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Let n,  r, u1  , u2 ,...,  uk  be positive integers satisfying u,  > r for i = 1, 2 ,...,  k.
The symbol n  --f  (ul  , u2  , . . . , u$ means that, for any partition of the r-subsets
of an n-set S into k classes C, , C, ,..., C, , there is a ui-subset  of S all of whose
r-subsets belong to Ci for some i, 1  < i < k. A theorem of F. P. Ramsey asserts
that, if r, u1  , u2 ,...,  uk  are given, then n  + (ui , LIP ,...,  uh)l for all sufficiently
large n. n  H (ui , uz  ,...,  u$  denotes the negation of n  -+  (a, uz ,...,  u$. In this
paper a number of results of the form n H (ul,  ug ,...,  ~3”  are obtained.

1. INTRODUCTION

If S is a set, 1 S I denotes the cardinality of S, and, if r is a positive
integer, [S]’ is the family of all r-subsets of S. [S]’  = (C, , C, ,...,  C,)
denotes a partition of [S]’  into k families C, , C, ,...,  C, . Let
n, r,  u1 , u2 ,..., ulc be positive integers satisfying ui > r for i = 1,2,...,  k.
The symbol

fI  - (u1 , u2  ,***>  @Jr (1)

means that, if S is an n-set, then for every partion [SIV = (C, , C, ,...,  C,)
there is a q-subset Vi of S such that [Vi]’ C Ci for some i. It is a well-
known theorem of F. P. Ramsey [8]  that, for given r, ul,  u2  ,...,  uk,
(1) holds for all sufficiently large ~1. The least such n is called a Ramsey
Number. The symbol

n + 04 7 u2 ,-**, %Y (2)

will be used to denote the negation of (1). Whenever ui = u for all i,
(1) and (2) will be written as yt + (u);  and n ++ (u);  , respectively. By a
(Ul , u2 P.--Y ZQ partition we shall mean a partition which establishes (2).

The case r = 2 has been studied extensively by many authors. In this
paper we shall be concerned with the case r = 3, although most of our
results extend with only minor modifications to the case r > 3. First
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we mention briefl some of the known results. P. ErdGs [3]  has proved
by probabilistic methods that, if (“,)  < 2(:)-l, then y1 ++ (u): . It has been
pointed out by J. G. Kalbfleisch [6]  (see also [2]  and [7])  that the argument
used by Erdijs can be generalized so as to give the following result:

In particular, if r = 3 and k = 2 one gets, via a simple computation
(c is an absolute constantl),

fi ++ ([c(log  ny1>;  , (3)

and for arbitrary k one gets

nl-+  ([c (+$J#‘],:  1

We remark that, by using the methods of [I], (4) can be improved to

In [6],  Kalbfleisch proved the following theorem:

(4)

THEOREM 1 (Kalbfleisch). rf 12 ++ (u,  2’ - 1)” and m F+ (u - 1, u)~,
then n + m ++  (u, 0)“.

From Theorem 1 and the result 12 ++ (4): of J. R. Isbell  [5],  Kalbfleisch
deduced that

6(
u+v--8

) (+ u + v - 4
u - 4 u - 2 1

b  (24,  v)“. (6)

One can check that, for small values of u and D,  (6) is superior to the result
of Erdijs and, moreover, has the advantage of being constructive. However,
simple calculations show that ErdGs’s result is stronger when u and u are
large. For example, (6) gives only n t-+  ([c log n])3, .

In Section 2 of this paper we prove some theorems which, when
combined with Theorem 1 of Kalbfleisch and the result of Isbell,  yield
results which are stronger than (6) for U,  v > 4 (except in the case u = 4,
u = 4, 5, 6). In Section 3 we consider the case r = 3, k large, and obtain
a result which is substantially better than (5).

1 The letter c will be used throughout to denote absolute constants. The numerical
value of c will not necessarily be the same at each occurrence.
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2. THE CASE r = 3,k = 2

THEOREM 2. If n F+  (u)“,  and m  H (u)fj , then mn ti (u + v - 2);

Proof. Let S be an n-set. We may suppose without loss of generality
that S = {I,  2 ,...,  n]. Let [S13 = (C,  , C,) be a (u); partition of
[S13. Let T = uz, Si be an mn-set consisting of n disjoint m-sets
Sj  = {Xjl  3  Xj2  y..e, xj,}. Let S n T = o and let [,$I” = (C:j’,  qj))  be a
(u)“,  partition of [&I”.  Let [T13  = (D1  , D,)  where D, and D, are determined
as follows: Consider A = {xus , x,,~,  x,+,,}  E [T13.  If 01 = y = h (in which
case p, 6, and TV are distinct and A E [SJ3) put A in D1  or D, according as
A is in Cp) or Cg’.  If (II,  y,  and h are distinct (in which case (01,  y,  A> E [5’13)
put A in D1 or D, according as (01,  y,  A}  is in C, or C, . If exactly two of
OL,  y,  and h are equal, say 01 = y # A,  put A in D, or D, according as
a>horA<;\.

Suppose there were a (u + u - 2)-subset R of T such that [RI3 C D,
or [RI3  _C Dz  . It follows from the above construction that 1 R n S,  j <  u  - 1
for j = 1, 2,..., n. Now consider, for any (Y and 13, LY > /3, x,,, , xa8 E S,
and xBA , x,, E S, . Then by our construction {x,,  , xas,  xaA}  E D, and
hw  3 xan , ~a,>  E & ; so we may therefore suppose that 1 R n Sj  1 < 1 for
all except possibly one value ofj. This means that there exist at least u
distinct numbers cyl , az ,...,  01~ such that I R n &, / < u - 1 and
/ R n Smf  I = 1 for j = 2, 3,..., u. However, this would imply that there
is a u-subset U of S (namely, U = (01~) 01~  ,...,  a,})  such that [U13  C C,
or [U13  C C, , and this is a contradiction. This completes the proof of
Theorem 2.

THEOREM 3. If m H (0): , then 3m F+  (u + 1): .

Proof. By letting n = u = 3 in Theorem 2 (and suppressing the
hypothesis n H (u):),  the same proof works if the partition (Dl , D,) is
modified thus: when exactly two of 01, y,  X are equal, say (Y = y # A,
put A into D, if (01,  A) equals (1,2),  (2, 3),  or (3, 1) and into D, otherwise.

We remark that the arguments used to prove Theorems 2 and 3 can be
used to prove the following two results. We do not present the details.

THEOREM 4. If n H (ul , uJ3 and  m  w (vl , qJ3,  then

mn ++  (2~  + ul - 2, u2 + u2  - 2)3.

THEOREM 5. Ifn t+ (u, v)~, then 3n i--t  (u + 1, z, + 1)3.

Our next theorem will enable us to establish results of the form
n H (u,  0)”  when v is small compared to U.
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THEOREM 6. If n t+ (u, u)”  and m i-t  (IV, v)~, then

mn t+ ((u - l)(w - 1) + 1, v)“.

Proof. Let S and T be as in the proof of Theorem 2 with (C,  , C,)
a (u,  0)”  partition and each (C!p’,  Ct’))  a (w, u)~ partition. Define
[Tls  = (& , D,)  as before for triples A with 01, y, X all alike or all distinct.
If two of (11, y, X are equal put A in D1 . It is now a straightforward matter to
verify that (& , D.J is a ((u  - l)(w  - 1) + 1, u)”  partition of [TJ3.  We
leave the details to the reader.

We list in Table I some results of the form n ti (u, a)”  that can

TABLE1

u V n best previous n

4 4

5 4

5 5
6 4

6 5

6 6

7 4

7 5

7 6

7 7
8 4

8 5

8 6

8 7

8 8

-

3 6
-

51

144

3 6

9 3

2 3 7

4 5 6

4 3

136

373

8 2 9

1728

1 2

1 6

3 2

2 1

5 3

107

21

8 0

186

372

3 4

114

3 0 0

6 7 2

1344

be obtained from our theorems and the results of Kalbfleisch and Isbell.
For the sake of comparison we list also the best previous result. The
symbol “-” indicates that we have been able to get no improvement.
We consider only 4 < v < u < 8.

3. THE CASE r = 3, k LARGE

In this section we shall show that (5) can be substantially improved.

THEOREM 7. Ifu 2 5 and n H (u)f  , then n2 F-+ (u)“,,  .

582a/r6/1-2
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Proof. Let S = {I, 2,..., n} and let [SIB = (C,  , C, ,..., C,) be a (u>i
partition of [S13. Let T = lJyzl Sj be an $-set  consisting of n  disjoint
/z-sets  S, = {xjl  ,..., xjn}.  Let S n  T D and let  [S.13 = (C”’ C’j’
be a (u): partition of [$I”.  Let [T13  = (Dl , D, ,‘..,

2 )...)  C’!‘)
D,,,; de defined ‘as

follows: Consider A = {x,,  , xY6  , x,,~}  E [T13. If a: = y = X  (so that
A E [SJ3) put A in Di if A is in CiI=) If a, y and h  are distinct (so that.
{cy,  y,  A}  E [S13) put A in Di if {ol,  y,  A}  is in Ci . If exactly two of cy,  y,
and h are equal, put A in D,,, . It is now a routine matter to verify that
(01 > D, ,...> DIi+J is a (u);,,  partition of [i’J3.

In the case u = 4, the construction given in the proof of Theorem 7
does not work. However, the following result holds:

THEOREM 8. Ifn  H (4):  , then n2 H (4)3,+, .

Proof. The construction is the same as in Theorem 7 except that if
two of 01, y,  and h are equal, say E = y #  A,  put A into Dli+l if 01 > h  and
into Dk+*  if 01 < A.

We now show how Theorem 7 can be used to improve (5). By choosing m
sufficiently large we have, by (3),

m H ([c(log rn)l’“])~ . (7)

Henceforth m is fixed. It now follows from (7) and Theorem 7, by induction
on k, that

m 2k--2 b  ([c(log m)‘l”])“, . (8)

Let n be given and let k be defined by m2”-3  < n < m2’-‘.  It then follows
from (8) that

n H ([c(log m)1/2])3k’

Finally, since

log n
2k-2

we get

It is clear that (9) is substantially stronger than (5).
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