Lower Bounds for Some Ramsey Numbers

H. L. Abbott and e. R. Willifams
University of Alberta, Edmonton, Alberta, Canada
Communicated by the Managing Editors

Received January 3, 1972

Let $n, \mathbf{r}, u_{1}, u_{2}, \ldots, u_{k}$ be positive integers satisfying $u_{i} \geqslant \mathbf{r}$ for $i=1,2, \ldots, \mathbf{k}$. The symbol $n \rightarrow\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{r}$ means that, for any partition of the r -subsets of an \mathbf{n}-set S into \mathbf{k} classes $C_{1}, C_{2}, \ldots, C_{k}$, there is a \boldsymbol{u}_{i}-subset of S all of whose r-subsets belong to C_{i} for some $\mathbf{i}, 1 \leqslant \mathbf{i} \leqslant \mathbf{k}$. A theorem of F. P. Ramsey asserts that, if $\mathbf{r}, u_{1}, u_{2}, \ldots, u_{k}$ are given, then $n \rightarrow\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{r}$ for all sufficiently large $n . n \mapsto\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{r}$ denotes the negation of $n \rightarrow\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{r}$. In this paper a number of results of the form $n \mapsto\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{3}$ are obtained.

1. Introduction

If S is a set, S denotes the cardinality of S, and, if r is a positive integer, $[\mathrm{S}]^{\prime}$ is the family of all r-subsets of $\mathrm{S} .[S]^{r}=\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ denotes a partition of $[S]^{r}$ into k families $C_{1}, C_{2}, \ldots, C_{k}$. Let $n, r, u_{1}, u_{2}, \ldots, u_{k}$ be positive integers satisfying $u_{i} \geqslant \mathbf{r}$ for $\mathbf{i}=1,2, \ldots, k$. The symbol

$$
\begin{equation*}
n \rightarrow\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{r} \tag{1}
\end{equation*}
$$

means that, if S is an n-set, then for every partion $[S]^{r}=\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ there is a q-subset U_{i} of S such that $\left[U_{i}\right]^{r} \subseteq C_{i}$ for some \mathbf{i}. It is a wellknown theorem of F. P. Ramsey [8] that, for given $\mathbf{r}, u_{1}, u_{2}, \ldots, u_{k}$, (1) holds for all sufficiently large n. The least such n is called a Ramsey Number. The symbol

$$
\begin{equation*}
n \nrightarrow\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{r} \tag{2}
\end{equation*}
$$

will be used to denote the negation of (1). Whenever $u_{i}=\boldsymbol{u}$ for all \mathbf{i}, (1) and (2) will be written as $n \rightarrow(u)_{k}^{r}$ and $n \nrightarrow(u)_{k}^{r}$, respectively. By a $\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{r}$ partition we shall mean a partition which establishes (2).

The case $r=2$ has been studied extensively by many authors. In this paper we shall be concerned with the case $\mathbf{r}=3$, although most of our results extend with only minor modifications to the case $\mathbf{r}>3$. First
we mention briefl some of the known results. P. Erdös [3] has proved by probabilistic methods that, if $\binom{n}{u} \leqslant 2^{\left(\frac{u}{2}\right)-1}$, then $n \mapsto(u)_{2}^{2}$. It has been pointed out by J. G. Kalbfleisch [6] (see also [2] and [7]) that the argument used by Erdös can be generalized so as to give the following result:

$$
\text { if } \sum_{i=1}^{k}\binom{n}{u_{i}} k^{-\binom{u_{i}}{r}} \leqslant 1, \quad \text { then } \quad n \mapsto\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{r} \text {. }
$$

In particular, if $r=3$ and $k=2$ one gets, via a simple computation (c is an absolute constant ${ }^{1}$),

$$
\begin{equation*}
n \mapsto\left(\left[c(\log n)^{1 / 2}\right]\right)_{2}^{3}, \tag{3}
\end{equation*}
$$

and for arbitrary \boldsymbol{k} one gets

$$
\begin{equation*}
n \mapsto\left(\left[c\left(\frac{\log n}{\log k}\right)^{1 / 2}\right]\right)_{k}^{3} \tag{4}
\end{equation*}
$$

We remark that, by using the methods of [I], (4) can be improved to

$$
\begin{equation*}
n \mapsto\left(\left[c\left(\frac{\log n}{k}\right)^{1 / 2}\right]\right)_{k}^{3} . \tag{5}
\end{equation*}
$$

In [6], Kalbfleisch proved the following theorem:
Theorem 1 (Kalbfleisch). If $n \mapsto(u, v-1)^{3}$ and $m \mapsto(u-1, v)^{3}$, then $n+m \mapsto(u, v)^{3}$.
From Theorem 1 and the result $12 \mapsto(4)_{2}^{3}$ of J. R. Isbell [5], Kalbfleisch deduced that

$$
\begin{equation*}
6\binom{u+v-8}{u-4}+\binom{u+v-4}{u-2} \mapsto(u, v)^{3} . \tag{6}
\end{equation*}
$$

One can check that, for small values of u and $v,(6)$ is superior to the result of Erdös and, moreover, has the advantage of being constructive. However, simple calculations show that Erdös's result is stronger when u and v are large. For example, (6) gives only $n \mapsto([c \log n])_{2}^{3}$.
In Section 2 of this paper we prove some theorems which, when combined with Theorem 1 of Kalbfleisch and the result of Isbell, yield results which are stronger than (6) for $u, \mathrm{v} \geqslant 4$ (except in the case $v=4$, $u=4,5,6$). In Section 3 we consider the case $r=3, k$ large, and obtain a result which is substantially better than (5).
${ }^{1}$ The letter \mathcal{c} will be used throughout to denote absolute constants. The numerical value of c will not necessarily be the same at each occurrence.

2. The CaSE $\mathbf{r}=3, \mathbf{k}=2$

Theorem \quad 2. If $\mathbf{n} \mapsto(u)_{2}^{3}$ and $m \mapsto(v)_{2}^{3}$, then $\mathbf{m n} \mapsto(\mathbf{u}+v \quad 2)_{2}^{3}$
Proof. Let S be an \mathbf{n}-set. We may suppose without loss of generality that $S=\{1,2, \ldots, n\}$. Let $[S]^{3}=\left(C_{1}, C_{2}\right)$ be a $(u)_{2}^{3}$ partition of $[S]^{3}$. Let $\mathbf{T}=\bigcup_{j=1}^{m} S_{j}$ be an $\mathbf{m n}$-set consisting of \mathbf{n} disjoint m -sets $S_{j}=\left\{x_{i 1}, x_{j 2}, \ldots, x_{j m}\right\}$. Let $S \boldsymbol{n} \mathbf{T}=\varnothing$ and let $\left[S_{j}\right]^{3}=\left(C_{1}^{(j)}, C_{2}^{(j)}\right)$ be a $(v)_{2}^{3}$ partition of $\left[S_{j}\right]^{3}$. Let $[T]^{3}=\left(D_{1}, D_{2}\right)$ where D_{1} and D_{2} are determined as follows: Consider $\mathrm{A}=\left\{x_{\alpha \beta}, x_{\gamma \delta}, x_{\lambda \mu}\right\} \in[T]^{3}$. If $\alpha=\gamma=\lambda$ (in which case β, δ, and μ are distinct and $\mathrm{A} \in\left[S_{\alpha}\right]^{3}$) put A in D_{1} or D_{2} according as A is in $C_{1}^{(\alpha)}$ or $C_{2}^{(\alpha)}$. If α, γ, and λ are distinct (in which case $\{\alpha, \gamma, \lambda\} \in[S]^{3}$) put \mathbf{A} in D_{1} or D_{2} according as $\{\alpha, \gamma, \lambda\}$ is in C_{1} or C_{2}. If exactly two of α, γ, and λ are equal, say $\alpha=\gamma \neq \lambda$, put \mathbf{A} in D_{1} or D_{2} according as $\alpha>\lambda$ or $A<\lambda$.

Suppose there were a ($u+v-2$)-subset \mathbf{R} of \mathbf{T} such that $[R]^{3} \subseteq D_{1}$ or $[R]^{3} \subseteq D_{2}$. It follows from the above construction that $\mathbf{R} n S_{j} \leqslant v-1$ for $j=1,2, \ldots, \mathbf{n}$. Now consider, for any α and $\beta, \alpha>\beta, x_{\alpha \gamma}, x_{\alpha \delta} \in S_{\alpha}$ and $x_{\beta \lambda}, x_{\beta u} \in S_{\beta}$. Then by our construction $\left\{x_{\alpha \gamma}, x_{\alpha \delta}, x_{\beta \lambda}\right\} \in D_{1}$ and $\left\{x_{\alpha \gamma}, x_{B \lambda}, x_{\beta \mu}\right\} \in D_{2}$; so we may therefore suppose that $\mathbf{R} \boldsymbol{n} S_{j} \leqslant 1$ for all except possibly one value ofj. This means that there exist at least u distinct numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{u}$ such that $\mathbf{R} \boldsymbol{n} S_{\alpha} \leqslant v \ldots 1$ and R $n S_{\alpha_{j}}=1$ for $j=2,3, \ldots, u$. However, this would imply that there is a u-subset U of S (namely, $U=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{u}\right\}$) such that $[U]^{3} \subseteq C_{1}$ or $[U]^{3} \subseteq C_{2}$, and this is a contradiction. This completes the proof of Theorem 2.

тheorem 3. If $\mathbf{m} \mapsto(v)_{2}^{3}$, then $\mathbf{3 m} \mapsto(v+1)_{2}^{3}$.
Proof. By letting $\mathbf{n}=u=3$ in Theorem 2 (and suppressing the hypothesis $\left.\mathbf{n} \mapsto(u)_{2}^{\mathbf{3}}\right)$, the same proof works if the partition $\left(D_{1}, D_{2}\right)$ is modified thus: when exactly two of α, γ, λ are equal, say $\alpha=\gamma \neq \lambda$, put \mathbf{A} into D_{1} if (α, λ) equals $(1,2),(2,3)$, or $(3,1)$ and into D_{2} otherwise.

We remark that the arguments used to prove Theorems 2 and 3 can be used to prove the following two results. We do not present the details.

Theorem 4. If $\mathbf{n} \mapsto\left(u_{1}, u_{2}\right)^{3}$ and $m \mapsto\left(v_{1}, v_{2}\right)^{3}$, then

$$
\mathrm{mn} \mapsto\left(u_{1}+v_{1}-2, u_{2}+v_{2}-2\right)^{3}
$$

Theorem 5. If $n \mapsto(u, v)^{3}$, then $3 \mathrm{n} \mapsto(\mathrm{u}+1, v+1)^{3}$.
Our next theorem will enable us to establish results of the form $\mathbf{n} \mapsto(u, v)^{3}$ when v is small compared to u.

Theorem
6. If $n \mapsto(u, v)^{3}$ and $m \mapsto(w, v)^{3}$, then

$$
\boldsymbol{m} \boldsymbol{n} \mapsto((u-1)(w-1)+1, v)^{3} .
$$

Proof. Let S and \boldsymbol{T} be as in the proof of Theorem 2 with $\left(C_{1}, C_{2}\right)$ a $(u, v)^{3}$ partition and each $\left(C_{1}^{(j)}, C_{2}^{(j)}\right)$ a $(\mathrm{w}, v)^{3}$ partition. Define $[T]^{3}=\left(D_{1}, D_{2}\right)$ as before for triples A with α, γ, λ all alike or all distinct. If two of α, γ, λ are equal put A in D_{1}. It is now a straightforward matter to verify that $\left(D_{1}, D_{2}\right)$ is a $((u-1)(w-1)+1, v)^{3}$ partition of $[T]^{3}$. We leave the details to the reader.
We list in Table I some results of the form $n \mapsto(u, v)^{3}$ that can

TABLE1			
u	V	n	best previous n
4	4		12
5	4	-	16
5	5	36	32
6	4	-	21
6	5	57	53
6	6	144	107
7	4	36	27
7	5	93	80
7	6	237	186
7	7	456	372
8	4	43	34
8	5	136	114
8	6	373	300
8	7	829	672
8	8	1728	1344

be obtained from our theorems and the results of Kalbfleisch and Isbell. For the sake of comparison we list also the best previous result. The symbol "-" indicates that we have been able to get no improvement. We consider only $4 \leqslant \mathrm{v} \leqslant u \leqslant 8$.

3. The Case $r=3, k$ Large

In this section we shall show that (5) can be substantially improved.

$$
\text { Theorem 7. If } u \geqslant 5 \text { and } n \mapsto(u)_{k}^{3} \text {, then } n^{2} \mapsto(u)_{k+1}^{3} \text {. }
$$

Proof. Let $\mathrm{S}=\{1,2, \ldots, \mathrm{n}\}$ and let $[S]^{3}=\left(C_{1}, C_{2}, \ldots, \mathrm{C}\right.$, $)$ be a $(u)_{k}^{3}$ partition of $[S]^{3}$. Let $\mathbf{T}=\bigcup_{j=1}^{n} S_{j}$ be an n^{2}-set consisting of n disjoint n-sets $S_{j}=\left\{x_{i 1}, \ldots, x_{j n}\right\}$. Let $S \cap \mathbf{T} \varnothing$ and let $\left[S_{j}\right]^{3}=\left(V_{1 l}^{(j)} C_{2}^{(j)}, \ldots, C_{k}^{(j)}\right)$ be a $(u)_{k}^{3}$ partition of $\left[S_{j}\right]^{3}$. Let $[T]^{3}=\left(D_{1}, D_{2}, \ldots, D_{k+1}\right)$ de defined as follows: Consider $\mathrm{A}=\left\{x_{\alpha \beta}, x_{\gamma \delta}, x_{\lambda \mu}\right\} \in[T]^{3}$. If $\alpha=\gamma=\lambda$ (so that $\mathrm{A} \in\left[S_{\alpha}\right]^{3}$) put A in D_{i} if A is in $C_{i}^{(\alpha)}$. If a, γ and λ are distinct (so that $\{\alpha, \gamma, \lambda\} \in[S]^{3}$) put A in D_{i} if $\{\alpha, \gamma, \lambda\}$ is in C_{i}. If exactly two of α, γ, and λ are equal, put A in D_{k+1}. It is now a routine matter to verify that $\left(D_{1}, D_{2}, \ldots, D_{k+1}\right)$ is a $(u)_{k+1}^{3}$ partition of $[T]^{3}$.

In the case $u=4$, the construction given in the proof of Theorem 7 does not work. However, the following result holds:

Theorem \quad 8. If $n \mapsto(4)_{k}^{3}$, then $n^{2} \mapsto(4)_{k+2}^{3}$.

Proof. The construction is the same as in Theorem 7 except that if two of α, γ, and λ are equal, say $\alpha=\gamma \neq \lambda$, put \mathbf{A} into D_{k+1} if $\alpha>\lambda$ and into D_{k+2} if $\alpha<\lambda$.

We now show how Theorem 7 can be used to improve (5). By choosing m sufficiently large we have, by (3),

$$
\begin{equation*}
\mathbf{m} \mapsto\left(\left[c(\log m)^{1 / 2}\right]\right)_{2}^{3} \tag{7}
\end{equation*}
$$

Henceforth \mathbf{m} is fixed. It now follows from (7) and Theorem 7, by induction on \mathbf{k}, that

$$
\begin{equation*}
m^{2^{k-2}} \mapsto\left(\left[c(\log m)^{1 / 2}\right]\right)_{k}^{3} . \tag{8}
\end{equation*}
$$

Let \mathbf{n} be given and let \mathbf{k} be defined by $m^{2^{k-3}}<\mathbf{n} \leqslant m^{2^{2-2}}$. It then follows from (8) that

$$
\mathrm{n} \mapsto\left(\left[c(\log m)^{1 / 2}\right]\right)_{k}^{3}
$$

Finally, since

$$
\frac{\log n}{2^{k-2}} \leqslant \log m<\frac{\log n}{2^{k-3}}
$$

we get

$$
\begin{equation*}
n \mapsto\left(\left[c\left(\frac{\log n}{2^{k}}\right)^{1 / 2}\right]\right)_{k}^{3} \tag{9}
\end{equation*}
$$

It is clear that (9) is substantially stronger than (5).

Acknowledgment

[^0]
References

1. H. L. Abbotт, A note on Ramsey's theorem, Canad. Math. Bull. 15 (1972), 9-10.
2. V. Chvatal, Hypergraphs and Ramseyian theorems, Proc. Amer. Math. Soc. 27 (1971), 434-440.
3. P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc, 53 (1947), 292-294.
4. P. Erdös, A. Hajnal, and R. Rado, Partition relations for cardinal numbers, Acta. Math. Acad. Sci. Hungar. 16 (1965), 85-87.
5. J. R. Isbell, $N(4,4 ; 3) \geqslant 13$, J. Combinatorial Theory 6 (1969), 210.
6. J. g. Kalbfleisch, On Robillard's bounds for Ramsey Numbers, Canad. Math. Bull. 14 (1971), 437-449.
7. M. Kreiger, An inequality for higher Ramsey Numbers, Notices Amer. Math. Soc. 15 (1968), 1035.
8. F. P. Ramsey, On a problem in formal logic, Proc. London Math. Soc. 2 (1930), 264-286.

[^0]: We wish to express our thanks to the referee, whose remarks improved considerably the exposition of our results.

