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Abstract

Tannaka duals of finite-dimensional Hopf algebras inside semisimple tensor categories
are used to construct orbifold tensor categories, which are shown to include the Tannaka
dual of the dual Hopf algebras. The second orbifolds are then monoidally equivalent to the
initial tensor categories in a canonical fashian2002 Elsevier Science (USA). All rights
reserved.
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Introduction

One of the major interests in recent studies of Hopf algebras is based on
its use as quantum symmetry, which can be described more or less in terms of
the notion of tensor category [3,12,14]. In this respect, finite group symmetry in
tensor category is particularly interesting and provides the right place to take out
guotients, known as the orbifold construction.

There have been many interesting researches on orbifolds of quantum
symmetries, particularly in connection with conformal field theory (see [5,6,11]
for example). There are also recent works such as [18,19,29], which deals with
the subject related to tensor categories.

In our previous paper [42], we proposed a pure algebraic formulation of
orbifolds of tensor categories with respect to finite group symmetry motivated
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by these works of physical interest, which recovers the combinatorial data
of orbifolds in concrete examples such as ADE-models (see [12] for more
information on the ADE classification).

More precisely, starting with a tensor category bearing a finite group symmetry
inside, the associated orbifold is formulated as a tensor category of bimodules
with actions of the preassigned symmetry group. When the relevant group is
abelian, the dual group appears naturally inside our orbifold tensor category and
hence it enables us to take the second orbifold which turns out to be monoidally
equivalent to the initial tensor category, a duality for orbifolds in [42].

In the present paper, we shall extend this kind of duality to the symmetry
governed by Hopf algebras.

Given a finite-dimensional semisimple Hopf algebravith its Tannaka dual
A realized inside a semisimple tensor categ@rywe introduce the notion of
A-A modules in7, which is formulated in terms of the existence of trivializing
isomorphisms. In the group (algebra) case, this reflects the absorbing property of
regular representations.

The totality of ourA-.A modules then turns out to constitute a tensor category
T x A with the unit object given by an analogue of the regular representatian of
The notation indicates the fact that it is a categorical analogue of crossed products
in operator algebras (see [39] for details). More explicitly, if a Hopf algebra
(symmetry)A comes into through a coaction on an operator algabyshen the
crossed (or smash) product algebfax A* and the fixed point algebr&(4 are
associated so that they act dhin a bimodule fashion. Moreover thé x A*-M4
bimoduleM obtained this way is imprimitive in the sense thitx A* and M4
are commutants of each other. The existence of such an imprimitivity bimodule
enables us to change the acting algebras for operator-algebraic bimodules from
M x A* into M4 or from M4 into M x A* without modifying the structure of
tensor categories (cf. [2] for an algebraic formulation of these facts).

The crossed products vs. fixed point algebras reciprocity of this kind then
(when it being suitably translated in terms of pure algebras) allows us to interpret
T x A as presenting the orbifold Gf by the dual Hopf algebra* (cf. [38]).

The orbifold tensor category x A in turn admits a canonical realization of
the Tannaka duaB of the dual Hopf algebrai*, which allows us to take the
second orbifold(Z x A) x B and one of our main results shows the duality
(T xA) xB=ET.

In our previous paper [42], we proved this for finite abelian groups by counting
the number of simple objects in the second ddal A) x B. Here we shall give
a more conceptual proof of duality. The idea has long been known in harmonic
analysis of induced representations as imprimitivity bimodules [10,30].

By forgetting the bimodule action oft on the unit object to one-sided (say,
right) A-action, we can make it into a riglf-module M with the property of
imprimitivity, M @ g M* = I andgM™* ® Mg = glj.
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If we place M at an off-diagonal corner of a suitable bicategory so that it
connectsl and(7 x A) x B, then the duality is obtained quite easily, though it
still bears rich information on orbifold constructions.

We notice here that another interesting categorical formulation of imprimitivity
bimodules is worked out by D. Tambara [34], where a different notion of
categorical module is used to get an imprimitivity bimodule which relades
andB.

For future applications, we also investigate how the rigidity is inherited under
the process of taking orbifolds: if the original tensor categ®rys rigid and
semisimple, then so is for the orbifold tensor catedbry A.

Basic assumptions

We shall work with the complex number fieldas a ground field, though any
algebraically closed field of characteristic zero can be used equally well.

By a tensor category, we shall mean a linear category with a compatible
monoidal structure, which is assumed to be strict without losing generality by
the coherence theorem (see [26] for example).

A tensor category is said to be semisimple if EXg= Hom(X, X) is a finite-
dimensional semisimple algebra for any obj&ctTensor categories in this paper
are also assumed to be closed under taking subobjects and direct sums (which is
not a real restriction for combinatorial structures): To an idempetehEnd(X),
an objecteX (the associated subobject) is assigned so that (BN Y) =
fHom(X, Y)e and a finite family{X ;}1<;<» Of objects gives rise to an object
X1® - ® X, sothat

HOM(X1 @ & Xy, Y18 - @ ¥,) = P Hom(X;, ¥;).
LJ

The unit object in a semisimple tensor category is assumed to be simple, i.e.,
End(7) = C1;, without further qualifications.

Let A be a finite-dimensional semisimple Hopf algebra with the associated
tensor categoryl of finite-dimensionald-modules (the Tannaka dual 4f), see
[27,36,37,40] for more information on Tannaka duals of Hopf algebras. Since the
ground field is assumed to be of characteristic zero, the antipagiésafivolutory
[22,23] and thend admit dual objects in an involutory fashion: the accompanied
rigidity pairings and copairings are given by the ordinary ones (i.e., those in vector
spaces), which we shall denote by :V @ V* — C anddy:C —» V*® V,
respectively. Note that, if we denote the transposed morphisrfi:éof — W
by 'f:W* — V* then(V*)* = V and’(’f). The quantum dimensia#(V) of
an objectV then coincides with the ordinary (vector space) dimension(dim
(For the notion of rigidity and related subjects, we refer to [1,3,4,14,28,31] and
references therein.)
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Recall here that the dual objekt of V is based on the dual vector space of the
underlying vector space of. Let U, V, andW be objects ind. Our assumption
then allows us to identify various triangular vector spaces

Hom(U ® V, W), Hom(V,U* @ W), Hom(V @ W*, U™),

and so on. The connecting isomorphisms are referred to as Frobenius transforms,
which are obtained by switching input or output objects by pairings or copairings.
By the involutivity of antipodes, we have the coherence for repeated applications
of Frobenius transforms (see [41]).

Although our main concerns are centered around tensor categories, the notion
of bicategories also comes into as a relevant language to describe categorical
bimodules. Recall that a bicategory consists of a class of labgl#i and so
on (which is considered to be the counterpart of objects in ordinary categories)
and a family of categorie$Hom(A, B)} indexed by a pair of labels (which
is an analogue of hom-sets in ordinary categories and referred to as hom-
categories), which satisfies some reasonable axioms analogous to those for
ordinary morphisms (see, for example, [26] for details on bicategories).

In the present paper, we shall adopt somewhat less formal notation (and
convention) which makes it easier to trace the resemblance with tensor categories:
Instead of Hom4, B), we simply writeg’H 4. Then, given an objecX in gH 4
and another objec in ¢’Hg, as an analogy to the composition of morphisms,
we can associate the third objectdft{ 4, which is denoted by the notation of
tensor product ® X. The operation is also supposed to be applied to morphisms
in categorieg’H 4 so that, givery : X — X' in gH 4 andg:Y — Y’ in o Hp, we
haveg® .Y X - Y ® X'.

The associativity of the “composition” in bicategory is then described by a
completely same way as that of tensor categories: we are privileged to identify
double “compositionsX ® Y) ® Z and X ® (Y ® Z) so that it satisfies the
pentagonal identity (the coherence condition for triple “compositions”).

To recover the original interpretation of hom-categories, given label ohjects
andB, express the multiplicative nature of hom-categories in the matrix form

(AHA AHB)_
BHA4 BHB

It is now clear that eachh H 4 is an ordinary tensor category and a bicategory
of single object (label) is synonymous to a tensor category.

1. Bimodulesin tensor categories

Let 7 be a semisimple tensor category (closed under taking subobjects and
direct sums). By imbeddin@ into 7 ® V=V ® 7 with V denoting the tensor
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category of finite-dimensional vector spaces, we can perform the tensor product
X®V =V ®X ofan objectX in 7 and an objecV in V so that

Hom(X® V,Y ® W) =Hom(X, Y) ® Hom(V, W).

Note here that the imbeddind — 7 ® V gives an equivalence of tensor
categories by the semisimplicity assumption’bnWe also remark that, given
a representative sétof simple objects iri/, we have

X EBS ® Hom(s, X)
seS
n7T®V.

Let A be a finite-dimensional semisimple Hopf algebra with the associated
tensor category4 of finite-dimensionalA-modules and consider a monoidal
imbeddingF : A — 7 (F being a fully faithful monoidal functor). Since the
tensor categoryl admits the canonical Frobenius duality, the same holds for its
image undef: we shall denote the accompanied rigidity pairings and copairings
by ery - FIV)Q@ F(V*) = 1 andSF(V) 1 — F(V*)® F(V), respectively.

By aleft.A-modulen 7 (relative to the imbedding’), we shall mean an object
X in 7 together with a natural family of isomorphisfis, : F(V)@ X — X®V}

(we forget theA-module structure o¥/, W and regard them just vector spaces
when taking the tensor product with) satisfying the associativity

FVQFW) QX2 LF(V)@X®W

m‘l}iw®1l J@V@l

FVRIW)QX——XQVW

Lvew
and the condition that
o FORX=T®X—>X=X®C
is reduced to the left unit constraiit in 7.

Let B be another finite-dimensional semisimple Hopf algebra vitihe
tensor category oB-modules and; : 5 — 7 be a monoidal imbedding. Aght
B-modulein 7 (throughG) is, by definition, an object in 7 together with
a natural family of isomorphismgry : Y ® G(W) — W ® Y} such thatyc = ry
(= the right unit constraint for) and

Y®GW)®GW) -2 v gy ecw)

’”x(;,w®1l ll‘@lﬁw
YQGVRW)——VRIWRY.
Yvew

An A-B bimodulein 7 (relative to the imbeddingE, G) is an objectX in 7
together with structures of a left-module and a righB-module,

v FV)®@X—>V®X, YW X®GW)—>WeX
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such that the following diagram commutes:

FV)@XQGW) ——=F(V)QWRX—7=WQRF(V)®X

|

X®VRGW) XGWM)Q@V—WeXeV.

We shall often writeq X3 to indicate and-15 bimodule based on an objektin 7
when no confusion arises for the choice of familjes }, {vw}. We also use the
notationéy w: F(V) @ X @ G(W) - W ® X ® V to express the isomorphism
in the above diagram, which is referred to asrigializing isomorphismin the
following.

Example1.1. If A is the function algebra of afinite group, thenH is realized as

a subset of the spectrum S0 (the set of equivalence classes of simple objects)
of 7 through the imbedding” and the functo itself is identified with a lift of

H c Spec7). Similarly, if B is the function algebra of another finite grokp
then the monoidal imbedding : B — 7 is identified with a lift of K C Spec7).

With this observation in mind4-5 bimodules are naturally recognized ds
K bimodules in7 in the sense of [41]: this case, the underlying vector spaces
for simple A-modules are identified with the 1-dimensional vector sp@ce
Of course, when thed-module structure is concerned, we should distinguish
them according to points in the spectrum #&tf A and we shall writeC;, to
denote the simplé-module corresponding to an elemént H, which forms a
representative set of simple objects in the categbrgnd there exists a natural
way of identificationsC, ® C;, =Cg, for g, h € H.

So, given a monoidal imbedding:.A — 7, we obtain a family of invertible
objects X, = F(C,) parameterized by € H with an associative family of
multiplication morphismsng j,: X, ® X, — Xgi. Now a left A-moduleX, for
example, is captured as an object in our target categowith an “H-module”
structure governed by a family of isomorphisms x: X, ® X — X satisfying
the associativity

X, @Xp @ X —— X, ®X

J |

Xeh @ X —— X.

Example 1.2. Let A be the group algebra of a finite grodgpwith 4 the Tannaka
dual of G. For notational economy, we writeV to express a (leftfF-module
with the underlying vector spacé. ThusgV ® ¢W, for example, denotes the
tensor producG-module ofg V andg W whereas; V ® W means th&-module
amplified by the vector spad&, with the same underlying vector spakex W.
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Let ¢C[G] be the left regular representation 6f Given an elemerd € G
and aG-moduleg V, define isomorphisms

¢y ¢V ®cC[G] - ¢C[G]®V, vy 6CIGl® gV — V ®cCl[G]

by

1

g =g®ag v, Ylg®v=ag veg.

Then, for any given paita, b) of elements inG, the family {¢7,} and{w{}}
makessC[G] into an A-A bimodule in A (relative to the trivial imbedding),
which is denoted by R%? 4. When the left (respectively right) action is forgotten
in_4R%" 4, the resulting left (respectively righi-module is denoted by R®
(respectivelyR? 4).

Definition 1.3. Given Tannaka duald, 5 (of finite-dimensional semisimple Hopf
algebras) in a semisimple tensor catedbrgnd.A-5 bimodulesy Xg, 4Ygin 7,
we call a morphisny : X — Y in 7 an.A-B intertwinerif the following diagram
commutes:

1ef®l
—

F(V)® X ® G(W) F(V)®Y ® G(W)

W®X®V——E%J—HW®Y®V

The categoryy M (7)p of A-B bimodules in7 is then defined by takingl-
B intertwiners as morphisms in7z. We use the notation Hom X5, 4Y3) to
stand for the hom-sets in the categoy1(7 )z while Hom(X, Y) is reserved to
denote the hom-set i related to the underlying objeckandY in 7.

Example 1.4. Let G be a finite group and4 be its Tannaka dual. Far € G,
denote byp(h) the right regular representation bf p(h):g — gh™! for g €
G c C[G].

(i) Fora,b € G, we have
Hom(4R®, 4R?) = Cp(b~ta) = Hom(R" 4, R 4).

(i) Fora',b' € G, we have

Hom(ARa’,b/A’ ARa,bA) — { (Cp(a—la/) if Cl_la/- _ b_lb/’
0 otherwise

Recall that the underlying vector spaceR$$” is C[G].
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2. Tensor products

We shall make the totality ofi M (7)3 for various Tannaka duald, B into
a bicategory. To this end, we first introduce the notiomdefensor products. Let
X 4 be a rightA-module and,Y be a left.A-module in7". Given a simpleA-
moduleV and a basigv; } of V, let{v}} be its dual basis. Then the linear operator
Vi =0 ® vj in V is identified with an element oA. These for variou® form
matrix units in the algebra. We definev;; € A* by
~ 8;18 i dimV  if V=W,
Vijs wia) = [0 ! otherwise
Clearly{v;;}v,,; forms a linear basis of*.
We now introduce an elemeni(v;;) € End X ® Y) by the composition

1®5F(V)®1 % «
XQY ——XQF(VHQF(V)QY —V*XQ~YQQV—XQY,

where the last morphism in the diagram is given by the pairing @ithif the
composite of the first two morphisms is expressed as

Zv?@tij®vj
iJ

with #;; € EndX ® Y), then we setr(v;;) = dim(V); or, equivalently, the
compositeX ® Y > X Q F(VH)QF(V)®Y - V*® X ® Y ® V has the
expression

> dimv)y "t @ (@) ® vj,
ij

which is an element in
HomMX @Y, V'@ XQYV)=V*QEnNdX®Y)® V.

It is immediate to check that the mapis basis-free and extended to the linear
map ofA* into End X ® Y), which is again denoted by.

Lemma 2.1. Let V, W be simpleA-modules andv;}, {wy} be their bases. Then
we have
7 (V) (Wiy) = 7 (V; Wi ).

Here the multiplication in the right-hand side is the one obtained by dualizing the
coproduct ofA.

Proof. LetU Ly QW n U give an irreducible decomposition 8f®@ W, i.e.,
{T, T*} is a family of morphisms such that*T =1y and) , TT* = lygw.
Then, for the rigidity copairingygw :C - W*Q V*® V ® W, we have

dvew = Z (T®T)dy,
T:U>VeW
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whereT is the transposed map & : V ® W — U. By the associativity and the
naturality of A-actions, we see that the composite morphism
XY > XQ@FWHQF(VHQF(V)QFW)QY
-> W'RV'XQYQVeWw
is equal to
T®LRT
E—

Y (XY >U*®XQYQU
T

W'RVReXRYeVeWw),

whereX®Y - U*® X ® Y ® U is given by the composition
XQY > XQFUNQFU)QY - U"QXQYQU.

If we replace this with

> [dimU) s @ 7 () @

and then compute (v;;)7 (wy;), we obtain the formula

T @7 (@e) = Yy [@dimU)"HTu} @ 7 (iap) ® Tup, jj ® W)
T a,b

d(VYd(W n
_ ZZ (dzU() N T v @ wil{ T v @ wi e ).

On the other hand, the definition of multiplicationAt gives

(03 Wit x) = (0 @ Bir, AC)) =D d(V)A(W)(v} @ wif, TxT*(v; @ wy))
T

forx e A= @y L(V). By using the obvious identity

T*(vi @wi) = Y _(uh, T*(vi ® wi) g,

a

the above expression takes the form

d(V)d(W) Y " (v @ wf, Tacug)uh. T*(v; @ wy)).
T a

or equivalently, we have another formula

d(Vyd(w
Ukal—ZZ (dzU() ) v T® l,TMbX Uy, T*(Ui®wk)>ﬁab’

proving the assertion. O
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Since the trivial representation dfis given by the couni¢, we see thatr (¢)
is equal to the identity morphism as the composition

XRY > XQRIQIQY -CRXQRYC=XQRY.

This, together with the previous lemma, shows thad* — End X ® Y) is an
algebra-homomaorphism. Singg' is semisimple by Larson and Radford [23], the
component of the trivial representation af gives rise to an idempotent; in
End(X ® Y). The associated subobject®¥f® Y is then denoted b¥ ® 4 Y and

is referred to as thel-module tensor produaf X andY.

Remark. (i) The idempotent 4 is realized asr(e), where the idempotentin
A* is given by the normalized invariant integea& A* of A:

_ dim(V)
(e, x) = [XV]: Jmen) tr(xy), xecA.

(i) Since the counit ford* is given by the evaluation map at the unjt &f A,
the idempotent 4 is non-zero if and only if there exists a simple obj&cof 7
such that

{f eHOM(Z, X ® Y); m(a*) o f =a*(1a) f foranya™® € A*} # {0}.

Let A, B andC be Tannaka duals in the tensor categdrgnd considep Xz,
BYc. The tensor product ® Y is then anA-C module in an obvious manner and
the associativity of biactions fox, Y gives the following lemma.

Lemma 2.2. We haver (B*) CEnd(4 X ® Y¢).

In particular, the biaction of4 andC on X ® Y is reduced to the subobject
X ®p Y, which is denoted byy X ®p Y and is referred to as threlative tensor
productof bimodules. For morphismg: 4 Xp — 4X'p andg:gYe — gY'c,
f®geHomM(4X ®Ye, 4 X' ® Y'¢) obviously commutes with (B*) and hence
induces the morphism

feBg:AX®Yc—> AX' ®8Yc,

which is the relative tensor product of morphisms.

The operation of taking relative tensor products is clearly associative. Thus
the categories of bimodules iff constitute a bicategoryM (7) if we can
show the existence of unit objects. Here label objects of the bicateyt(y)
are indexed by Tannaka duals (of finite-dimensional semisimple Hopf algebras)
realized inside the tensor categdry
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3. Unit objects

Let F: A— T be a fully faithful imbedding of the Tannaka dudlof a Hopf
algebraA. GivenA-modulesU, V andW, we use the notation

U
[VW} =Hom(U,V ® W).

Choose a representative $&t} of irreducibleA-modules and set

A:EBF(V)@ V¥,
\%4

which is an objectiry” (more precisely irf” ® V). Given anA-moduleU, define
an isomorphisnF (U) ® A — A ® U by the composition

FO)®A=PFU)OFV)®V"
14

=@Prusv)ev:
\%4
(by the multiplicativity of monoidal functor)

~ @F(X)@[UXV}(X)V*

V,X
(by the irreducible decomposition 6f ® V)

=Prxe [XZ U} ® V* (by Frobenius transform)
V.X

=@Proexeu
X
(by the irreducible decomposition &f* @ U)

=AQU.
Similarly, we define an isomorphiséa® F(U) - U ® A by

AR FU) = PFV)®FU)®V*
14

~ @F(X)@[VXU}(XJV*

V. X
= F(X v’ V*
V. X

-Proevex:
X

U®A.
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Here in the last line, we applied the commutativiRyX) ® U = U ® F(X) and
similarly in the top line.

Lemma 3.1. The isomorphisms defined so far maketo an.4-.4 bimodule.

Proof. We just check the compatibility of left and right isomorphisms: Given
A-modulesU andW, we shall prove the commutativity of the diagram
FUO)QAQF(W)—— FU)QWRA——WQR F{U)®A

|

AQFW)QU —WQRAQU.

ARURF(W)

By the associativity of the monoidal functér
FU)QF(V)QFW)——FU)Q F(VQW)
FUQV)QF(W)—— FUQ®V W),
the problem is reduced to the equality of compositions

@F(X)@[U",(W}@v* - P F(X)@[ny]ea[vyw}@v*

V. X V.X)Y

V*
- Prxe [WX*U} ®V*,
V. X

X . X Y .
@F(X)@[UVW}(@V - P F(X)®[Ywi|®|:UVi|®V

X,V V.X)Y

V*
- Prxe [Wx*U} ® V™.
V.X

By an easy manipulation of transposed morphisms (use the equality of left
and right transposed morphisms), we see that these are the ones associated to the
following composite Frobenius transforms:

X N A v
Uvw | X*UV WX*U |’
X N A N4
uvw | VW X* WX*U |’
In fact, given a vector

f®gE[UXY_ ®[VYW}
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WX X W v
_ WX'U Y
14 v

Fig. 1.

in the middle vector space, we need to identify the map

X =\ ~ V*
[UVW}9(1®g)fr—>(1®f)g€[WX*U]

where

~ Y* - v*
rel ] eelan]
are Frobenius transforms ¢f and g, respectively. Now Fig. 1 shows that the
morphism(1 ® f)g is obtained by applying Frobenius transforms(1a g) f
repeatedly.
Now the coincidence of these is further reduced to the equality of left and right

transposed morphisms, which is a consequence of the involutiveness of antipodes
for finite-dimensional semisimple Hopf algebras [22]1

For later use, we record here the following formula for the inverse trivializa-
tion.
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Lemma 3.2. The inverse of the trivialization isomorphistn® W — F(W) ® A
is given by the following

ES
AW = @F(V)@V*@W%@F(V)@[VEW](@U*
Vv u,v

— @F(V)@[WVU}®U*—>@F(W®U)®U*
u,v %

- PFW) FU)®U*.
U

Here the isomorphisms are given by irreducible decompositions and Frobenius
transforms as in the definition of trivialization isomorphisms.

Proof. This is immediate if we compute the composition with the trivialization
isomorphism, which turns out to be the identity morphisrm

Remark. We have the following gauge ambiguity for the choice of trivializing
isomorphisms: Given an invertible elemefite End(A), we can perturb the
trivialization isomorphisms by the commutativity of the diagram

FU)QAQFW) Y weoA®U
10001 1001

FU)®A® F(W)TW®A®U.
uw
Note that,A being isomorphic tgp, F(V) ® V* as an object iry’, we have the
identification AutA) =[], GL(V*).

When 7 is a C*-tensor category (see [25] for example) aadis a C*-
Hopf algebra, with the choice af defined by the family{./d(V)1ly+}y, the
isomorphismx?,w becomes a unitary. In fact, the unperturbed isomorphism are
locally given by

[VXU:|®V*9T®U*+—>TU*€X*®U

with their norms (the inner products being associated to operator norms) by

*112 _ 1 * K0k %12 1 * K0k
IT @ v _—d(X)<T )™ |v"), 17" _—d(V)(T )™ |v™),

whereT denotes the Frobenius transformfand (T *T) the quantum trance of
T*T € End(X).
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4, Unit constraints

Given a left4-moduleX in 7, we now introduce a morphism: A @ X — X
by the composition

Prvexev -Pxeve V- X,
Vv Vv
where the last morphism is the one associated to the pairing map

@V@V*av@v*ﬁ(v,v*)e(c.
%

Lemma4.1. We have
rom(@) =a*(Dr:A® X - X fora™ e A*.
Moreover,a is A-linear: the following diagram commutes

FU)RARXEL SFU)®X——XQU

|

A®U®X7A®X®UWX®U.

Proof. Let a* = wy; € A* be an element associated to a simglenodule W.
Then the compositioh o 7 (wy;) is given by

PDrveviex - PFryvewHeFW exe v

\%4 \%
U *
— S%F(U)@[VW*}@V QXQW

- PFUHIW QU ®W®X
U

i EBF(U)@U*@X
U

A X,

which is, by the naturality of' (-) ® X — X ® (-), equal to the composition

PDrveviex —— PxeveVv:
\%4 \%

1 1
2 Prevew ewe v

Vv
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- @X®U®W®V*®[Vl‘{v*}
u,v

V*
- @X@U@W@V*@[W*U*}
uU,v

SN @X@U@W@W*@U*
U

— Pxoeveu*
U
pairing
—_——

We now compute how the operation works on vector spaces:

VRV Zv@wfn(@wm@v*

m

> Z (Tup)*, v @ w ) Tu; @ wy @ v*

m,T,i
e Z((Tui)*, v wh i ® wy @ Tv*

— d(W) Z (Tu‘)* V® w;k)(ui ® wy, fv*)

= d(W) Z u; T* v ® w?‘))(ul ® w, fv*)
d(W)Z v®wl ®wk,fv*>.
Here the familie§7 :U — V @ W*}r, {T*:V ® W* — U}r are chosen so that
*T = 685,71y and sefl’ ='T*. Note that, if we denote bju} the dual basis of

{u;}i, then the family{Tu;F} is the dual basis of the baqifu;}r ; of V@ W*.
By the relation

YITT* @)=Y (Iv@ew)TT* ® 1) = 1y ® e,
T T

the above operation on vector spaces ends up with

d(W)(v, v*)ew=(w] ® wg) = d(W)dp (v, v*) = wr (1) (v, v*).
Since the morphisr is associated to the pairing

vV > (v, %),

at the last stage of composition, the above formula gives the result.
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To see thed-linearity, we again use the functoriality of trivializing morphisms
and the problem is reduced to check the commutativity of

@U@V@V* U

" |

w . .
VG?VW@)[UV}@V %?W@W U,

e, (1®ey)(f @1lys) =(ew @ D(Aw ® f) for f e Hom(W, U ® V) with f
Hom(V*, W* ® U) its Frobenius transform, which is an immediate consequence
of rigidity identities. O

By the covariance just checked, the morphismA ® X — X can be
interpreted as defining a morphisgh ® 4X — 4X, which is denoted by .
To see the invertibility ofx, consider the morphism: X — A ® X defined

by
X->Pxevev - PFrMexeoV =AeX,
Vv Vv

where the first morphism is associated to the copairing
Duv Yu o
Vv i

and the weighfuy} will be specified soon after.
Now the compositionr (wy;) o u is given by

X > Prevev L Pxevew owa v
\% \%4

— @X@U@[V%*}@)W@V*
u,v

V*
— @X@U@[W*U*}@)W@v*
u,v
W

- Pxevewew U S PHXURU*
U U

- PruoyexeU*,
U

which we expect to be equal tf W)§y; .
To see this, we work with operations on vector spaces:
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Zﬂvvi@)vi‘
V,i

> Zuvvi®w§®w,~®v?
V.ij

= Z Z /_,l,v((Tua)*’ v [039] w’;)TMa ® w] ® U;k
V,i,jU,T,a

= Y v ((Tua)* v @ whiy ® wj @ T}
=d(W) Z Z ZMV((TMa)*, vi @ w} )up @ wy, Tvﬂua ® uj,
Vi U.T ab

=dW) > wyT*("T s ® we) ® wf) @ uj.
u,v,T,b

If we setS='T:U® W — V and letS*:V — U @ W be the Frobenius
transform of7*: V @ W* — U, then the last expression takes the form

dW) Y puy(A®ew)(S*S(up ® wi) @ wi) @ uj.

U,V,S,b
Applying the formula
Y dWV)S* S =dW)lugw
V.S

for the choiceuy = d(V), the above summation is further reduced to

dW) > (A@ ew)(up ® wi @ w}) @y =d(W)sy Y d(U)up ® -
U.b U,b

Thus, with the choice.y =d(V), we have
m@)ou=a*Hu

fora* e A*.

Lemma4.2. We now claim that
hopu= (Zd(V)2>lx, pokr=(dimAye =" @)
\%4 \%4 i

Proof. The first relation is obvious from definitions.
On the tensor produck ® X, the morphisme (wy;) is, if the trivialization
isomorphismA ® X =@, X ® V ® V* is applied, given by

EBV@V* = @X@V@W*@W@V*
\%4 \%4
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- Pue U lewev:
o vV w*
- Pue VE lewe v
- Puewew ou*
U
2 Pusu.
U
According to this sequence of morphisms, we compgdia A)e 4 as follows:

VRV > Zv@w}i@wk@v*
W,k

> Z((Tua)*, v w)Tug ® wy @ v*

> Y ((Tua)*, v @ w)ug ® wie ® Tv*

= Y dW)((Tua)*. v ® wifup ® wi, Tv*)ug @ uj
= Y d(W){up @ wy, Tv*)T*(v @ w)) @ uj

= Zd(W)(wz @ v*, Tup)T*(v ® wf) @ uj,

=Y dWMT* (v w) T (w ®v*)

=Y dW)(T*®'T)A®sw @ D @ v™).

Now, letting S:V* ® U — W* and $*:W* — V* ® U be Frobenius
transforms ofl’ andT*, respectively, we have
D dW)(T*®'T)(1v @ bw ® 1y+)
w.T
=Y d(W)(ev ® L)1y ® $*S @ 1y=)(Lyv+ ® 8u+)

w,S
=d(U)(ev ® dy=)
because of
D d(W)S* S =d(U)ly+gu.

w.,§

Thus we have
> dWNT* (v @w)) ®'Tw @ v*) = d(U)ey (v @ v¥)eyr,

which gives rise to the morphismpoA. O
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By symmetry, we may expect for the right unit constraint as well. Explicit
computations are as follows: Define a morphigmX ® A — X by the
composition

Prxeormev -@Pvexev =PHxeveVv:-X,
\%4 \% |4
where the last evaluation is specified b®w v* > (v, v*). The inner morphism
7 (wy;) is then given by

Pxervev: - PXRFWHRFW)QF(V)®V*
14 14

U
— @X@W*@F(U)@[WV}@)V*
uU,v
— @X@W*@F(U)@U*@W
uU,v
- XQFU)QU*
= X®A.

By trivializing the functor F, the composition ofr (wy;) with the morphism
X ® A— X is associated to the composition

Pveviex - Pwewevevex
14 14

— @W*@U@[ Y }@V*@X

WV
uU,v

— EBW*@U@U*@W@X
u,v

- UQU*®X

— X.

Now an explicit formula is obtained by working with vector spaces:
VRV wa@wj@)v@v*
= Y (Tua)* wj @ v)w’ @ Tug @ v*
> Z((Tua)*, w; @ v)wi Qu, ® Tv*
> d(W) Y ((Tug)*, wi @ v){(uf @ wi)*, Tv*u, @ uj
= d(W) Y _(w} @ up, Tv*)T* (wi ® v) @ uj.

Here we shall use the identity
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(wi @ up, Tv) = (w] @ v, Tup @ v7)
=Y (Vi ®@wf, Tup)(v;, v*)
= (v ® wf. Tu)
to obtain the expression
= d(W) ) _(v* @ w}, Tup)T*(wi ® v) @ uj
= dW) Y ('T(v* ® w}). up)T*(wi @ v) @ uj
=dW)) T*wi ®v) ®'T(v* ®wy)
— d(W)ZEU(T*@)tT)(wk RV V* Qw)
= dW)ewy(TT*® 1) (wr @ v @ v* @ wy)
= d(W)ewy (wk ® v ® v* @ wy})
= d(W)8ki{v, v*).

Thus p o m(wy) is equal towg(1)p and hencep induces a morphism
rx . X ®A A— X.
For the reverse morphism, we have

X>@Pxevev=PveXxeV' - PXaFV)eV*
\% \% \%
with the first morphism given by
@Zd(V)vi ® v}
vV i
Now the compositioX — X ® A — X is equal to
<Z dim(V)2> 1x
\%4
whereasX ® A — X — X ® A is given by

<Z dim(V)2>eA
\%4
Thusry : X ® 4 A — X is an isomorphism afd-.A bimodules.

Remark. If we use the perturbed trivialization laye Aut(A) for the A-A action
on A, then, u, andp are perturbed inta (e ® 1), (@« 1 ® Hu, andp(1® a),
respectively.

In particular, if 7 is a C*-tensor category, we obtain unitary constraints by
takinga = {/d(V)1ly+}y, i.e., they are associated to the pairing (copairing)

VRV su@vt e VE(V)(vv"),  Vd(V) ) vie@vieVeV*
i
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5. Triangleidentities

We shall now check the triangle identity ftx, rx}, i.e., givenA-modules
X 4 and 4Y, the idempotent 4 € End(X ® Y) equalizesp ® 1 and 1® A as

1
X®A®Y'§£>X®Yﬂ>X®Y.
QA

By the formula
1 ~
CA= Gt ;ﬂ'(uii),
N

we need to consider the composition of
XQFV)QV*QY —VRXQV*QY —XQY

XQFV)QV*QY —XQV*QY @V —XQY
with

D1R3F(w)®1
—

Xy P XFWHFW)Y — P w*xyw =2, xy

w w
(the tensor product symbabd being omitted to save space here and in what

follows).
By the associativity of trivialization, we are faced to comparing

XF(V)Y — @XF(V)F(W*)F(W)Y H@ VIWEXYW =, v xy 1)
w w

and
XFOY =@ XFO)FUHFW)Y —@uxruty Exyv ()
U U

with the identificationV X @ Y =X QY Q V.
To this end, we consider the diagram

F(v)— 280 PFv)e FW")® F(W)
w
Srwy*®1
PrueFUHeFV)—@FU)® [V(xjv*} ® F(W),
U U,w

where the right vertical arrow is given by an irreducible decomposition

(Fn L Fovye Fow 5 Fa)
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and the bottom line by an irreducible decomposition

(Fow) 2 Fun @ F(v) S F(w)).
The diagram turns out to be commutativeSibndT are related so that

:d(W)T
dU)

with 7' the Frobenius transform @f. In fact, the relation ensures the identity

D T* @)Ly ®8w) =dy+ @1y
T

By sandwiching the above diagram hyY ® - ® Y and then applying
trivialization isomorphisms, we obtain the commutative diagram

XF(V)Y — P XF(V)F(W)F(W)Y — P XF(U) vliv*

w uw l

@ VW*XYW%?VBVUX _ vliv*_ YW

F(W)Y

P xrFw) VW FW)Y —— @ XFWU)FU*V)Y
uw - - U

U *
gV}VUX e YW%G{?UXYU V—— XYV,

where the upper route is exactly the morphism (1).
To identify the lower route, we inspect the morphism

U
@VW*W—)@U[VW#F}WHGBUU*V—)V,
W Uw U
which is given by
1QUW QW — Z((Tui)*,v(@w*)Tui Qw
— ZT*(v®w*)®Sw

= Y dU)(er @ DT @ (v @ w* @ w).

The last summation is computed with the help of the relation
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Y AU @DT*®S) =) dW) ey @ D(T*eT)

U, T
=dW)Y_ Asw)(TT* @ 1)
=dW)ly ®dw
to get(w*, w)v, which is equal to
Z(ﬁii, w* @ w)v.
U,i

Thus the bottom route turns out to be the composition
XF(V)Y - VXY > @ VXFWHFW)Y > VW XY w L% v xy,
w w

showing the equality of the morphisms (1) and (2).

To summarize the results obtained so far, we here introduce the following
usage of terminology: by a Tannaka dual realized inside a tensor catégarg
shall mean a monoidal imbeddiigjof the Tannaka dual of a finite-dimensional
semisimple Hopf algebra into the tensor category, which is fully faithful in
the sense that the linear maps

F:Hom(V, W) — Hom(F(V), F(W))

on hom-vector spaces are bijective.
Now we have the following except for the semisimplicity/of(7"), which will
be proved after the rigidity result in Section 6.

Proposition 5.1. Given a semisimple tensor categdfy we have constructed
the semisimple bicatego! (7)) indexed by Tannaka duals of finite-dimensional
semisimple Hopf algebras realized 1h. More precisely, given a familjw,}

of weights indexed by Hopf algebras realized insiiethe pair (Ix, rx) with

X = 4 X5 gives unit constraints.

Remark. Given a Tannaka duad in 7, it is not obvious, at first glance, how big
is the tensor category M (7) 4 of A-A bimodules.
It turn out in Section 7 to be large enough to recover the initial tensor category
becausd’ is realized as the tensor category®#3 bimodules ing M (7)) 4 with
the Tannaka dudp of the dual Hopf algebra* being imbedded intggM (7)) 4
(see Theorem 7.5).

Lemma 5.2. Let A be a finite-dimensional semisimple Hopf algebra withthe
tensor category of finite-dimension&modules. Given an imbeddidg: A — 7
of A into a semisimple tensor categofy, let A = @, F(V) ® V* be the
associated object, where the direct sum is taken over all isomorphism classes
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of irreducible A-modulesV. Then both of4A and A 4 are irreducible as.4-
modules.

Proof. Let
¢ =P ov- e P BV*) =Enda)
|4 |4

belong to End44), i.e.,
FU) @ A——AQU

1®¢l Ld’@l

FU)@A——A®U

for any U. The commutativity is then equivalent to

14 . .
VG?VF(W)QQ-UV_@)V ——@PFrmeweu

J w
EBF(W)@ UV ®V*%@F(W)®W*®U.
V.wW w

Removing theF (W) factor, we have

V*
E

1®¢l 1®¢

V*
I:W*U]@)V*%W*@U

foranyU, V, andW, which means the equality
Toy= = (pw+ @ 1y)T
foranyT:V* - W*QU.
If we takeV = C andU = W with T = 8y, then the condition is reduced to

pc Y wi®uwp =) dw:wi ®u,
k K

which is equivalent tepcw; = ¢w=wj for anyk, i.e.,pw+ = ¢clw+ for any w.
Thus, it is proportional to the identity morphism.1 O

Remark. The triangle identities are satisfied for perturbéd4 actions onA as
well. Particularly, wher? is a C*-tensor category, the unitary constraints for the
choiced = {/d (V) 1ly+} of perturbation satisfy the triangle identity and hence
give rise to unit objects, i.eM(7) is a C*-bicategory.
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Finally we record here that, other than the perturbation for actions, there
remains somewhattrivial freedom for the choice of unit constraints: given a family
{wa}a of non-zero scalars, the unit constrainis: 4A ® 4 Xg — 4Xp5 and
rx ' 4X ®p By — 4Xp are modified by multiplyingn4 andwp, respectively.

6. Rigidity

Let 4 X5 be anA-B module in7 and suppose that admits a dual object
X* with a rigidity pairex: X ® X* — I, éx:I — X* ® X. On the image
of A in 7, we have the natural choice of dual objects (and rigidity pairs),
which enables us to define rigidity pairs sucheagy)x = er(v)(1® ex ® 1),
Sravyx = (1 ® 8rvy ® 1)8x. Note here that the rigidity foF (V) satisfies the
Frobenius duality and we can freely use the relation sucl @)** = F(V)
while we should be more careful when the obj&cis involved because there is
no privileged identification.

Our task here is to check the rigidity ofX5. This being admitted, we can
show the semisimplicity aM (7") as follows: Let 4 Y5 be anA-B module. Since
A andB are rigid as objects il , we have

End4A QY @ Bg) ZHom(Y,AQY ® B) = EB EndY) ® L(V) Q@ L(W)
V.W

(£ indicating the algebra of linear operators) and hencg gfig) = End( 4 A ® 4
Y ®p Bp) is semisimple as a diagonal corner of the semisimple(FAdR ¥ ®
Bg).

Now we return to the rigidity proof. By applying the operation of taking
transposed morphisms, we maké&* into a B-A module: the trivializing
isomorphismG(W)® X*® F(V) — V ® X*® W is defined to be the transposed
morphism of the isomorphism: W* @ X @ V* - F(V*) ® X ® G(W*) with
respect to the duality pairing- v+ xgw+ (tensor product symbols being omitted
in the suffix):

Avxsw ® ervoyxaws) Lvxxw @ ¢ ® lgw)x+F(v+))

X Bwrxv ® Lowyx+Fv+))-

Lemma 6.1. We have the commutative diagrams

XQX*QF(V)—XQ®V ®X*

S

F(V)—s— F(V) @ X @ X*,
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GW)RX* X ——X*QW®X

S

CW) 57— X" ®@X®G(W).

Proof. The composite morphisli @ X* @ F(V) > XV X* - F(V)®
X ® X* — F(V)is given by

Arv)®ex ® EF(V*)X)(w;l ®1lx® w;ﬂ)(lx ® Sxv+),
where the rigidity identity is used to get the expression

Arv) ® €rvex) (Lrv) ® w‘}*l ®1) (w;l ®1)(1x ® Sy ® Ly=p(v)).
Now we apply the associativity @f, pygyv+ = (v ® 1)(1® ¢y+), to obtain

Arwv) ®ervnx)Orv ® Lxx*rv)) = €x @ 1rv).

Similarly for the second diagram.co

Corallary 6.2. The following diagrams commute

XX ——XQVVX* —F(V)X®X*"®V*
XQV*QVRX*—VRIXQX*QF(V)—V*QF(V)=F(V)Q V*,
WQGW)=GW)QW* —=GW)QX*Q3XQW* =X * QW RQW*® X

|

WX " @QXQGW)——=X* QW QWX —— X*® X.

Define the morphism
e:X®X*—>A:@F(V)®V*
\%

by the weighted summation of the above morphisms pW¥émwith weight dimV'.
Similarly we introduce the morphism

S B=PcwW)@W* > X*®X

w

by taking the summation ori¥] without weights.

Lemma 6.3. The morphisme: X ® X* — A is A-A linear, whereass : B —
X*® X is B-B linear.
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Proof. Consider the commutativity of the diagram
FUXQ@X*——FU)®A

|

XX*U——AQU.
The composite morphisiAi(U) @ X ® X* — F(U) ® A - A® U is given by

FUeXeX - PFrexeveV: eX*
14

- ProyeFV)exex eV
\%4

- PraueFv)e v
14

- Prme [UWV] ®V*
V.W

- EBF(W)@W*@U.
w

By the naturality of the trivializatiorF (-) ® X — X ® (-), this composition
can be described by

FUOX®X* - XU X*
— EBX@U@V@V*@X*
\%4

— @X@W@[UWV]®V*®X*
V.W

N @X@W@W*@U@X*
w

N @F(W)@X@X*@W*@U
w

- Prwyew U,
w

whence the problem is reduced to showing

U Puvevev:
h V L
W

?W®W*®U<—§?‘/W®[UV}®V*.
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The commutativity of the last diagram is then a routine work of Frobenius
transforms: Choosing basés; }, {w} of V, W, respectively, and a bas{¥'} of
Hom(W, U ® V), the longer circuit is given by

u - Zd(V)u@vj ®v;’-‘
V.j

= Y d{(Tw)* u ® vj)Twe ® v
T,W.k

— Zd(V)(w,’:, T*(u ® vj))wk ® ij
= Y dT*u®v) @ Tv.

Here{(T wx)*}w,r.x denotes the dual basis associated to the §&sig }w 7« of
the vector spact ® V.

By replacing the summation indic&sandT* with their Frobenius transforms
S:U*®Q@ W — V and $*:V —» U* ® W (i.e.,, {S} and {S*} denote bases
in Hom(U* ® W, V) and HomV, U* ® W), respectively, which are obtained
from {T} and{T*} by applying the natural isomorphisms HOW, U ® V) —
Hom(U* ® W, V) and Hon{U ® V, W) — Hom(V, U* ® W)), we have (use
S="15)

> dW)(T* @ T)(1y ® 8v+)
T,V

=Y " d(V)(ev ® lww=r)(1y ® S*S ® Lw+u)(ly ® Sw+v)
S,V

=d(W)(ey @ lww+u)(1y ® Sw+u)
=d(W)dw+ ® 1y,

which is used to get

D dWNT u®v) ® Tv; = > AWy @ wi @u.
W,k

A bit of care is needed for the right action: the commutativity of the diagram

XQ@X*QFU)——A®FU)

URXQX* —UQA.
By using the previous lemma, the composite morphi$n® X* ® F(U) —
A® F(U)— U ® A is given by

XX ®FU) > XV ®VeX e FU)
Vv
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- PV exex ®F(V)eF{U)
14

- PV RFV)®FU)
14

> Pvermwe [VWU]
v.w

- PUeWw R F(W).
w

By the naturality of trivialization, this is equal to

XQX*QF(U) > XQUQ®X*

N @X@V*@V@U@X*
\%

— @X@V*@W@[
V.W

N @X@U@W*@W@X*
w

— @U@W*@X@X*@F(W)
w

- PUeWw e F(W).
w
If we compare this with the other composite morphism

w

*
Vo |ex

XQURX* > (PXQUaW @WeX*
w

- PUew XX ®F(W)
w
- Pueow e Fmw),
w
then the problem is reduced to the commutativity of

U Pvieveu

| "
@U@W*@W%@V*@W@[VWU}
w V.w

which is now easily checked as before.

379
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A similar computation works for th8-5 linearity. For example, the commu-
tativity of

GW)B——GW)®X*® X

| J

BRIW——X*QXQW
is reduced to that of

W®V®V*%@U®[ Y
U

wv

J

W————PUeU* W,
U

which holds if we define the morphiskh— X* ® X without weights. O

Jor

Lemma 6.4. The morphisms: X ® X* — A andé:B — X* ® X are supported
by e ande 4, respectively, i.e oeg =€ ande 4 0 § = 4.

Proof. We shall check o eg = €. By the commutativity of left and right actions
on X, we see that the compositiQn, € o 7w (W) is given by

XX — @X@V@V*@X*
\%

—— Prvmexex v
14

—— PFVIBX G ®GW)® X ® V*
14

—— PFMIW RXRIX QW V*
14

—X S PrvIew eweVv*
Vv
> (Wik) @F(V) ® V*.
Vv
From the definition oz (W) ® X* — X* ® W, the morphism

1®38 ®1 *
XX —PEXQCW) @GW)@X* — W@ X ® X* @ WX

is equal tod(W)ex. Since ), (W) = d(W)(1 ® ew+ ® 1), we obtain the
relation

> e om (i) =d(W)*e
k
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and hence o e = ¢ by taking the summation over the ¢W1}. O

We shall now compute

—1
X2 5 XB 2 X X @4 X <2 A0 X2 X,

As ¢, 8, and (A, p) are supported by 4 or ei, the problem is equivalent to
working with

-1
@p 188 e®1 WA

X

X®B XRX*®X

A®X X.

From definition, the compositioi -~ X ® B — X ® X* ® X is given by

igh
x L Pwreowex->@Pxew ecmw

w w
SN @X@W*@X*@X@G(W)
w

SN @X@W*@X*@W@XﬁX@X*@X,
w

where weight= d(W)a)El dim(B)~1. By Lemma 6.1, this is equivalent to

ight
x Y97 Preowex—-PWeXeGw)
w w

— PWeXRIGW)RX*®X
w

SN @W*@X@X*@W@XaX@X*@X.
w

Similarly, the compositiolk ® X*® X - A ® X — X is given by

ight
xx*x 29 P xV VXX > PXVXFV)X
% %

— PxvexrxV - xx°x S x
Vv
with weight=d(V)w4.

Note here that by the commutativiy ® V =V ® 7, the position of vector
spaces such ds can be freely moved left and right, which is pictorially reflected
in crossing lines (cf. Fig. 2).

Now, combining these two expressions and then applying the definition of the
trivialization isomorphism& (W) @ X* - X*Q W,V X* - X*® F(V), we
have the morphism
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Fig. 2.
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Fig. 3.

X - W*WX — W*XG(W) » W*F(V)F(V)*XG(W)
— F(V)W*XV*G(W) — F(V)XG(W*)V*G(W)
— XVV*G(W)*G(W) — X,

which is summed ovefV] and[W] with the weightd (V)d(W)wa /wp dim(A)
multiplied (Fig. 2). By the commutativity of left and right actions, we can replace
the partF (V)*WX — XV*G(W) with

WF(VHX - WXV* - XG(W)V*
to get the expression (Fig. 3)
X - FWVW*WF(V)*X - FV)W*WXV* > F(V)W*XG(W)V*
— FIMXGWHGW)V* - XVG(W)*G(W)V* — X.

By the associativity of the right action o0, the last local morphism is reduced
to

X—>F(V)F(V)*X > F(V)XV*—> XVV* > X

multiplied byd (W), which is further reduced @(V)d (W)1x by the associativity
of the left action onX.
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In total, the morphismX — XX*X — X in question amounts to the scalar
multiple of 1x by

> dV)2dW)? o _ dim(A) 24

dimB w w
VW B B

Similarly, we compute the compaosition

X*%IB%@)X*&X*@X(@X*&X*@A%X*

to find that it is a scalar multiple ofxk by the same scalar.

Proposition 6.5. Let7 be arigid semisimple tensor category. Then the bicategory
M(T) is rigid as well. More precisely, if the unit constraints are specified
by a function{ws}s indexed by finite-dimensional Hopf algebras realized
inside 7', then a rigidity pair for an.4-8B moduleX is given by(e, ¢§) with

¢ =dim(A)ws/wp, Wheree ands are defined above.

We now present results related to the notion of quantum dimension in tensor
categories. Although there are several equivalent formulations for (quantum)
dimension of objects in (rigid) tensor categories (see [1,4,28] for example, cf.
also [25]), we here use the one introduced in [40,43]: By an involution, we
shall mean a contravariant functerfrom 7 into 7 itself (the operation on
morphisms being denoted By :Y* — X* instead of f* here) with natural
families of isomorphismécx vy : Y* ® X* — (X ® Y)*} (anticommutativity) and
{dx : X — (X™)*} (duality) satisfying the commutativity of the diagrams

X' Y)®z* <L (Y@ X)*® ZF—— (Z® (Y ® X))*

X*x (V*®Z") o X ®(ZRY) ——((Z8Y)® X)*,

d c

and the equalitydy = dyL: X** — X*. (The naturality means(f ® g) ~

'e®'f and f £ '('£).) There is a coherence result on tensor categories with
involution (x, , ¢, d), which enables us to restrict ourselves to strict involutions
without losing generality [1,13].

A Frobenius duality in a tensor category then consists of a strict involution
(x,t,c,d) and a family of morphismé&y : X ® X* — I}, which satisfies
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() exor =ex(1x @ ey ® Lyx»),
(i) ey(f®D=ex(1®@'f)for f:X -V,
(iif) the map HomMX,Y) > f — ey(f ® 1) e Hom(X ® Y*, I) being injective
and
(iv) ex(f @ D'ex = ex+(1® f)lex+ for f € EndX) (the operation of taking
dual objects being assumed to be strict here for simplicity, see [43] for
details).

If the tensor category is furnished with a Frobenius dualitfey : X ®
X* — I}, it is natural to use the following normalization for the trivializing
isomorphisms of the unit objedt: Let the trivializing isomorphisms be chosen by
takingd = {/d(V) 1y+} as gauge in the remark after Lemma 3.2. The morphisms
€:X®X*— Aands:B— X*® X are then changed into the ones associated to
the pairing

VeV svv — /d(V)v, v

or its dualized copairing

Vd(V) Zvi QuieV®V*

1

Proposition 6.6. Suppose that the semisimple tensor category furnished with

a Frobenius duality{ex} and let the unit constrainh ® X — X be normalized

by the factorw, = |A|~1/2 for eachA with |A| = dim A. Then the renormalized
family {|A|~1/4|B|~1/4¢} gives a Frobenius duality in the bicategait (7).

Corollary 6.7 (Dimension formula)For an .4-B module 4 Xz, its dimension is
calculated by

. dim(X)
dlm(AXB) = |A|1/2|B|l/2'

Heredim(X) denotes the dimension &fas an object off .

7. Duality for orbifoldson tensor categories
Let H be an objectin arigid semisimple bicategory and assumeéHlisattisfies
the condition (referred to as the absorbing property in what follows)
HOH"QH=H®---®H.

Given an objectH of this type, we can associate a Hopf algelBrao that
its Tannaka duab is equivalent to the tensor category generateddly® H
[41, Appendix C]. More explicitly, we can construct a monoidal fundigrvhich
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assigns the finite-dimensional vector sp@ge) to each objeck in (H* ® H)"
with n a positive integer, wherg (X) is defined by

E(X)=Hom(H,H ® X)
and the multiplicativity isomorphismt' (X) ® E(Y) — E(X ® Y) is given by
EX)QEY)>x®y+> (xQ1ly)ye E(XQY).

Example 7.1. Consider the Tannaka dudl of a finite-dimensional Hopf algebra
A realized in a semisimple tensor categ@ryand letA be the associated unit
object for.A-A modules.

Then, by forgetting the lefd-module structure, the righd-moduleH = A 4
satisfies the above condition as an object in an “off-diagonal piece” in the
bicategory

< T My )
AM My )
In fact, we have

HeiH*=A=V*®@F(V)
|4

and therefore

PV eFrV)®A=PV RAV=PV'QOVRAs
Vv Vv \%4
is isomorphic to a direct sum d@f'’s.
Moreover we can identify the associated Hopf algebra witkiven an object
V in A, the vector spacg (F(V)) = Hom(H, F(V)® H) is naturally isomorphic
to V by the trivialization isomorphisn¥ (V) ® H = H ® V and the simplicity
of H 4. Moreover, we have the commutative diagram

VIW——rros VW

E(F(V))® E(F(W)) —— E(F(V®W))

and the monoidal functoE is naturally isomorphic to the identity functor iA.

Thus the associated Hopf algebra is naturally isomorphit, tohereas the object

H* ® H generates the tensor category monoidally equivalent to the Tannaka dual
of the dual Hopf algebr® = A*.

Proposition 7.2. The construction of Hopf algebras from objects of absorbing
property is universal, i.e., any finite-dimensional semisimple Hopf algebra arises
this way.
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Returning to the initial case of this section, the obvious identification
H®X—>EX)QH

can be interpreted as giving a right action»6n H .
Consider the composite isomorphism

H*® H— P X @ Hom(X, H* ® H) > P X ® E(X*) =B.
X X

We shall show that this isomorphismis 5 linear, i.e., the commutativity of

XQH"QHRQY —XQBRY

H*QEX)®EY)QH ——E(Y)QB® E(X)

or equivalently, by applying the functor Ha@, -) with Z a simple object, we
have the commutative diagram of vector spaces. For simplicity, leXtirgl (the
letter X will be used as a dummy index), the relevant isomorphisms are given by

L] @tn)e [ ] @ ][]

L
T R e A P S P

To check the commutativity, let us start with a vector

H X*
X®T€[HX*}®[YZ*]

The upper horizontal line is then described by
GODT—>3QT—>x®T,
while the right and the left vertical lines are presentedl® 7T — (1® T)x and
FeDT Y (i (1®y). DTy ®u
ok
with {yj,y;.*} and {zx, z;} in the duality relation j;fyj =1y andz;z = 17
particularly). Finally, the bottom line is given by

chkyj ® zk = chkyj ®Zk > chk(yj ® 1)Zk.
J:k Jik J:k

To identify the last summation witfll ® 7)x, we rewritec ;. as follows:
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d(Z)cjk
=ez(57® 1) (10 ®1)(F91)(T © 1)8z-
=ez(5;®1) (19 ®1)A®ex» @D(1@x @ T ® 1) (61 ® 627
= (19210 9 )(1®ex ®D(10x® T ®1)(1® 82:)84.
which yields the relation
d(Z)
d(H)
Now this formula is used to get

D cpdi = ZCjkﬁclﬂ
K

H) .~ (
Z a2 i (R)IRex-®D(x®T @1)(1n ®82+).

il =5 ®1)1®ex- @ D(x® T ® 1)(1y ® 874).

From the relation
(ci2k) = ez (e ® 1) (2 ® D)oz» = d(2),
we see thazkzk =d(Z)/d(H)1y and hence

d(H) )
d(Z)*
Feeding this back into the above summation, we have

()" =

D cpii=(el)1eex @D(x®T ® 1)1y ® 627
k

and then
D (@D =Y (¥ 9)ARex-@D(x®T ® 1)(1y ® 627)
.k J
= (1®ex-®D(x®T ®1)(1y ®dz+)
= (1®T)x.
Lemma 7.3. We have
gH* ® Hg = gBp, HpH*=1.
Proof. We have just checked the former relation. By Frobenius reciprocity (see

[16] for example), this implies

dimEndH ®p H*) = dimHom(Hg, H @3 H* ® Hp)
= dimEndgH* ® Hp) =
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and henced ®g H* = I by semisimplicity. O

Since bimodules with the similar property are referred to as imprimitivity
bimodules in connection with Mackey's imprimitivity theorem on induced
representations [10,30], we call an obja£tin a rigid bicategory ammprimitivity
objectif both of M @ M* andM™ ® M are isomorphic to unit objects. In a tensor
category, this is nothing but saying thetis an invertible object.

The following observation, though obvious, is the essence of duality for
orbifold constructions.

Lemma 7.4. Let

T M

M* S
be a rigid semisimple bicategory add be an imprimitivity object inM.
Then two tensor categoriésandZ are equivalent. More precisely,

X>MXQM*, Y>> M"QY QM

gives the monoidal equivalence betweéeand 7.

Given a monoidal imbedding": A — 7 of the Tannaka duald of a
finite-dimensional semisimple Hopf algebrainto a rigid semisimple tensor
category7, let H = A 4 be an off-diagonal object in the bicategory

(5 )
AM - qAMau )
Here M 4 denotes the category of riglt-modules in7” and similarly for others.

Then H meets the absorbing property and the tensor subcategaqiy\of;
generated bH*® H = 4A® A 4 isisomorphic to the Tannaka dualbf the dual
Hopf algebraofd. Let G : B — 4M 4 be the accompanied monoidal imbedding.
Recall here that the Tannaka dubbf A is the one associated # ® H* as seen
in the above example.

Thus we can talk abou#-modules inM: Let Mg (respectivelyz M) be the
category of right (respectively leff}-modules inM 4 (respectively 4 M) and
BMp be the category oB-5 bimodules ing M 4. Then these, together with the
starting tensor categof¥, form a bicategory

(st asis)

BM BMp)"

Thanks to the previous discussions, the objéct A 4 in M 4 admits a structure
of right B-module, which gives rise to an imprimitivity objetts in Mg. Then

the above lemma shows that the tensor categokfi is isomorphic to the
original tensor category.



390 S. Yamagami / Journal of Algebra 253 (2002) 350-391

To extract the meaning of this, we first introduce the notafior r A for the
tensor categoryy M 4, which is interpreted as the crossed producfoby F.
Then the monoidal imbedding : B — 7 xr A describes the dual symmetry in
T xr A and we can construct the second crossed praducty A) x¢g B.

Theorem 7.5. With the notation described above, we have the duality for
crossed productshe second crossed product tensor categ@fyx g A) x¢g B
is monoidally equivalent to the original tensor categ@ryn a canonical way.
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