesh points of  Dh by {P~: i = 1,. . .  ,M} =: ~h, where in 
general, M will be large. An approximation to the exact solution u(x, t) at (P~, t) will be denoted by 
U/(t), and we set U = Uh := (Ul , . . . ,  UM) T. Spatial discretization of  (1.5) with respect to Dh yields 

dU( t )  
d ~  +AhU(t)=Fh(U(t)),  tE(O,T) ,  

U(0)  = U0 = (u0(PI) , . - - ,  Uo(PM))T. (1.8) 

The precise form of this system of  ODEs will depend on the particular method used for the spatial 
semidiscretization of  (1.5): this "method of  lines" (MOL) approach may be based on classical finite- 
difference approximations to spatial derivatives ([68, 55, 56, 51, 50, 49]; see also [62, 63, 76]), on 
spatial collocation or (lumped mass) finite-element techniques ([69, 57, 58]), or on spectral and 
pseudospectral methods ([72]). Typically, the matrix Ah C £,e(R M) is real, symmetric, sparse, and 
positive definite; its nonzero elements grow like 1/h 2 where h > 0  is the mesh diameter in Dh. The 
last two properties imply that the linear part of  (4.4) represents an unboundedly stiff system of ODEs. 

Let now J~ := {0 = t 0 < 4  < ""  < t ,  < . - . } ,  with "c, := t , + l -  t,, be a (nonuniform) temporal mesh, 
and assume that time discretization of  (1.8) is by collocation in the space of  piecewise linear C O 
functions V = V(t)E R M. We use this approach partly due to ease of  exposition and to exhibit 
the basic computational problems, but also because most standard time-stepping methods used in 
the literature (see also Section 6.1) may be viewed as special eases of these collocation methods. 
Collocation will be at the points X~ := {t, + el"r,: n~>0}, where Cl E [0, 1] is given. Set 

V ( t , + s z , ) = V , + s v ,  V'(t,+ClZ,), s E [0, 1], (1.9) 

where V, := V(t,) = (V(PI,t,), . . . ,  V(PM, t,)) T E R M approximates the solution U(t,) of (1.8). The 
collocation equation for (1.8), 

V'(t, + clz,) + AhV(t, + cir,) = Fh(V(t, + clz,)), 
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may be written as 

V.+1 + "coclAhV~+l = Vn - z.(1 - cl)AhV~ + T.Fh((1 -- cl)V. + clV~) (n~>O), 

with Vo = Uo. Alternatively, we have for n >/O, 

(I + "~nClAh)Vn+l = (I - v,(1 - Cl )Ah)Vn + x~Fh((1 -- cl )V~ + c1V~+l ), (1.10) 

where I=IM denotes the identity in Av(RM). Eqs. (1.9) and (1.10) represent a one-parameter family 
of (continuous) one-stage Runge-Kutta methods for (1.8). The choices cl = 0 and cl = 1 yield, 
respectively, the (continuous) explicit and implicit Euler methods, while for Cl = ½ we obtain the 
(continuous) implicit midpoint method for (1.8). Almost all of the methods proposed in the literature 
employ one of the Euler methods; notable exceptions are [57, 58, 54] (see also Section 6.1 below 
for details). These brief remarks on the discretization of the simple blowup problem (1.5)-(1.7) 
give rise to the following questions: 
• Choice o f  the spatial and temporal meshes? 

While early numerical approaches to (1.8) were based on uniform spatial meshes Dh (cf. [68, 
69, 75, 55, 56]; see also [50, 49]) and suitably chosen nonuniform temporal mesh Jr, the (often) 
known space-time structure of the analytical solution near (Xb, Tb) (in the case of single-point 
blowup) has recently been exploited to devise moving mesh methods (dynamic regridding); see 
[57, 58, 53, 54]. 

• Choice o f  the time integrator? 
Is the above class of "classical" time-stepping methods feasible for solving semidiscretized blow-up 
problems? Should one employ implicit or explicit time-stepping methods (stiffness versus contrac- 
tion mapping principle: unboundedly stiff Ah and large values of Fh(V) lead, respectively, to very 
small time steps {'r,})? 

• Numerical simulation and detection o f  blow-up? 
Compare [74, 80, 81], as well as [77] and its references. If for some given spatial discretization 
the solution of the resulting system of ODEs (1.8) does not exhibit blowup, is this true also for 
the solution of the original problem (1.5)-(1.7)? 

• Convergence analyses? 
Open for most of the more sophisticated (moving mesh) methods ([51, 57, 58, 54]). Compare 
also Section 6.1 for existing convergence results. 

• Adaptive methods and a posteriori error control? 
Can the recently developed adaptive techniques (based on a posteriori error estimates) of [59- 
61] be used in blow-up problems? More specifically, given e>0,  design an adaptive method for 
(1.5)-(1.7) such that the computed blow-up time l"b satisfies [Tb -- 1"bl <e. 

Related questions concern the design and analysis of methods for bounded spatial domains D c R N 
with N = 2, 3, for parabolic problems with nonlocal boundary conditions [85] or memory terms 
([79, 83, 84]; see also [82]), and for systems of reaction--diffusion equations with blow-up solutions. 
In Section 6 we will look at the history and the "state of the art" of the numerical analysis and 
computational solution of the problems described above. 
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2. Preliminaries: Local  solutions 

The goal of  this section is to sum up some results on the existence of  solutions for small values 
of t. 

If  the data are not smooth or, as in the case of  slow and fast diffusion, some caution is required 
in defining what is meant by a solution. Weaker notions have to be used. Several definitions are 
common. We shall indicate the most standard ones. 

Multiplying Problem (1.1)-(1.3) by any test function x E C ~ ( Q r ) ,  where Qr stands for the 
parabolic cylinder D x (0, T), and integrating formally by parts we obtain 

fQ (ut)~ + (Vu, VX) - f x )  dx dt = 0. (2.1) 
T 

u is called a weak solution in the Sobolev space WI'P(Qr) if  U, Ux,,Ut ELP(Qr) and (2.1) holds for 
all X E C~(Qr). Moreover, u = 0 on Fr := 0/9 × (0, T) in the sense of  the trace and lim/~0 Ilu(x, t) - 
u0(x)llL <o) = 0. 

Another definition which is used especially in the context of  problems with slow and fast diffusion 
solutions requires the solution u to belong to C([0, T]; Ll(D))M L ~ ( Q r ) )  and satisfies 

fo (uz ) (x , t )dX-  fQ (UX~ + u"Az)dxdx foUo(X)X(x,O)dX + fQ fZdxd~ 

for all test functions X in C°~(Qr) with X = 0 on 01). 
The third approach uses the Green's function G(x, y, t). For fixed y E D, it satisfies 

-~ - Ax G(x, y,  t )  = 6 ( y ) f ( t )  in Qo~, G(x, y, t) = 0 if  x E 0D. 

Here 6(.) denotes the Dirac function. The solution of  (1.1)-(1.3) can then be written as 

/0' u = S(t)Uo + S(t - s ) f d s  where S(t)dp = G(x,y,t)dp(y)dy. (2.2) 

In the case D = R N the Green's function is replaced by the heat kernel and hence 

1 
S(t)d? - (47tNt)N/2 fRN e-(Ix-yl2)/4t q~(y)dy" (2.3) 

Eq. (2.2) can be interpreted as a dynamical system in a suitable Banach space. Different theories 
have been developed for establishing local solutions [48]. For smooth data all the concepts coincide. 
Moreover if f is locally Lipschitz, then for every u0 E CI(D) the solution is classical on (0, T). 
Weissler's approach allows also to handle singular initial data u0 E U(D). If s is sufficiently large he 
is able to prove the existence of  a solution in Wl'S(Qr). He also observed that there are functions 
u0 E U ( D )  with small s such that the problem does not have a local solution. It is interesting to 
note that even for simple problems such as f = luip-lu it is not yet clear whether there is always 
a local solution for "very" singular u0 which does not belong to LI(D) [8]. 
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3. Tools and blowup criteria 

We shall describe some of  the most widely used methods for establishing blowup. In short, we 
can distinguish between two different approaches: the first consists in constructing lower bounds for 
the solution which become infinite at finite time and the second derives differential inequalities for 
time-dependent integrals involving the solution. 

3.1. M e t h o d  o f  upper and lower solutions 

In the sequel we shall put for short L = ~/~t - A.  

Definition 1. u is called a lower solution of  (1 ) - (3 )  i fLu<<.f(x , t ,u ,~Tu)  in QT, u<<,O on Fr,U(x,O) 
~< u0. Similarly ~ is called an upper solution if the inequality signs are reversed. 

As for the solutions we can define weak upper and lower solutions. In bounded domains QT it 
follows from the m a x i m u m  principle for parabolic equations and its generalizations that, if  f is 
continuous in the domain of  definition and differentiable in u and Ux,, then u ~< ~ in QT. 

In unbounded domains the same comparison holds true by a Phragrn~n-Lindel6f-type argument 
provided that ( ~ -  u)(x, t)t> - B  exp{fllxl 2 } in QT for some positive B and ft. 

For classical solutions this comparison principle is found in [41]. For weak upper and lower 
solutions it is proved in [10] under the assumption that f does not depend on Vu and u E W1"2(QT). 
It can also be extended to problems with fast and slow diffusion [1]. We also direct the reader to 
the survey paper [25] on weak solutions to quasilinear degenerate parabolic equations. 

If  an upper and lower solution exists, there is a solution u such that u ~< u ~<~. This statement goes 
back to Sattinger [45] and has been extended to weak solutions, e.g. [1, 10]. 
Strategy I: Construct a lower solution u which blows up at some finite time 7. Then ~ is an upper 
bound f o r  the actual blow-up time T, e.i. T <<,7. L ikewise  i f  ~ is an upper solution with blow-up 
time z_, then z_ is a lower bound f o r  T, i.e. r_ <<. T. 

A further important observation which has been used in many qualitative studies is the following: 
I f  Uo is a lower solution, i. e Au0 + f ( x ,  t, Uo, Vu0) i> 0, then the funct ion t ~ u(x, t) is increasing. 

Vice versa i f  Uo is an upper solution, t ~ u(x, t)  is decreasing. 
It seems to have been stated for the first time in [45]. For its generalization to weak solutions 

compare [37]. 
We first describe some candidates for lower solutions u which blowup in finite time: 

1. In the autonomous case u = z ( v , w )  where zt, = f ( z ) ,  z ( O , w ) =  w and w(x, t) and v(x , t )  have to 
be chosen appropriately. A straightforward calculation yields, 

f ( u )  , Aw) u, - A u  - f ( u )  = f ( u ) ( v t  - Av) + 7(-W-~twt - 

-(f'(w) iVwl _ f ' ( u )  Vv + Vw 
+ f(u_) \ f ( w ) 2  f ( w )  , ]  - f(u_). 

Such lower solutions were explored in [33, 34, 39] for bounded and unbounded domains. Consider 
for instance the case of  an increasing function f such that f ( 0 ) >  0. Take w = 0 and v to be the 
solution of Lv = 1 in Qoo, v = 0 on F~,  v ( x , O ) =  0. Then the function _u constructed above is 
a lower solution for every nonnegative initial condition. It blows up in finite time, if  for some 
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to, maxD u(x, t0)> ~J(0), J - (0)  being defined in (1.4). We then have T<<,to. For bounded initial 
data this condition is always be fulfilled in sufficiently large domains. 

Another interesting choice is v = te--2lt~)(X)/(amax and w = WOe--~'tq~(X)/qbmax where 21 is the 
lowest eigenvalue and ~b the corresponding eigenftmction of A~b + 2~b = 0 in D, 4) = 0 on OD. 
If  f is convex and f ( 0 ) >  0, then u blows up in finite time provided there exists to such that 
toe -:~:° > J ( w 0 e - ' ~ t t 0 ) .  In this case T <J-(woe-::°). This condition can always be achieved by 
taking large initial data. More generally, Meier [34] noted 

Blowup criterion 1. Suppose that z( v, w)=: u is a lower solution and that supo( v(x, to ) - J - (  w(x, to))) 
>10. Then u, resp. u blows up in finite time T <<, to. 
2. Self-similar functions of the form h(t)k(x/t ~) have been studied for power-like nonlinearities [27]. 

They have also proved to be useful especially in problems with the porous media operator [42, 
44] (see in particular the notes in Ch. 4). 

3. I f  _ul(x,t) and _u2(x,t) are lower solutions then max{_ul,u2}_ is also a lower solution. This shows 
that solutions in large domains are more likely to blowup. In fact by taking max{u(x, t), 0} as a 
lower solution we can prove: 

Blowup criterion 2. Let ~ be the solution of (1.1)-(1.3)  in D ~ D with the initial condition 50 = Uo 
in D and 5o -= 0 in f)\D. I f  u blows up then so does 5. 
Candidates for upper solutions are: 
1. If  u0 is bounded and f is independent of  x and t, the solution of 

dz/dt = f(z ,  0), z(0) = max Uo(X), 

is an upper solution. It blows up under condition (1.4). 
2. If  f is independent of  t and has a positive stationary solution U(x), then by the comparison 

theorem, every solution u(x,t) with u(x,O)= Uo(X)<~ U(x) is global. 
3. Separable solutions T(t)W(x) are successful if the nonlinearity behaves like a power. 
4. Similarly as for lower solutions we have: if ~11 and ~ are two upper solutions, then m i n { ~ , ~ }  

is an upper solution. 
5. Let u(x, t) solve (1.1)-(1.3)  in Qr. Then by the comparison principle the solution of 

v t -  Av:(maxQT, f~))v,-- v = 0  o n 0 D x R  +, v(x,O)>uo(x) 

is an upper solution in (0, T')  with T ' <  T. Especially in unbounded domains it is useful to have 
an upper solution which blows up at finite time and depends not only on t but also on x. If  
D =  ~U, then v =  ][uo[[~e~(r')t(t+ 1)-NiCe -Ix12/a(t+l) is a solution of  the above problem [36]. Hence 
u(x, t) <~ v(x, t). 

3.2. Fourier coefficient 

This method was devised by Kaplan [26] in the case of a bounded domain D. Let ~b > 0 be the first 
eigenfunction of the Laplacian and let 21 be the corresponding eigenvalue. Suppose that fD q~ dx = 1 
and that f = f (u )  is convex ( f " > 0 ) .  Multiplying (1.5)-(1.7)  by ~b, integrating over D and using 
Jensen's inequality we obtain 

d L udpdx + 2, L uq~dX = fDf(u)dpdx>~ f (  L udpdx ) .  



10 C. Bandle, H. Brunner l Journal of Computational and Applied Mathematics 97 (1998) 3-22 

This is a differential inequality for X(t) = fo u~b dx. If the solution has the series expansion u(x, t) = 
~,~l  a,(t)dp,(x) where ~b, is a normalized eigenfunction of the Laplacian, I1¢.11L2¢~)= 1, then Z(t) 
coincides up to a normalization factor to al(t). The differential inequality leads immediately to the 
following. 
Blowup criterion 3. Assume f to be convex and (1.4) to be satisfied. Let to be the largest zero of 
f ( s ) -  21s. I f  Z(0)>to, then u(x, t) blows up in finite time. 

It becomes evident that the first Fourier coefficient is large if either the initial data u0 or the first 
eigenvalue and therefore the domain is large. Then the process is governed by the reaction and the 
diffusion cannot prevent blowup. 

If  D is unbounded q~ does not exist in general. Nevertheless, this method is still applicable. It 
suffices to take for ¢ a positive function such that A~b + c¢~>0 in D and ¢ = 0 on OD. Suitable 
choices are: 
1. ~b = exp{-klx[2}, if D = R N [17]; 
2. ~? = exp{-klxl2}lxlmd/(O) if D is a cone in R N, where m, k are suitably chosen positive constants 

and ~k(0) is a function on, S N-I [4]; 
3. any smooth, radially symmetric and nonincreasing function 0~<q~< 1, ~b= 1 for Ix] ~<p and ~b=0 

in Ix[ ~>2p. Recently, Qi [43] was able to prove Fujita-type results by means of such a general 
function. 

3.3. Concavity methods 

The concavity method is an elegant tool to derive norm estimates and gives criteria for blowup [31 ] 
(see also [19]). For simplicity, we shall describe it in the case where f = f ( x , u ) .  An extension to 
degenerate operators is found in [13]. Let us first introduce some notation: 

F(x,u):= foUf(x,s)ds, (u(t),v(t)):= fD u(x,t)v(x,t)dx, 

L Ilu(t)ll2=(u,u), and J(t):= ~llVu(t)ll z - f (x ,u)dx .  

By multiplying (1.1)-(1.3) by u, or ut, and integrating over D we fred 

21d f dtllu(t)ll2=-llVu(t)ll z + f (x ,u)udx,  (3.1) 
D 

Ilu,(t)ll2:-£J(t). 
Hence, 

(/o' ) 2 dt Ilu(t)ll: = (2 + ~) Ilu,(s)ll 2 ds + {J( t )  - J(O)} 

-IIVu(t)ll2 + L f ( x ,u )udx=(2  + e) foo t Ilu,(s)ll 2 ds 

+~llVu(t)ll: + L{f(x,u)u - (2 + e)F(x,u)} dx - (2 + e)J(O). 

(3.2) 
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If 

f (x ,  u)u - (2 + e)F(x, u) >>, - c  2 

then by Poincar6's inequality 

1 d f0t 2 dt tlu(t)ll2 ~> (2 + e) 

This implies that 

d 
dt tlu(t)ll 2/> e2~ Itu(t)ll 2 - k 

and, thus, 

]]u(t)]] 2 ~exp{e~,lt}{llUoll2--~-~e} 

for all positive u, e > 0, 

Ilut(s)ll = ds + -~L Ilu(t)ll 2 - c21DI - (2 + Od(0) .  

where k=2c21DI + 2(2 + e)J(O) 

k + m  
,~,1 g" 

(3.3) 

(3.4) 

Since e is positive, it then follows that Hu(t)l] 2 becomes arbitrarily large if k<0.  Denote M(t) := 
fo Ilu(s)ll 2 ds. For t sufficiently large, the previous estimates together with Schwarz's inequality imply 

M(t)M"(t)  >1 (1 + e/2)(M'(t) - M'(0)) 2/> (1 + e/8)M'(t) 2, 

which shows that M-*/8(t) is concave. By an elementary argument, M(t) must blow up in finite 
time. 

This argument was also used for discussing under what conditions global solutions exist which 
are not unifomly bounded, a question raised by [13]. From these considerations it is important to 
remember the following 

Blowup criterion 4. Assume (3.3). I f  

(2 + e) (1HVUoll2 - foF(x,  uo)dx ) + c2'DI < 0  

for some to, then blowup occurs in finite time. 

4. Fujita's phenomenon 

Assumption. Throughout this section we shall assume that f is nonnegative. 

Definition 2. Problem (1.1)-(1.2) has the Fujita property, if every nontrivial solution blows up in 
finite time. 

Heuristically, it is clear that for the Fujita property to hold, not only the growth of f at infinity 
plays a crucial role, but also its behavior near zero. It has to be sufficiently large, to prevail the 
dissipative effect of the Laplace operator on solutions with small initial data. 
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As already mentioned in the Introduction Fujita [17, 18] was the first to show that the Cauchy 
problem with f ( u ) = u  p, p E (1, 1 + 2/N] has this property. Extensions in various directions have 
been derived since. The Fujita property has been established in the following cases: 
1. 

- 1  if N = I ,  
D = N  N, f=lxl~tSu p, s > 0 ,  o-> - 2  i fN~>2 ,  

and p E (1, 1 + (2 + a + 2s)/N] (cf. [33]). 
2. The result in 1 remains true in exterior domains with compact boundary; and see [43, 46] where 

also the degenerate case is treated. 
3. D =  {x: x # 0, x/Ixl c {Ixl = 1}} is a cone with vertex at 0, f ( u ) = u  p, 1 < p <% 1 + 2/(N + 7) 

where 7 is the positive root of 7(7 + N - 2)=09, o being the first eigenvalue of  the Laplace- 
Beltrami operator in t2 with Dirichlet boundary conditions (cf. [3]). 

4. D=Dl × D2, f (u)=uP and p* are the critical exponents such that the Fujita property holds in 
Oi for 1 < p <  p* and fails for p >  p*. Then the critical exponent for D satisfies {p*(DI x D 2 ) -  
1 }-1 _ { p ,  _ 1 } - i  + { p ,  _ 1 }-1 [39]. 

5. D is bounded, f (u)=#O(u) where 9 is convex, monotone, and 9 (0 )>0 .  Let # .  > 0  be the critical 
value such that the stationary problem Av + # 9 ( 0 = 0 ,  v = 0  on OD has solutions only if # <  (or 
~< ) # . .  Then for # > # .  the corresponding parabolic problem has the Fujita property [28]. 

5. Qualitative results 

5.1. Influence of  the geometry 

As already observed blowup is more likely to occur in large domains and for large initial values. 
It turns out that the shape of  the domain D is also crucial. In fact, the following statement is true. 

Assume f to be convex, nondecreasing and f (O)>0,  and let u0(x)=0. Then among all domains 
D of  given volume the blowup time is smallest for the ball. 

This can be shown by means of  symmetrization techniques [2]. The heuristic reason is that the 
boundary prevents the solution from blowing up. In the sphere the center where blowup occurs is 
"far away" from it. 

Narrow domains however always possess global solutions even if their volume is big. The proof 
is based on constructing a global upper solution in a strip. Further results in this direction have been 
obtained in [40] as a consequence of  a maximum principle. 

5.2. Blow-up points 

Definition 3. A point x0 C D is called a blow-up point if there exists sequences x, E D, tn E (0, T) 
such that 

x,---~Xo, tn--+ T, u(xn, t,)---~oo asn---~cx~. 

It is in general difficult to localize the blow-up points unless the solution preserves the shape of  the 
initial condition. It has been shown in [16], that if D is a ball, Uo=Uo(lXl) is radially decreasing and 
some additional assumptions on f that the center is the only blow-up point (see also [20]). If  the 
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problem possesses some symmetry it is also reflected in the blowup set. The moving plane method 
of Gidas et al. [22] is applicable to parabolic equations. Extensions to unbounded domains are still 
open. If D is unbounded, blow-up at infinity cannot be excluded. 

Giga and Kohn [23] proved that for  D = ~  N, f ( u ) = u  p with p < ( N  + 2 ) / ( N -  2) / f N > 2  and 
Uo EH~(RN), then the set o f  blow-up points is compact. Also, in cones it is not known if the blow- 
up points can tend to the vertex or if they have to stay away from the boundary. This question is 
still open for bounded domains and general nonlinearities. Some partial results are found in [16] 
and in [23]. In particular, it is shown that for power-like nonlinearities and for star-shaped domains 
blowup points cannot lie on the boundary. 

5.3. Asymptotic shape 

There are few results concerning the behavior of the solutions near the blow-up points. A seminal 
study is by Giga and Kohn [23]; see also the references cited there. One of their main results is 
that if u is a solution of (1.1)-(1.3), f=lulp-~u, p < ( N  + 2 ) / ( N -  2) and D is star-shaped then a 
is a blowup point if and only if 

l im(T - t ) l / ( P - l ) u ( a  + y ( T  - t ) ~ / z , t ) = ( p  - 1 )  - l / ( p - l )  uniformly in [y[ ~< C. 
t--+ T 

The results of [28] for the Cauchy problem indicate that the asymptotic behavior near a blow-up 
point is governed in first order approximation by the reaction problem. The case of an exponential 
function has been treated in [7]. For general domains and general nonlinearities the exact asymptotic 
behavior is still open. 

5.4. Cont&uation after blowup 

In order to study possible continuation after blowup a natural concept of a generalized solution 
has to be introduced. A possibility is to consider partial blowup. 

Definition 4. Let u(x,t) blowup at time t=T ,  i.e. limt~r [[u(t)[[o~=c~. The blowup will be called 
incomplete if there exists x E D such that (cf. (2.2)) 

// u(x,t)=S(t)uo + S ( t -  s ) f ( u ) d s < o c  for some t>T.  

If no such x exists then there is complete blowup. 

In bounded domains complete blowup takes place for large classes of problems with bounded ini- 
tial conditions. Baras and Cohen [6] proved complete blowup for reactions of the form f ( u )  ~ u p 
as u ~ oc and 1 < p < (N + 2)/(N - 2). Lacey and Tzanetis [29] investigated more general non- 
linearities. For another, more general definition of complete blowup compare [21]. In this paper 
Galaktionov and Vfizquez [21] studied the Cauchy problem and extended the results to slow diffu- 
sion problems. The question of continuation after blowup is very much related to the existence of 
local solutions with singular initial data. It should be mentioned that the problem Au + u p =0  pos- 
sesses for 1 < p < ( N  + 2 ) / ( N -  2) infinitely many positive, radial solutions in a ball, which vanish 
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on the boundary. It turns out that the singularities are of the form u - Ix[-(N-2) if 1 < p <<. N/(N - 2), 
or u - I x l - 2 / ( P - 1 )  if N / ( N -  2)<  p < (N + 2 ) / ( N -  2), cf. [5] for a classification of all radial solutions. 
The singular solutions solve the parabolic problem in a weak sense for all times. In particular, if 
Uo ELq(D), q > N / 2 ( p -  1) and q i> p, then (1.1)-(1.3) has a unique solution in C([O,T];Lq(D)). 

6. Numerical analysis of blowup 

6.1. Time-stepping methods 

For ease of reference we recall the semidiscretized problem (1.8), 

dU(t)  +AhU(t)=Fh(U(t)) ,  t>0 ,  U ( 0 ) = U o E R  M, (6.1) 
dt 

where Ah E .~q~(R M) is positive definite, with largest eigenvalue tending to +c~ as M ~ o¢; M >> 1 
denotes the number of the mesh points Dh lying in D. 

The paper by Stuart and Floater [73] gives an illuminating account of why numerical methods 
using a fixed stepsize are not appropriate when solving nonlinear ODEs whose solutions blow up in 
finite time. That the choice of the time steps {%} in the discretization of the system of nonlinear 
ODEs (6.1) is governed by the growth of the analytical solution had already been recognized in 
Nakagawa's pioneering paper [68] of 1976 and subsequently in [69, 75] and [55] (see also the thesis 
[56]). Nakagawa solves (1.5)-(1.7), with N = I ,  D=(0 ,  1), f ( u ) = u  2, with a uniform spatial mesh 
(h= 1/ (M+ 1)) and using the explicit Euler method (i.e. (1.10) with cl = 1) for the time integration 
of the system (6.1): 

V~+l = ( I  -- %Ah)V. + %Fh(V.) (n 1> 0), (6.2) 

where V. = (V~,. . . . .  , VM,.)T denotes the vector with the approximations to the exact values U(Xl, t . ) , . . . ,  
U(XM, t.)). Let [[V~[lq : = ( ~ = ~  h(~.)q)  '/q (q >1 1), and suppose that the exact solution blows up as 
t ---+ Tb  < ~ .  
Nakagawa's time-stepping criterion [68]. Consider (1.5)-(1.7) with N = I ,  f (u)=u z, and assume 
that its solution blows up in finite time Tb. Let 2 : =  ~/h 2 E (0, ½] be fixed, and choose the time steps 
{%} by 

{ 1 , ~ }  (n ~> 0). (6.3) % = z • min 

i f  
n - 1  

T b = T b ( Z ) : = l ~ m ~ % ,  then lim Tb(~)=Tb. 
,r---+0 + 

j = 0  

The proof of this first convergence result for the numerical blow-up time is based on a discrete 
analogue of the Kaplan-Fujita-Tsutsumi criterion; a similar technique is employed in [69] and [55]. 
The results of Nakagawa's 1976 paper were extended in a number of ways (in all these cases, 
the underlying spatial mesh is fixed a priori and is uniform). In [69] the nonlinearity is assumed to 
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satisfy f ( u )  >1 Cu 1+el (0~>0), and spatial discretization is by a finite element method of lumped mass 
type; Euler's explicit method (6.2) is used for time stepping. While [75] closely follows Nakagawa 
[68], Chen's paper [55] introduces a number of new features: we still have N =  1, but both Dirichlet 
and Neumann boundary conditions are studied, and the linearly implicit version of the implicit Euler 
method ((1.10) with c i = 1 )  is used for solving (6.1): 

(I + z,Ah)V~+~ = V~ + z,Fh(V~) (n i> 0). (6.4) 

Note that, by (1.8) and the remark following it, Ah is positive definite and hence (! + ~,Ah) -~ exists 
for all -c, >0. For f ( u ) = u  l+~ (~> 1), we have (using the notation introduced above): 
Chen's time-stepping criterion [55]. Suppose the solution o f  ( 1.5)-( 1.6), with N = 1 and f ( u )  = u' +~ 
(~> 1), and with either (homogeneous) Dirichlet or Neumann boundary conditions, blows up in 
finite time Tb, and assume that 2 := "c/h 2 is f i xed  I f  the time steps are chosen according to 

z ,=Z . l f f l n  1,,,~.,,_ (n >1 0), then lim Tb(Q=Tb. (6.5) 
z--~0+ 

Here, the parameter q is taken as q = 2 in the case o f  the Dirichlet condition, and q = 1 for  the 
Neumann condition. 

Chen goes much further: numerical blowup takes place in some sharply defined sense. Since exact 
(single-point) blowup is assumed to occur at the point Xu= ½ of D=(0,  1), let the mesh point Xmb 
coincide with xu. It is shown in particular that the following results hold: 

(a) I f  ~ > 1, then the computed solution V~ remains bounded except at the mesh point xmb. 
(b) I f  0 < ~ <~ 1, then the computed solution blows up at xmb and also at the adjacent mesh points 

1 x,,b+l. Consider now the ful ly  implicit collocation method (1.9), (1.10) with g ~< Cl ~ I (which is 
dictated by the stiffness of the matrix - Ah). In order to compute the solution of this continuous 
implicit one-stage Runge-Kutta method for (6.1), we must solve a system of M nonlinear algebraic 
equations at each time level t=t~. This will usually be done by direct fixed-point iteration (cf. [50]) 
or by a modified Newton iteration. As was pointed out by Stuart and Floater [73], time-stepping based 
on a fixed step z > 0 will, as ]l V~II becomes large, lead to a loss of uniqueness, or even existence, of 
the solution V~+I; hence, the time step z,=t,+~ - t ,  in (1.10) must be chosen such that the mapping 
from R M to R M that defines V~+I is contractive. Let p, := max1 ~,~M IV(Pro, t~) I, denote by L =L(Q) 
the Lipschitz constant of f in [0,Q], and consider the ball B(~p,) :=  {wE RM: Iw[ <tiP,} for a 
given f l> 1. It was shown in [50] that if the time steps {z~} in (1.10) satisfy the 

Time-stepping criterion for one-point collocation: 

( f l -  1)p,, 1 } 
z, < min I, Cl(4Nflpn/h 2 + f ( f lp~)) '  cl(4N/h 2 + L(flp~)) _ ' 

(6.6) 

(n >1 0), then the above mapping from B(flp,) to B(flpn) corresponding to fixed-point iteration based 
on (1.10) is a contraction. (The "optimal" choice of fl is discussed in [50].) We note that a similar 
criterion was obtained in [62, 63] (compare also [44]) for an implicit (nonlinear) finite-difference 
method applied to the initial-boundary-value problem for 

ut - (t92/Ox2)u'~+l=u p (tr>0, p > l ) .  

The analysis in [50] can be used constructively to obtain a robust numerical method for computing 
blow-up (in particular, convergent approximations to the blow-up time Tb) in ~U (N ~ 1 ) not only 
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for (1.5) but also for more general equations (1.1) containing (linear) convection terms and constant 
delays [86]. 

The above results (6.3), (6.5), and (6.6) give rise to the question as to whether time-stepping for 
the semidiscretized problem (6.1) should be done by an explicit method (where the time steps zn 
are also constrained by the (unbounded) stiffness of the matrix - Ah; compare also [57, 58] which 
employs a three-stage explicit Runge-Kutta method of order two possessing an extended interval 
of stability), or by an implicit (A-stable) method. Note that the degree of stiffness in --Ah does 
not change as t increases, while in an implicit method the contractivity constraint on zn (see (6.6)) 
becomes more and more severe as U(t) becomes large. It is clear that a better understanding of 
this problem is needed (but see also [70] and Section 6.2 below). It may well turn out that an 
unconventional approach, along the lines of the adaptive time-stepping techniques of [59-61] based 
on error control via a posteriori error estimates for the original problem (1.1)-(1.3) (or (1.5)-(1.7)), 
will contain much of the key to this problem. 

When does the solution U(t) of the semidiscretized problem (6.1) blowup in finite time? This 
question is studied in [49] where, for the problem (1.5)-(1.7) with N = I ,  necessary and sufficient 
conditions for finite-time blow of the semidiscrete solution U(t) are derived. However, the blow-up 
dynamics of the original problem (1.5)-(1.7) is in general quite different from that of its semidis- 
cretized version corresponding to a given (fixed) spatial mesh Dh. AS a simple illustration, let N = 1, 
D=(0 ,1 ) ,  Uo(x)=Asin(rrx) (A>0),  and choose the mesh Dh with M = I .  For f ( u ) = u  p ( p > l ) ,  
(6.1) then reduces to the scalar initial-value problem 

(J(t)+(2/h2)U(t)=UP(t),  t>0 ,  U(O)=Uo=A, (6.7) 

where h = l / 2  and so U(t) approximates u(1/2,t). 
Blowup for a semidiserete problem. Assume that 2h > 0, e > 0, and Uo > O. Then the solution of  the 
(scalar) initial-value problem 

(J(t)+,~hU(t)-~UP(t), t>O, U(O)= Uo, 

blows up infinite time if, and only if, Uo>(2h/e) l/(p-l). The blow-up time is then 9iven by 

T ~ - - _ 2 h ( p _  l ) l n  1 eU0P_l . 

Thus, the solution of the semidiscretized initial-value problem (6.7) blows up in finite time if, 
and only if, Uo=A >(2/h2)l/(P-1)=81~(p-I). On the other hand, the solution of the original problem 
(1.5)-(1.7) with the above data and p = 2  blows up when A reaches a value near A = l l . 6  (see [68, 
77]), compared with A=8.0 for (6.7). For Dh with M = 2 0 ,  the blowup threshold for (6.1) is near 
A --- 11.5 [77]. 

This simple example is an indication that the numerical detection of blowup is a difficult and es- 
sentially unresolved problem, even for very simple model problems, and many challenging questions 
remain to be answered. (See also [76] for a different approach to blowup detection which is based 
on certain extrapolation and least-squares techniques.) 

The major drawback of the discretization approaches discussed in this section are that these 
methods are based on uniform spatial meshes Dh (mostly with N =  1) and that their design does 
not take into account the local structure of the exact blowup solution as it approaches its (local) 
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singularity (recall Section 5.3). Since the late 1980s several approaches have been proposed which 
attempt to rectify this situation (see [51, 57, 58, 54] and their references to earlier work on mesh 
adaptation). We shall briefly describe these methods of static and dynamic "regridding" in the 
following section. 

6.2. Adaptive mesh refinement 

Solutions to the parabolic equation 

ut - Uxx=U p ( p >  1), u(O,t)=u(1,t)=O, u(x,O)=uo(x)>O, (6.8) 

possess a scale-invariance property: if u=u(x,t)  is a solution, then so is u~(x,t):= 72/(P-t)u(Tx,72t) 
for any 7 > 0. This observation forms the basis of the rescaling method of Berger and Kohn [51 ]. 
The method is similar to a mesh refinement technique (using multiple meshes) used for first-order 
hyperbolic systems in one spatial dimension (see [51] for precise references). Assuming that the 
initial function Uo(X)>0 is symmetric on D = ( - 1 ,  1), with XU'o(X ) <0, we have single-point blowup 
at Xb----0. Using the standard spatial semidiscretization on a uniform grid Dh, the solution of the 
resulting system of ODEs (6.1) is advanced (with uniform timestep) until [[V~[[~ reaches a given 
threshold Mb > 0. For a scale factor 2 chosen so that 2-1 > 1 is a small integer, the solution is now 
rescaled, using 7=2 in (6.8); since, this scaling stretches both the spatial and the temporal mesh, 
it is necessary to refine the mesh by introducing new mesh points, and to generate the necessary 
boundary conditions. The same time-stepping method (the explicit Euler method: (1.10) with cl =0)  
is then used when the process is continued iteratively, with 7 E {22, 23,...}. The original approximate 
solution and the new one are advanced independently, each on its own grid. 

This method of static regridding yields, for the above one-dimensional problem with single- 
point blowup, a very powerful algorithm, as shown by many numerical experiments. However, the 
underlying convergence and error analysis appears to be very complex and is yet to be established. 

The space-time structure of the (approximate) self-similar solutions to higher-dimensional prob- 
lems with radial symmetry and single-point blowup, 

Ut r---~(rN-lUr)r= f (u) ,  u(r,O)=uo(r) >>, O, 

with f ( u )  of the form (1 + u)lnP(1 + u), (2 + u) p, or exp(u) ( p > l , 2  i> 0) was exploited in 
[57, 58] to obtain a mesh refinement procedure that is consistent with this space-time structure 
(compare also the moving mesh method of [54] described below in which the scaling invariance is 
inherited from the original problem): the spatial steplength (in r) is chosen so that it corresponds 
to a uniform mesh with respect to the similarity variable i (see also Section 5.3 of the present 
paper). The resulting algorithm - finite-element discretization in space and time-stepping using an 
explicit three-stage Runge-Kutta method of order two with extended stability interval - shows an 
impressive performance in numerous numerical experiments [58]. However, as in the case of the 
rescaling method of Berger and Kohn, the theoretical foundation (convergence and error analysis) 
is still lacking. 

Current work on the computation of blow-up solutions in parabolic problems (1.1)-(1.3) focuses 
on moving mesh methods (dynamic regridding) in which the spatial mesh is generated by appro- 
priately chosen moving mesh PDEs (see, for example, [64-67]). So far, the use of these methods 
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has been limited to one-dimensional problems, and once again the underlying theory is not well yet 
understood. Consider again the model problem (6.8). It has been known for some time (see [54] and 
the references to the pioneering work of  Dold and others) that the evolution of the (single) blow-up 
peak for the solution u(x,t) of (6.8) near (xb, Tb) can be characterized in terms of the so-called 
ignition kernel, 

#=/t(x,  t ) : =  (x - Xb)[(Tb -- t)(0C -- ln(Tb -- 0)]  -1/2, 

where ~ denotes a constant depending on the given initial function u0. 

Theorem (Budd et al. [54]). I f  x=x(t)  is chosen to keep the ignition kernel #(x,t) constant, then 
the solution to (6.8) satisfies 

( T b - - t ) a u ( x , t ) ~  ~ 1 + as t ~ T ( ,  

with ]~:= 1/(p - 1). Moreover, if Ix -Xbl is small but fixed and independent oft ,  then 

( 2) u(x,t)---~u(X, Tb):= 4pfl 2 I~ -- 21nix -xbll . (1 + (~(Ix -Xbl )) 
Ix- P 

as t---~ T~. 

In [54] numerical methods for (6.8) are designed so as to exploit the local symmetries of the 
solution (the method inherits the scaling invariance of the given problem), leading to the appropriate 
choice of the (local) mesh: for t close to T b- and x close to the blow-up point Xb, the moving mesh 

xi:=x(i/M,t), i = 0 ,  1 . . . .  ,M, 

is placed at those points for which #(x,t) is constant. This mesh is defined by a differentiable 
mesh transformation x(~,t):=DD[0, 1] ~ [0, 1], with x representing the physical coordinate and 
being the computational one, subject to the constraint dx/O~>O (to avoid mesh crossings). In the 
MMPDE approach, a partial differential equation for x(~, t) is solved simultaneously with the original 
problem (6.8). This MMPDE is based on an equidistribution principle: for a given monitor function 

= ~(~, t )  one requires that 

fo x(~'t) ~(z,t)dz = ~ fo 1 ~(z,t)dz, xE[O, 1], 

or, equivalently, 

~-~- (~(x(~,t),t) ~---~x(~,t)) x ( 0 , t ) = 0 ,  x ( 1 , t ) = l  ( t>0) .  

The choice of the moving mesh PDE (and hence that of the monitor function ~P), as well as the 
way it is solved numerically, are clearly crucial for the success of this approach. Various choices of 
MMPDEs have been proposed and analyzed; see e.g., [64, 53]). 
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6.3. Extensions and future work 

This brief expository presentation of  the various approaches to the computational treatment of  
rather particular cases of  blow-up problems for (1.1)-(1.3) reveals that the present state of  the art 
encompasses only simple situations: most methods are for one-dimensional problems (N = 1), and 
they assume single-point blowup, with known blow-up point Xb E D. For all of  the methods using 
variable spatial and temporal meshes (e.g. [51, 57, 58, 54]), a convergence analysis and computable 
error bounds (a posteriori error estimates) for the blow-up time Tb have yet to be found. 

Most blowup problems arising in realistic modelling processes are not yet covered by the exist- 
ing numerical methods. We conclude by listing a representative selection of  such problems whose 
solution will lead to a better understanding of  the numerical analysis of  blowup. 
• The general problem (1.1)-(1.3) (for example, PDEs with nonlinear gradient terms; compare [12, 

4]); 
• Blow-up problems on bounded D C R N with N = 2, 3, including problems with multiple blowup 

points (of. Section 5.2); 
• Blow-up problems on unbounded domains D C R N (for example, on cones, with N = 2 , 3 ;  see 

Section 5.2); 
• Blow-up problems with nonlocal (nonlinear) boundary conditions (see [85]) or nonlocal reaction 

terms ([79-84, 91, 92]), as well as nonlinear Volterra integral equations with blowup solutions 
([89, 90]). 
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