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INTRODUCTION

A group G is said to be conjugacy separable if any two elements x and y
of G, whose images are conjugate in every finite quotient of G, are
conjugate in G. The importance of this notion was pointed out by Mal’cev,
who proved in [14] that if a finitely presented group G is conjugacy
separable, then G has a solvable conjugacy problem, that is, there exists an
algorithm to decide whether or not any two given elements of G are
conjugate.

In this paper we are concerned with the conjugacy separability of certain
amalgamated free products of groups.

Blackburn [3] proved that finitely generated torsion-free nilpotent groups
are conjugacy separable; and Baumslag [2] showed that free groups are
conjugacy separable. The result of Blackburn was extended by Remeslen-
nikov [15] and Formanek [9] to polycyclic-by-finite groups. Dyer [7] proved
that free-by-finite groups are also conjugacy separable. However, it is not
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known in general whether a finite extension of a conjugacy separable
group is conjugacy separable.

In [21] Stebe and in [16] Remeslennikov show that the free product of
conjugacy separable groups is conjugacy separable. The extension of this
result to amalgamated free products is complicated for several reasons.
Note that if a group is conjugacy separable, then it must be residually
finite. Let G = G, *, G, be an amalgamated free product of the groups
G, and G, amalgamating a common subgroup H. The first problem that
one encounters is that the residual finiteness of G, and G, does not imply
in general that G is residually finite. Baumslag [1] proved that if G, and
G, are either both free or both torsion-free finitely generated nilpotent
groups, and H is cyclic, then G = G, %, G, is residually finite. It is
probably known that, if G, and G, are free-by-finite or finitely generated
nilpotent-by-finite groups (not necessarily both of the same type) and H is
cyclic, then G = G, *,; G, is residually finite (we do not know an explicit
reference for this result, but we prove it in Proposition 3.2).

In [8] Dyer shows that if G, and G, are either both free or both finitely
generated nilpotent groups, and H is cyclic, then G = G, %, G, is
conjugacy separable. Tang [24] generalized this theorem of Dyer. To
explain the results of Tang, we need first some terminology. One says that
a group R has the unique root property if whenever x and y are elements
of R of infinite order, and x" = y" (for some natural number #), then
x =y. A subgroup K of a group R is said to be isolated in R if whenever
x € R, and x" € K (for some n = 1,2,...), then x € K. Tang proves that
G = G,*y G, is conjugacy separable under the following conditions:
(i) G, and G, are either both free-by-finite or both finitely generated
nilpotent-by-finite groups; (ii) H is cyclic; and either (iii) G, and G, have
the unique root property, or (iii)’ H is isolated in G, and G,.

In this paper we strengthen Tang’s theorems to prove that if G, and G,
are free-by-finite or finitely generated nilpotent-by-finite groups and H is
cyclic, then G = G, #; G, is conjugacy separable (see Theorem 3.8). The
methods we use to prove our results are quite different from those used in
the papers mentioned above. If R is a residually finite group, and x and y
are elements of R, then the images of x and y are conjugate in every
finite quotient of R if and only if x and y are conjugate in the profinite
completion R of R. In the cases we are concerned with, namely if G, and
G, are free-by-finite or finitely generated nilpotent-by-finite groups and H
is cyclic, the profinite completion G of G = G, *, G, is the amalgamated
free product G =G, 153 G, of G, and G, amalgamating H, in the
category of profinite groups. This simple observation allows us to use the
theory of profinite groups acting on profinite trees (cf. [11, 26]). According
to the Bass—Serre theory of groups acting on trees (cf. [19]), G = G, *j
G, acts in a natural way on a tree .#(G) associated with this amalgamated
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product. Similarly, G acts continuously on a profinite tree A(G) associated
with G, 1L 57 G,. It turns out that, under our hypotheses G,, G,, and H are
closed in the profinite topology of G; this implies that ~A(G) is embedded
naturally in AG). The methods of proof in the results of this paper are
based on the study of the connections between .A(G) and A(G).

Finally, we point out that Shirvani [20] has also investigated conjugacy
separability in fundamental groups of graphs of groups, using techniques
similar to ours.

2. NOTATION AND TERMINOLOGY

Let G be a group, H and K subgroups of G, and &, k € G. Then, as
usual, we define h* = khk™*; HX = {h*|h € H, k € K}; and h* = {h*]|
k € K}. 9t ;(h) denotes the normalizer of (h) in G, ie, Ngh)={ge
Glglhyg™ = (h)).

Recall that a profinite group is an inverse limit of finite groups (each of
them endowed with the discrete topology), i.e., a compact, Hausdorff,
totally disconnected topological group. Let R be a residually finite group.
If x and y are elements of R, we use the notation x ~ y to indicate that
x and y are conjugate in R. Denote by R the proflmte completion of R,
that is, R = - JimR/U, where U runs through the collection 1l of all
normal subgroups R of finite index. Then R is naturally embedded in R.
Now, R is a profinite group and it induces a topology on R that is called
the profinite topology of R. An element x € R is called conjugacy distin-
guished if the conjugacy class of x in R is closed in the profinite topology
of R. One says that R is conjugacy separable if every element of R is
conjugacy distinguished. Equivalently, R is conjugacy separable if and only
if for any two elements x, y € R, x ~; y implies that x ~, y. Or, in
other words, R is conjugacy separable |f and only if for any two elements
X,y €R, x ~p,y yforall Nell,impliesthat x ~; y.If X is a subset
of R, then CI(X) and X denote the topological closures of X in R (where
R is endowed with its profinite topology) and R, respectively.

Let G; and G, be residually finite groups, and assume that H is a
common subgroup of G, and G,. We denote by G = G,*, G, the
amalgamated free product of G, and G, amalgamating H. G. Baumslag
has established the following result, which gives sufficient conditions for G
to be residually finite.

ProposiTION 1.1 [1, Proposition 2].  The group G = G, *y G, is residu-
ally finite if there exist families {N,, | A € A} and {N,, |\ € A} of normal
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subgroups of finite index in G, and G, respectively, such that N;, N H =
N,,NH, forall A\ € A, NN, = NN,, =1, and N HN,;, = N HN,, =
H.

Let I', and I', be profinite groups with a common closed subgroup A.
One says that the profinite amalgamated free product of I'; and I', with
amalgamated subgroup A exists if the canonical homomorphisms of I’
and I, into the push-out of I'; and I', over A in the category of profinite
groups are monomorphisms. If it exists, we denote by I' =T'; 11, I, the
amalgamated free product of I', and I', amalgamating A, in the category
of profinite groups. One has the following criterion.

Criterion [17, Theorem 1.2]. The profinite amalgamated free product
I'=T,1, I, exists if and only if there exist families {N,, | A € A} and
{N,,| A € A} of open normal subgroups in T, and T, respectively, such
that Ny, N A=N,, nA,forall A€ A,and NN, = NN,, = 1.

One can easily see that if I' =I', 10 ,I', is the profinite amalgamated
free product of I', and I', amalgamating A, then I" is the completion of
I', =, T, with respect to the topology consisting of those normal subgroups
N of finite index in T, *, T, such that N N T; is open in T; (i = 1,2) (cf.
[17]D. Moreover this topology of T, *, T, is Hausdorff, and so one can
think of T, #, I', as a dense subgroup of T

Next we recall some basic notions in the Bass—Serre theory of groups
acting on trees [19, 5]. A graph 2 is a set with a distinguished subset of
vertices V' = V(2), and a set of edges E = E(2) =2\ V(2), together
with two maps, d,, d,: & — V, that are the identity on V. If e € E, d(e)
and d,(e) are the initial and terminal vertices of e, respectively. If 27 and
£ are graphs, a morphism ¢: 2 — 2" is a mapping such that d;¢ = ¢d,
(i = 0,1). If 2 is a graph, for each edge e we introduce formal symbols ¢*
(=e) and e!, to be thought of as traveling along e one way or the
opposite way. We set dy(e ) = d,(e) and d,(e™*) = d(e). If v, w are
vertices in a graph 2, a path, p, , joining v to w is a finite sequence of
vertices and symbols e*!, v = vy, efY, vy, €59, v,, ..., e Mv, = w, where
e() = +1, v;_; =dy(e“D), v; =d(e*D) (i=1,...,n). If for every i,
ef® # e 7Y, we say that this path is reduced. A reduced path p, ,, is a
cycle if v =w. A graph 2 is connected if any two vertices in I" are joined
by a path. A graph 2 is a tree if it is connected, and it contains no cycles.
A graph of groups (&,2) consists of a graph 2, and a family of groups
G(@) = {G(x) |x €27%; in addition, for each edge e there is a pair of
monomorphisms «/: &(e) > &(d,(e)), (i =0,1). Consider a graph of
groups (&, 2), where &2 is a connected graph. Choose a maximal subtree
7 of #. Following Dicks [5], we say that a F=specialization of (&,2) to a
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group H is a system of homomorphisms ¢, ®&(v) - H, and elements
h, € H, where v € V(2) and e € E(%), with the following properties:

1) h,=1,for e c EY),

@ P (a2(g) =h,y,(al(g)h,?!, for every edge e € E(2) with ini-
tial vertex v and terminal vertex w, and each g € &(e).

The fundamental group of the graph of groups (&,2) is a group
(&, 2) having a J-specialization {¢,,?,} with the following universal
property: for every J-specialization {i,, 4.} to a group H, there exists a
uniqgue homomorphism w: 7(®,2) - H such that o(¢,) =h, and
we, =, for all v € V() and e € E(2). We observe that the funda-
mental group (&, 2) is unique up to isomorphism and it is independent
of the choice of 7 [5, Theorem 2.4]. Next we recall the definition of the
standard tree ¥ = A& ,Z) associated with the fundamental group G =
(&, 2) of the graph of groups (&,2). Define G(v) = ¢,(&(v)), for
v € V(X), and G(e) = ¢, (,,a)(G(e)), for e € E(X). Then = U, .,
G/G(x). Define V(%) = U,., G/G), d,(gG(e)) = gG(dy(e)) and
d(gG(e)) = gt,G(d(e)). The group G = 7,((&,2) acts on .~ in a natural
way, and the quotient graph .#/G is 2. Note that if G = G, x5 G,, then
G is the fundamental group of a graph of groups (&, 2), where 2 consists
of one edge ¢ and two vertices v,, v,, with &(e) = H, &(v,) = G, and
®&(v,) = G,. It follows that there is a corresponding standard tree
AG) =AG, #; G,), with a natural action of G on “A(G). Consider now
a graph £ consisting of one edge e and one vertex v, and a graph of
groups (&, 2); set G(v) = G,, aX(G(e)) = H, and a2(®)) = H,. Then
the fundamental group ,(&, X) is an HNN extension HNN(G, H,, H,,t)
(cf. 1.1.5 in [19]).

Let G be a group that acts on a connected graph #; denote by % the
quotient graph 2/G, and let : X — 2/G be the canonical epimorphism
of graphs. A connected transversal X of ¢ consists of a subtree ¥ of &
that ¢ maps isomorphically to a maximal subtree & of 2/G, together
with a set of edges with initial vertices in . such that  maps 2 \.%
bijectively to E(2/G)\ 2. We denote by 2 the subgraph of fixed points
of 2 under the action of G.

A profinite graph (or Boolean graph) 2 is a profinite space (or Boolean
space, i.e., a compact, Hausdorff, totally disconnected topological space)
with a distinguished closed subset of vertices IV = (%) and a subspace of
(oriented) edges E = E(2) =2\ V(2), together with two continuous
maps, dy(e), d(e): & — V, that are the identity on V. If e € E, d,(e) and
d,(e) are the initial and terminal vertices of e, respectively. If 2 and 2
are graphs, a morphism ¢: 22— 2" is a continuous mapping such that
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d.¢ = ¢d; (i =0,1). Observe that a profinite graph is in particular a
graph, and that a finite graph is profinite. It is easy to see that every
profinite graph is a projective limit of finite graphs. We say that a profinite
graph is connected if every finite epimorphic image of it is connected in
the usual sense. To explain the notion of profinite tree we need some
additional notation. Let Z be the profinite completion of the group of
integers. (Observe that Zis a topological ring; in fact, 7 = [1Z,, where p
runs through the set of prime numbers, and Z, denotes the rmg of p-adic
integers.) Let (S, =) denote a profinite pointed space, that is, a profinite
space S with a distinguished point =*; and let us assume, as usual, that a
map of profinite pointed spaces ¢: (S, *) — (S§’, *') is a continuous map
such that ¢() = =’ If A is a profinite abelian group, we consider it as
pointed space by thinking of zero as its distinguished point. If (T, ) is a
finite pointed space, define ZIT, =] to be the direct sum of copies of Vi
indexed by T-{«}; we think of (T, =) as being embedded in Z[T x] by
identifying each ¢ € T-{+} with 1 in the corresponding copy of Z, and by
identifying = with zero. Every profinite pointed space (S, *) can be
expressed as a projective limit (S, =) = M(S ) of finite pointed spaces
(S;, *). Then the groups Z[S «] form, in a natural way, a projective
system of abelian profinite groups, and we denote by Z[S, =] or by A[S, ]
the abelian profinite group

ALS, =] = JimZ[S;, =].

It is not hard to see that A[S, =] is well-defined, and that (S, =) is
naturally embedded in A[S, =]. In fact, A[S, =] is the so-called free
profinite abelian group on the pointed space (S, %), and it is characterized
by the following universal property: whenever A is an abelian profinite
group and 6: (S, =) — A is a continuous mapping of pointed spaces, there
exists a unique continuous homomorphism 6: 2[S, =] - 4 extending 6.
Next, let 22 be a nonempty profinite graph, and denote by (E*(2), =) the
quotient space E*(2) = Z/V(Z) obtained from £ by collapsing the set of
vertices V(2) to a distinguished point =. Consider the following sequence

of abelian profinite groups and continuous homomorphisms,
0= A[EX(2), *] S AWV (2)] 57 - 0

where d and & are the continuous homomorphisms defined by d(x) =
d(x) — dy(x), for each x € 22— V(2), d(*) = 0, and &(v) = 1, for each
v € V(Z). One says that the graph £ is a profinite tree if the above
sequence is exact. It is easily seen that a profinite tree is a connected
profinite graph in the sense mentioned above, in fact a profinite graph is
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connected if and only if the above sequence is exact at A[V(2)]. (For
more information about profinite graphs the reader may consult [11] or
[26].)

Next we consider a finite graph of profinite groups (&,.2) (see Section 3
in [26] for details about the statements and concepts in this paragraph).
This is defined as for abstract groups, with the additional requirements
that the vertex and edge groups be profinite and the monomorphisms «/
be continuous. The same universal property considered above, but in the
category of profinite groups, serves to define the profinite fundamental
group I1,(®, 2) of the finite graph of profinite groups (&, 2). In the same
manner one defines the standard profinite tree . associated with
I1(®,2); and I1,(®, 2) acts continuously on . in a natural way. When
I'=T,u, I, is a profinite amalgamated free product, I" can be similarly
interpreted as the profinite fundamental group of the graph of profinite
groups over a graph consisting of one edge and two distinct vertices. It
follows that there is a corresponding standard profinite tree AT) =
AT, 1, T,), with a natural action of T' on AT).

Assume that the amalgamated free product of abstract groups G =
G,#y; G, is residually finite. Consider the family {N,|A € A} of all
normal subgroups of finite index of G. Define the families {N;, = N, N
G, |2 € A} and {N,, = N, N G,| A € A} of normal subgroups of finite
index of G, and G,, respectively. Note that N,, " H = N,, N H, for all
A € A. Define profinite groups I'; = }JimG,/N,,, I', = JimG,/N,,, and
A= JimH/(H N N;,). Then A can be thought of as a common closed
subgroup of I'; and I',. One can apply the above criterion to see that the
profinite amalgamated free product I' = I'; L1 , I', exists. In fact I" is the
profinite completion of G. Using the above notation, we consider the
standard tree .A(G) associated with G = G,*, G,, and the standard
profinite tree .A(I") associated with I' = T, 11 , I',. Since I' = Jim G/N,, it
follows that SAT") = Jim.sA(G)/N,. Finally, it is easily seen that if G, G,
and H are closed in the profinite topology of G, .A(G) is naturally
embedded in SAT).

More generally, suppose G = 7,(&,2) is the fundamental group of a
finite graph of groups, and assume that G is residually finite. Then I' = G
is the profinite fundamental group Hl((i £) of a graph of profinite groups
(8,2), where G(v) and G(e) are the completions of &(v) and G(e),
with respect to the topologies induced from the profinite topology of G. It
follows that G(v) and ((e) are embedded in T = G = I1,(,2). Let
A(G) denote the standard tree associated with G = 7,(®, X), and A1)
the standard profinite tree associated with T'= G = I1,(%,2). Since
I' = Jim G /N, it follows that SAT) = JimA(G)/N, where N runs through
the family of all normal subgroups of finite index of G. One easily checks
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that if the vertex subgroups &(v) and edge subgroups @(e) are closed in
the profinite topology of G, (G) is naturally embedded in SAT).

2. PRELIMINARY RESULTS

In this section we establish some general results about abstract and
profinite groups acting on trees.

LEMMA 2.1. (i) Let & be a profinite graph, and let % be a profinite
connected subgraph of Z. Consider the profinite quotient graph 2/% obtained
by collapsing % to a single vertex (see Lemma 1.4 in [26]). Then the preimage
Z of a profinite connected subgraph Z of Z/% is connected.

(i) Let T be a profinite group that acts on a profinite tree 7. Assume
that 7, and &, are disjoint T-invariant profinite subtrees of 9. Then the sets of
fixed points 7 and F; are not empty.

Proof. (i) The result is obvious if 2 is a finite graph. Express 2 as an
inverse limit of finite graphs, 2°= Jim2;. Denote by %; and Z; the
canonical images of 27 and 2" in 27, respectively. Clearly 2/% = |im2,/%;.
Let %, be the image of % in 2/%;. Then Z; is the preimage of %, in 2.
Since %, is connected, so is .Z;; hence, Z = ]im.Z; is also connected.

(i) It suffices to prove that .7;" # . Consider the profinite graph
" obtained from 7 by collapsing 7] to a vertex denoted v,, and .7, to a
vertex denoted v,. Then by Proposition 1.17 in [25], 7" is a profinite tree.
Since 9, and &, are T'-invariant, there is a natural action of I' on 9"
induced by the action on .7. By Theorem 2.8 in [26], the subgraph " of
fixed points of 7" under the action of T is also a profinite tree with two
distinct vertices, and hence it contains an edge. It follows that 7 is not
empty. Next consider the profinite graph .7’ obtained from .~ by collaps-
ing 7] to a vertex denoted v,. Again by Theorem 2.8 in [26], the subgraph
'V of fixed points of .7’ under the action of I' is a profinite tree.
Observe that the preimage of 7 '' N7, # &, for otherwise the quotient
graph of 71 U7, obtained by collapsing ' to a vertex denoted v,, and
7, to a vertex denoted v,, would not be connected. 1

The next result provides a criterion for the uniqueness of minimal
G-invariant subtrees of a tree on which a group G acts, in both the
abstract and the profinite setting.

LEMMA 2.2. (i) Let G be an abstract group that acts on a tree I in such
a way that /G is a finite graph. Then there exists a minimal G-invariant
subtree I of . Moreover, I is unique if and only if G does not fix any edge
of 9.
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(i) Let T be a profinite group that acts on a profinite tree 7. Then there
is a minimal TU-invariant profinite subtree Iy of 9. Moreover, I is unique if
and only if T does not fix any edge of 9.

Proof. (i) To show the existence of minimal G-invariant subtrees it
suffices to prove that one can apply Zorn’s lemma to the collection of all
nonempty G-invariant subtrees of . ordered by inclusion: just observe
that if 97 (i € I) is a chain of such (nonempty) subtrees, then N is a
nonempty subtree; for let ¢’ be an element in the intersection of all the
images 7. in /G of each 7, (such a ¢’ exists since /G is finite); let
t; € T, map to ¢'; then clearly all the ¢, (i € I) are in the same orbit, and
so Gt, is a subset of everyZ(j € I). Suppose that 7] and , are two such
minimal G-invariant subtrees. It suffices to show that 9] N.7, # . Sup-
pose 9] N.9, = . Consider the tree ' obtained from .9 by collapsing 7;
to a point #, and .7, to a point ¢,. Then G acts on 7 " with fixed points ¢,
and t,. Hence G fixes all edges of the path in .7’ from ¢, to ¢,. Now the
preimage of an edge of .’ consists of a single edge of 9. Thus a preimage
of a fixed edge of 7' must be an edge of .7 fixed by G, contradicting the
assumption of the lemma.

(i) Observe that in this case . is a compact space, and so the
intersection of a chain of nonempty profinite subtrees of .5 is nonempty.
Hence by Zorn’s lemma, there exists a minimal I'-invariant profinite
subtree 7. of 7. If T" does not fix any vertex of 7, then |7;| > 1, and so 9}
is unique by Lemma 1.5 in [25]. Let v be a vertex of 7 fixed by I". Then {v}
is @ minimal T-invariant profinite subtree. By Lemma 2.1, any minimal
I'-invariant profinite subtree must consist of only one vertex, say {w}. By
Theorem 2.8 in [26], the subgraph of 91 of fixed points is also a profinite
tree. Hence, if v # w then there exists an edge in 77, a contradiction.

LEmMMA 23. () Let ' =11,(&,2) be the profinite fundamental group
of a finite graph of profinite groups (&, %), such that the natural homomor-
phism 7(&,2) - [1(®,2) is an embedding. Let v, and v, be two
different vertices of &, and assume that vy, € &(v,) and vy, € &(v,), but
v, & G and y, & ©(e)®“?), Then y, and v, are not conjugate in T'.

(i) LetT'=T, U, T, be the profinite amalgamated free product of two
profinite groups 1"y and 1", amalgamating a common closed subgroup A. Let
v1 € I\ A" and y, € T, \ A" Then vy, and vy, are not conjugate in T

(iii) Let T'=T1,(&,2) be the profinite fundamental group of a finite
graph of profinite groups (&, 2), such that each edge group &(e) is finite.
Let v, and v, be two different vertices of &, and assume that vy, € &(v,) and
v, € &(v,), but y, and vy, do not belong to a conjugate, in &(v,) and
®&(v,) respectively, of any edge group &(e). Then vy, and vy, are not
conjugate in T'.
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Proof. Clearly (ii) and (iii) are consequences of (i). To prove (i), let
I be the collection of all open normal subgroups U of I'. Consider
the fundamental group (respectively, the profinite fundamental group)
GWU) = 7 (GW),2) (respectively, T(U) = I1,(GW),2)) of the finite
graph of groups (&, 2), where & ,(x) = G(x)/(G(x) N U), for x € 2).
Then

I'(u)=G6(U) and I'=JimI'(U).

Denote by y,(U) and y,(U) the images of y, and y, in &(v,)/(G(v,) N
U) and G(v,)/(G(v,) N U), respectively. Choose U so that y,(U)y,(U)
& (G(e)/(G(e) N UNYW, for e € E(2). It is easy to see that y,(U) and
v,(U) are not conjugate in G(U). Since G(U) is a free-by-finite group, one
has that G(U) is conjugacy separable (cf. Theorem 3 in [7]). Therefore
v,(U) and y,(U) are not conjugate in T'(U). It follows that y, and vy, are
not conjugate in T". i

LEMMA 2.4. (i) Let R be a residually finite group and let C be a cyclic
subgroup of R such that the topology induced on C by the profinite topology of
R coincides with the profinite topology of C. Let C, and C, be subgroups of C
which are conjugate in R. Then C, = C,.

(i) Let T be a profinite group, and A a closed procyclic subgroup of T.
Let Ay and A, be closed subgroups of A which are conjugate in T'. Then
A=A,

Proof. (i) Let N be any normal subgroup of R of finite index. Then
C,N/N and C,N/N are conjugate in R/N, and so they have the same
order. Since they are subgroups of the finite cyclic group CN /N, it follows
that C,N/N = C,N/N. One deduces that the closures of C, and C, in
the profinite topology of R (and hence of C) coincide. Since C is cyclic, C,
and C, are closed in the profinite topology of C, and thus C, = C,.

(ii) The proof in this case is similar to the one used in (i). 1

In the following proposition we study the normalizer of a subgroup of a
vertex group of a fundamental group of a graph of groups, in both the
abstract and the profinite situation.

PrRoPOSITION 2.5. (1) Let G be a group that acts on a tree &, such that
the stabilizer G, is a cyclic group for each edge e. Let H be a subgroup of G,
for some v € V(). Assume that either (i) each G, is finite, or (ii) the
profinite topology of G induces on each G, its full profinite topology. Then G
can be represented as a fundamental group of a graph of groups (&,Z) such
that = %/G, &(x) = G,, where Gs = x, and the normalizer N ;(H) =
7 (&', ), with % a subgraph of Z, and &'(y) = N, (H), forally € 7.

(2) Let T be a profinite group that acts continuously on a profinite tree
& so that #/T is finite. Suppose in addition that the stabilizer T, is a
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procyclic group for each edge e. Let A be a closed subgroup of T, for some
v € V(). Then T can be represented as a profinite fundamental group of a
graph of groups (&, %) such that ¥ = /T, &(x) =T, where T's = x, and
Np(A) =TI(S', Z), with & a subgraph of Z and &'(y) = N, (D), for
ally e 7.

Proof. (1) Let =" be the subtree of fixed points of H in .%.
Consider the natural epimorphism of graphs ¢: .¥ — .%/G. First, we prove
that the normalizer 9t,(H) acts on 7, and that the natural mapping :
T = F/Ns(H) is the restriction ¢ - of ¢ to J.

Let g € t;(H) and let t €.7; then hgt = gh't = gt, where h, h' € H;
so gt € 7. Therefore 9t ;(H) acts on .7. Next, consider the case when H
does not stabilize any edge of ., i.e., 7 = {v}. Then % ;(H) is contained
in G,, and so ¢ = ¢, Now, consider the case when H stabilizes some
edge of %, say e. We need to show that if for some g € G, ge €.7, then
g € N(H). First, observe that the stabilizer of ge is precisely gG,g*.
Hence H and gHg™* are subgroups of gG,g~*. If G, is finite cyclic, then
H = gHg™ ', since H and gHg ' have the same order. If G, is infinite, let
K be any finite quotient of G; then by the above argument, the images of
H and gHg ' in K coincide; hence, by the assumption (ii) in the state-
ment we get H = gHg™*. This proves that ¢ = ¢,

Consider a maximal subtree & of /9 ;(H); extend & to a maximal
subtree &' of #/G; let X be a connected transversal of ¢; then there is a
connected transversal =’ of ¢ such that 3’ N.9 = 3. Note that ¢(3') =2
Define = (2). Then according to Theorem 1.13 in [19], G = 7,(&,2),
where &(x) = G,, with Gs =x and s € 3X'; and N ;(H) = 7 (®’, 2),
where

G'(x) = (NG(H)), =N (H),

with Gs = x and s € 3.

(2) Let.g=.9" be the profinite subtree of fixed points of A in .7
(cf. Theorem 2.8 in [26]). Consider the natural epimorphism of graphs ¢:
% —.7/T". First we prove that the normalizer 9t.(A) acts on .7 continu-
ously, and the natural mapping ¢:.9 — /9t (A) is the restriction ¢, Of
¢ to I,

Let y € 9i(A) and let 1 €.7; then 8yt = y8't = yt, where §, §' € A;
so 8t € 7. Therefore 9t .(A) acts on 7. Next, consider the case when A
does not stabilize any edge of ., i.e., 9 = {v}. Then 9t .(A) is contained in
I,, and so ¢ = ¢ . Now consider the case when A stabilizes some edge of
&, say e. We need to show that if for some y € T', ye €.7, then y € 9t (A).
First, observe that the stabilizer of ye is precisely yI',y *. Hence A and
yAy~! are subgroups of yI',y~ 1. If T, is finite cyclic, then A and yAy™*
have the same order, and so A = yAy~ 1. If T, is infinite, let K be any
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finite quotient of T'; then by the above argument, the images of A and
yAy~! in K coincide; hence we get H = gHg*. This proves that s = ¢,

Consider a maximal subtree & of 9/9(A); extend & to a maximal
subtree 9’ of #/T'; let X be a connected transversal of i (observe that 3,
exists since .#/T s finite); then there is a connected transversal 3’ of ¢
such that 3’ N9 = 3. Note that ¢(3') =2 Define = y(3). Then
according to Proposition 4.4 in [27], T’ = I1,(®,2), where &(x) = T, with
I's=xand s € 3'; and N (A) = [1,(G’, Z), where

®'(x) = (Rp(4)), = Np(A), withTs=x and se3. |

Remark 2.6. If, in the statement (2) of the above proposition, #/T is
infinite, the conclusion and proof are still valid, if one adopts the appropri-
ate definition of a profinite fundamental group of a profinite graph of
profinite groups (cf. [27]).

CoroLLARY 2.7. (i) Let G,, G, be residually finite groups with a
common cyclic subgroup H. Assume that the profinite topology of G, induces
the full profinite topology of H (i = 1,2). Let G = Gy*; G, be their
amalgamated free product. Let h € H. Then N ;(h) = N (W)= N (h),
where N ;(h) denotes the normalizer of {h) in G.

(i) Let T, and T, be profinite groups with a common closed procyclic
subgroup A, such that T =T, 1, T, exists. Let 8 € A. Then N (5) =
Nrp(), N (8).

Proof.  This follows from the proof of the proposition: it corresponds to
the case in the proof when .7 contains an edge. |

Let G be a group acting on a tree .. One says that an element g of G
is hyperbolic if g does not fix any vertex of .. If G is the fundamental
group 7,((&,2) of a graph of groups (&, 2), one has that G acts on the
standard tree A(G) associated with G = 7,(®,2); then we say that an
element of G is hyperbolic, if it is hyperbolic with respect to this action.

LEMMA 2.8. Suppose that G is the fundamental group w,(&,2) of a
finite graph of groups (&,2). Assume that G is residually finite and that
&(v) and &(e) are closed in the profinite topology of G. Let a and b be two
elements of G which are conjugate in G. Then a is hyperbolic if and only if b is
hyperbolic (as elements of G).

Proof. Let I = G. Since G is the fundamental group 7,(®,2) of a
finite graph of groups (&, 2) and the vertex and edge groups are closed in
the profinite topology of G, then SAG) is embedded in SAT), as was
indicated in the last paragraph of Section 1.

Let y € I" be such that b = yay !. Assume that a fixes some vertex of
AG), say v,. We need to prove that b also fixes a vertex of AG).
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Suppose not. Then by a theorem of Tits (cf., Prop. 1.24 in [19]), there is an
infinite straight line .7, in SA(G), defined as follows: let m = min{i(v, bv) |
v € V(AG))}, where (v, bv) denotes the distance from v to bv in the
tree A(G); then 9, is the subtree of A(G) whose set of vertices is
{v € V(AG)) | (v, bv) = m}. Moreover b acts freely on .7, as a transla-
tion of length m. Let 9 be a segment of 7, of length m. Then 9, = {b)J.
As mentioned in the last paragraph of Section 1, when G is the fundamen-
tal group ,(&,2) of a finite graph of groups (&,2), one has I' = G =

I1,(&, 2). Consider the closure 7, = {b)7 of .7, in the standard profinite
tree .A(T). Observe that b does not fix any vertex of .7,, for if b'v €.9,
with b’ € (b), v €7, and bb'v =b'v, then bv = v, since b and b’
commute. Consider the vertex yv, of SAT). Note that b (and hence (b))
fixes yv,, and so yv, €.,. It follows by Lemma 2.1(ii) that b fixes some
vertex in .7, which is a contradiction. i

ProPOSITION 2.9. Let G = 7w(&,2) be the fundamental group of a
finite graph of groups (&, 2), and assume that G is residually finite, and that
&(x) is closed in the profinite topology of G, forallx in X. Letb € G. If b is
hyperbolic, then {b) acts freely on the standard ree AT) of T =G =

1,(®,2).

Proof.  Using the notation in the proof of Lemma 2.8, b acts on 7, as a
translation of length m, and therefore the group {b) acts freely on 7,.
Moreover 7, = {b)7. We claim that {b) acts freely on.7,. Remark that if
b’ € {b) fixes one vertex of T,, then it fixes all the vertices of T,. Denote
by K the closed subgroup of {b) consisting of those elements that act
trivially on T,; we need to show that K = 1. Clearly K = (b}, since {b)
acts freely on 7,. Now, {by /K acts freely on the profinite tree T, with
finite quotient graph 7, /({b) /K) (for T, /{b) is finite). Then, according
to [11, Theorem 1.7], (b) /K is a free prosolvable group, and since {byis
procyclic and nontrivial, one has {(b) /K = Z.Thus K = 1. This proves the
claim.

If {b)=.A(T), obviously (b} acts freely on .#(I'). If, on the other hand,
{b) + AT), our result follows from Lemma 2.1(Gi). |

Remark 2.10. Let € be a nonempty class of finite groups closed under
subgroups, quotients, and extensions. Let G be an abstract group, and let
I be the collection of all normal subgroups U of G such that G/U € €.
If NycyU =1, we say that G is residually €. Then JimveuG/U is
called the pro-& completion of G. We say that G is conjugacy €-separable
if for any two elements x, y € G, x ~; ,; y for all U € I, implies that
x ~s . There are corresponding natural notions of pro-¢ trees, pro-&
fundamental group of a finite graph of pro-& groups, and standard pro-¢&
tree. Then one can restate many of the results in this section in terms of
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pro-¢ topology and pro-& completions, rather than profinite topology and
profinite completion. Specifically the results 2.1-2.3, 2.5(ii), 2.6, 2.8, and
2.9 can be so restated, and the proofs remain valid using essentially the
same techniques that we have employed above.

3. THE MAIN RESULT

In this section we apply the techniques developed above to prove the
conjugacy separability of an amalgamated free product of groups that are
either free-by-finite or finitely generated nilpotent-by-finite, amalgamating
a cyclic group.

A group G is called subgroup separable if every finitely generated
subgroup of G is closed in the profinite topology of G. It is proved in [14,
12] that free groups and finitely generated nilpotent groups are subgroup
separable; it easily follows that the groups considered in this paper, i.e.,
free-by-finite or finitely generated nilpotent-by-finite groups, are also
subgroup separable.

Let x be an element in a group R. Following Tang (cf. [24]), one says
that R is quasi {x)-potent (in fact, Tang refers to this concept as weakly
{x)-potent) if there exists a positive integer r such that for every positive
integer n, there exists a normal subgroup U, of R of finite index such that
in the quotient group G /U,, the image of x has exactly order rn. The
group R is said to be quasi potent if R is quasi {x)-potent for every
element x in R of infinite order. Observe that if R is quasi {x)-potent,
then the profinite topology of R induces on {x) its full profinite topology.

LEMMA 3.1 (C. Y. Tang [24], Lemma 3.2). Let R be either a free-by-finite
or a finitely generated nilpotent-by-finite group. Then R is quasi potent.
[Consequently, if x is an element of infinite order in R, the closure of {x) in R
is isomorphic to 7.]

ProposiTiON 3.2.  Let G,, G, be cither free-by-finite or finitely generated
nilpotent-by-finite groups, let H be a common cyclic subgroup of G, and G,.
Then G = G,y G, is residually finite, the profinite topology of G induces
on each G, the full profinite topology of G; (i = 1,2), H is naturally embedded
in 61 and 62, and G = é\lLIﬁ @2.

Proof. The residual finiteness of G is probably known, but we do not
have an explicit reference for this fact; in any case, we prove it here. As
pointed out above, it follows from Lemma 3.1 that the profinite topology
of G; induces on H its full profinite topology (i = 1,2), i.e., H is naturally
embedded in G, and G,. Consider the family {N, | A € A} of all normal
subgroups of f|n|te mdex of G. First, we shall prove that the family
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{N;, = N, N G;| A € A} determines the full profinite topology of G, (i =
1,2). For this it suffices to prove that for any given normal subgroup of
finite index N, in G;, one can finda A € A such that N, <N, (i = 1,2). If
H is finite, this clearly can be done (cf. Proposition 11.12 in [19]). Suppose
H = {h) is infinite. Let (k") = HN N, and {h'2) = H N N,, for some
natural numbers ¢, and ¢,. Now, by Lemma 3.1, G, is quasi potent. Hence
there exist integers r, and r, such that for any given integers n, and n,,
there exist normal subgroups M, and M, of G, and G,, respectively, such
that the images of 4t and A" in G,/M, and G,/M, have orders n,r, and
n,r,, respectively. Hence M, " N, N H = (h"""+) and M, "N, N H =
(h'2"2"2) Choose n, and n, such that t,n;r; = t,n,r,. Then M; N N; N
H = M, N N, N H. Next we show that there exists A € A such that M; N
N, = N;, and M, n N, = N,,. For this we shall find a normal subgroup M
of finite index in G such that M N G, = M; N N; (i = 1,2). Consider the
natural epimorphism of groups

0:G=G#y G, = Go=G /(M NN *yyo, vy iy Go/ (M NN,).

Since G, is free-by-finite, there exists a free normal subgroup F of G, of
finite index. Define M = ¢ (F). It is easy to see that M satisfies the
required properties. This proves that the profinite topology of G induces
on each G, its full profinite topology (i = 1,2), so that we may assume that
G, and G, are naturally embedded in G, and clearly G is topologically
generated by G, and G,. Next, note that obviously N, N H=N,, N H
for each A€ A and N, N, =1 (i = 1,2); furthermore, N, N;,H = H
(i = 1,2), since G; and G, are subgroup separable, as we pointed out at
the beginning of this section. It follows then from Proposition 1.1 that G is
residually finite.
To complete the proof it remains to show that

/ G, \
ﬁ\ / ¢
G,
is a push-out diagram in the category of profinite groups. Let =;,: é\i - A
(i = 1,2) be homomorphisms into a finite group A such that 7,(x) = 7,(x)
for all x € H. Consider the natural embedding

y:G=G,%; G,—> G

induced by the natural embeddings G, — @1 and G, — @2. Then there
exists a unique homomorphism 7: G — A extending n,|l¢, and m,lc,.



766 RIBES AND ZALESSKII

Therefore 7 induces a unique continuous homomorphism »: G — A such
that n” = 7. It follows that n extends n, (i = 1,2). 1

Lemma 3.3. Let G,, G, be either free-by-finite or finitely generated
nilpotent-by-finite groups, and let H be a common cyclic subgroup of G, and
G,. Then G,, G,, and H are closed in the profinite topology of G = G, *y
G,.

Proof. By Proposition 3.2, él *HAG\Z is a dense subgroup of G. Let
k € G, N G. Assume first that k € H N G. We need to prove that k € H.
If Kk € H, then k has a canonical representation as k = w,w,w; ..., where
w; € (G, U Gy)\ H, and if w; € G, (respectively, if w, € G,) then w,_,
€ G, (respectively, then w,,; € G,). It follows that w; & H, since G; N
H=G,nNH=H, because G, and G, are subgroup separable, as we
pointed out at the beginning of this section. Hence k = w,w,w;... is also
a canonical representation as an element of G, x5 G,. Therefore k & H,
contradicting our hypothesis.

Suppose now that k € (G, N G)\ H. Let k = w,w,Ww, ... be a canoni-
cal representation of k in G = G, *, G, as above. Agaln this is also a
canonical representation of k in @1 * 7 @ Since k € @1, the length of
this representation must be 1. Thus k = w, € G, N (G, u G,) = G, N
G) U (G, NG, =G, UMHNG,)=G,UH=G,. So G, mG G,.
Similarly G NG=aG, 1

LEMMA 3.4.  Let F be a free group, and K an infinite cyclic subgroup of F.
Then N, (K) = N K), where N, (K) denotes the closure of N ,(K) in F.

Proof. Since K is contained in a finitely generated free factor of F, we
may assume that F has finite rank. Let X be a basis of F. Let . be the
Cayley graph of F with respect to X. Then . is a tree (cf. Proposition
1.15 in [19]). Say K = <k ). Consider the smallest K-invariant subtree .7 of
% containing the vertex 1. Then

where [1, k] denotes the unique reduced path from 1 to k in .%. Clearly 7
is a minimal K-invariant subtree. Observe that /K is finite. By Lemma
2.2(i), 7 is the unique K-invariant subtree of .%, since K does not fix any
edges of 7. Note that .~ is naturally embedded in the profinite Cayley
graph .# of free profinite group F with respect to X. Then the closure of
T in & is

F= U KLk
velV
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Observe that K is closed in the profinite topology of F, i.e., KNF=K;
therefore, N=.7. We claim that 7 is a minimal K-invariant profinite
subtree of .%. For let R be a K-invariant profinite subtree of .. Then
R N~ is a nonempty K-invariant subtree of 7, and so R N =7, thus
R =9, and _hence we have proved the claim. One deduces from Lemma
2.2(ii) that .7 is the unique minimal K-invariant profinite subtree of 52

Now, N #(K) acts naturally on .7, for if y € N z(K), then .7 is obvi-
ously a minimal K-invariant profinite subtree of Z, and so T = Y. Next
consider the natural epimorphism of quotient graphs

¢ T/Np(K) =F/Np(K) > T/Np(K).

We shall show that ¢ is an isomorphism. If 7,7, € V(9), and ¢(t,) =
o(t,), then there exists 6 € N (K) such that 8¢, = ¢,. Since ¢, and ¢, are
elements of F, it follows that 6 € F. So ¢ is an isomorphism, and hence
N (K)=Np(K), as desired. 1

LEMMA 3.5. Let R be either a free-by-finite group or a finitely generated
nilpotent-by-finite group. Let r,, 1, € R be such that rf N (r,) = &. Then
rfn{r,y=0.

Proof.  Since R is quasi potent by Lemma 3.1, the closure {gyin R of
any infinite cyclic subgroup {g) of R is isomorphic to Z, and, in particular,
torsion-free. If either r, or r, has finite order, and rf N {r,)# &, then
both of them must have finite order; in this case the result follows from
the fact that R is conjugacy separable (cf. [7], and [15] or [9]). Assume now
that both r, and r, have infinite order. Let F be a normal subgroup of
finite index in R such that F is either free or a finitely generated nilpotent
group. Assume that yr,y* =rg € {(r,), for some y € R, a € Z. We shall
show that then rff N {r,) # &, contradicting our hypothesis. Note that
y = 6r for some r € R and 8 € F = F. Observe that F N (r,) = F N
(ryy =<, and FN{r,) =FN{r,) = <r2> for some n, k€ Z. So
yriy~t € {rk). Hence 8(rrr 1)1 € (rf). Then for any normal sub-
group N of F of finite index one has 8mr % N € (+rf)N/N, in F/N.
Since mj'r~! € F, it follows from Lemmas 6 and 8 in [8] that (rr'r~1)F N
(rky # @. Say firjr=1f ' € (r§), for some fe F. Substituting r, by
frryr~ 1 if necessary, we may assume that rj' = r}", for some m € Z, and
that y € F = F. Then yriy~ ! = yriy~t = (#1)°. It follows from Lemma
2.4 that the closed subgroup generated by r3* coincides with the closed
subgroup generated by (r;)“; i.e., y normalizes {r,*). Next we claim that
either y centralizes r}* or y inverts r}". To see this we consider two cases.
If R is free-by-finite, the claim follows from the fact that ¢, ({r}"))=
N Xry") (see Lemma 3.4). If R is finitely generated nilpotent-by-finite,
observe that {vy,r}") is a nilpotent closed subgroup of F; then, since vy
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normalizes (3" and since {r,y= Z by Lemma 3.1, we deduce that vy
centralizes 3. This proves the claim. Thus, in any case, (r5)" = yry'y~ “le
(r"y < {r,>. Now, since {r,» =7, and since Z/Z is torsion-free, one
deduces that r5* is in (r,). Put r’ = rs; then yr,y * =r" € (r,). Since
R is conjugacy separable (cf. [7, 15, 9]), one gets <r1>R N<ry) # J, as
desired. |

LEMMA 3.6. Let G be a free-by-finite or a finitely generated nilpotent-by-
finite group. Let C, = {x;) and C, = {(x,) be cyclic subgroups of G. If
C,NC,=1, then C NneC,=1, where C, denotes the closure of C; in G
(=1, 2).

Proof. Case (i). G is free-by-finite. If either C, or C, is finite, then the
result is clear. So, suppose C, and C, are infinite. Let F' be a free normal
subgroup of G of finite index. If C;, N C, # 1, then (F N C,) N (F N C,)
# 1. Hence we may assume that G = F is free. Now, the subgroup
(C,,C,» = {xy4, x, is free on the basis {x,, x,}. By a theorem of M. Hall
(cf. Theorem 1 in [4]), there exists a subgroup U of F of finite index such
that U is free on a set that contains x, and x,. So U = U is a free
profinite group on a set that contains x, and x,. Therefore, C, N C, = 1.

Case (ii). G is finitely generated nilpotent-by-finite. Recall that G is
residually finite, and that if H is a subgroup of G, then H is closed in the
profinite topology of G (cf. [14]); moreover, this topology induces on H
the full profinite topology of H (cf. Theorem 20B in [10]). In particular, if
H is normal in G, then

G/H = é/ﬁ; @/17.

If either C, or C, is finite, the result is clear; hence from now on we
assume that C and C, are infinite cyclic. Let N be a subgroup of G of
finite index. If C, N C, # 1, then (C, " N) n (C, N N) # 1. Now, C, N
N=C, NnNand C NN = C, N N, because C, and C, are cyclic, and the
proflnlte topology of G mduces on C; and C, their fuII profinite topolo-
gies. Hence (C, N N) N (C, N N)a& 1. Therefore, since G contains a
nilpotent subgroup N of finite index, we may assume that G = N is
nilpotent.

We proceed by induction on the nilpotency class of G. If G is abelian,
the result is easily verified. Assume that the result holds for every nilpo-
tent group of class at most », and suppose that G is nonabelian, nilpotent
of class n + 1. Next we claim that if A4 is a nontrivial abelian subgroup of
G which is normalized by C, and C,, and A N C; # 1 # A N C,, then
C, N C,=1. To see this observe first that (C, N A) N (C, N A)=1
since A is abelian and since the closure of C; N A (respectively, C, N A)
in G coincides with the closure of C; N A (respectively, C, N A) in A.
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Now, AC; is a subgroup of G, and since (C;: 4 N C)) is finite, one
deduces, as above, that C, N A =C, N A (i = 1,2). It follows that A N
C C = 1. Since A has finite mdex in AC (i =1,2), it also has finite

index in AC, N AC,; therefore, A N C, N C, has finite index in C, N C,.
So C, N 52 is finite, and thus C; N 52 — 1. This proves the claim.
Consider the last nontrivial term L of the lower central series of G.
Then L is in center of G. Set T = LC, n LC,, and note that C, and C,
centralize T; now, if C, N T # 1% C, N T, then the result follows from
the claim above. Hence we may assume that either 1=C, N T =C; N
LC, or 1=C,NnT=C,NnLC,. In either case it follows that LC, N
LC,=L. Then from the mductlon hypothesis applied to G /L, one de-
duces that LC, N LC, = L. Therefore, C; N C, < L. Note that LC,
L xC,, and hence LC =L XC, (smce G induces on LC, its fuII
profinite topology); thus 'In C, =1, and similarly, L n C, = 1. Hence
c,nC,=C,nC,nL=1 1

LEMMA 3.7.  Let G be either a finitely generated nilpotent-by-finite or a
free-by-finite group Then, for every g € G of infinite order and every vy € G
such that y(gyy~* = {g), we have that either ygy * =gor ygy ' =g L.

Proof. Let H be a normal subgroup of finite index in G, where H is
either a finitely generated torsion-free nilpotent group or a free group.

Let 0 # n € Z. Observe that the result holds for g if it holds for g"; for
suppose it holds for g", and assume that y € G and ygy ' =g*“ for some
a e Z Since y normalizes (g"y, |t follows that either yg"y ! =g" or
vg"y~t =g™"; hence either yg"ey ! =g" or yg"®y ! =g~ "; therefore,
either a = 1lor a = —1. ~

Let y€ G and let g € G be such that ygy ' =g*, for some « € Z.
We need to show that « =1 or a = —1. As observed above, we may
assume that g € H.

Case 1. H is finitely generated torsion-free nilpotent.

We proceed by induction on the nilpotency class of H. If H is abelian,
then H < C;(g) < M ;(g), and so €;(g) and It ;(g) have finite index in
G. Therefore €s(g) and 9ts(g) are the closures in G of €;(g) and
N;(g) respectively; furthermore, 9t ;(g)/C;(g) = Na(g)/Ca(g). For the
general case, let Z be the center of H and assume Z # H. If g" € Z for
ssome natural number n # 0, we may assume g € Z. Then again H <
Cs(g) < N s(g), and we proceed as above. Finally, suppose that {g) N Z
=1.Then (g, Z) = Z X {g).Since H/Z is a finitely generated nilpotent
group, we have that {gZy= Z. Therefore, {gy N Z = 1. Hence, by the
induction hypothesis applied to G /Z, either ygZy ™' = gZ or ygZy™ ' =
g 'Z. Thus, either ygy * =g or ygy t =g 1
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Case 2. H is free.

By a theorem of M. Hall (see [12]), g is a free factor of a subgroup L
of finite index in H; since L has finite index in G, there exists a normal
subgroup L, of G of finite index such that L, < H. It follows that for
some natural number n, {g") is a free factor of L.; as observed above, we
may substitute g by g”, and hence we may assume that H = L and {g)
is free factor of H. Since H = {g)* K for some K < H and H has finite
index in G, we have that H = H = (gy11 K. By Corollary 3.13 of [26] one
has that 0N ;((gy) = C7(g) = (gy. We deduce that Nz({g)) N H =

NF(g)) = (gy= Cxz(g) = Cx(g) N H. Then SJEG(Z_S)/ {gr=
JEC((g>)/(H N 9‘0(<g>)) < G/H = G/H. Hence N s({g)) is contained
in G{gy. Now, since {gy centralizes g, we deduce that 9 s((g>)
= (g)N;(g»). We infer that y € N z({g)) either commutes with g or
inverts g. |

THEOREM 3.8. Let G, and G, be groups that are free-by-finite or finitely
generated nilpotent-by-finite (not necessarily both of the same type), and
assume that H is a common cyclic subgroup of G, and G,. Let G = G, %y,
G, be the amalgamated free product of G, and G, amalgamating H. Then G
is conjugacy separable.

Proof. By Proposition 3.2, G is residually finite, and G=T-= ro,
I, wherel, =G, T, =G, and A = H. Consider the standard tree y(G)
associated W|th G =G,*y G,, and the standard profinite tree AT)
associated with I' = I' 1, I',. By Lemma 3.3, G;, G,, and H are closed in
the profinite topology of G, and therefore S(G) is naturally embedded in
AT). Let a, b elements of G, and assume that b = yay ™!, where vy is an
element of T

Case 1. The element a fixes a vertex of A(G) (i.e., a is not hyperbolic).

Then by Lemma 2.8, b also fixes some vertex of .(G). This means that a
and b are conjugate in G to elements of G, or G,. So we may assume that
a,b € G, U G,. Then by Proposition 3.2 and Lemma 2.3, a and b are
either both in T'; or both in T',, or one of them is conjugate to an element
of A, and so by Lemma 3.5, to an element of H; hence we may assume
that a and b are either both in I', or both in I',, say both are in I',. By
Lemma 3.3, G N I'; = G,. Whence we may assume that a,b € G,. If a
and b are conjugate in T';, then they are conjugate in G, ([7], and [15] or
[9D. So we may assume « and b are not conjugate in T',.

Claim. We may assume that a,b € H.

To prove this claim consider the vertex v, = 1T in AT). Obviously T} is
the stabilizer of v, in T. Since b = yay™?, v, and yuv, are fixed by b, and
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v, and y v, are fixed by a. By Theorem 2.8 in [26], the subgraph of SAT')
fixed by b is a profinite subtree. So there exists an edge e, in AT such
that d,(e;) = v, and be, = e;. Similarly, there exists an edge e, in SAT)
such that dy(e,) = v, and ae, = ¢,. Consider the edge e = 1A in AT).
Then there exist y,,y; € I} such that y,e;, = e = yje,. SO y,by;! € A
and yia'y’l_l € A, since A is the stabilizer of ¢ in I'. By Lemma 3.5,
a® N H # 1, and similarly b N H # 1. Therefore we may assume that
a,b € H. This proves the claim.

Now, by a slight variation of Lemma 2.4, {a) = {b). Whence vy

N ({ay) = N ({(aN 1T N ((a)), by Corollary 2.7. According to Lemma
3.7, there exist natural homomorphlsms N (<a>) - AutKa)) (i=1, 2)
into the finite group Aut({a)), that are tr|V|aI on A; these maps induce
a homomorphism ¢: #;:((ay) = N, ((a>)]_[ Nr (<a>)—>Aut(<a>) Put
k = ¢(y). Since the image of ¢ is f|n|te and i)E ((a))* N ((a)) is dense
in N((ay) = SJ?LF(<a>)]_I N (<a>) there exists an element g €
M (Kay)#y17(Ka)) ‘such that go(g ) —k Write g’ = w,w, -+ w,, with
each w; in /I/r(<a>) U (a)). Put a, a . wt=1,..,n ozn+1 =
a). Note that a; € {ay < H (in fact a, = ail if H is |nf|n|te by Lemma
3.7). Since G, and G, are conjugacy separable (cf. [7], and [15] or [9D]),

there exist elements g, g,,...,g, in G, U G, such that a, = g;a,, g *
(i=1...,n. Put g=g,...g,. Then g€ G, and gag ' =
g1---8,08, ... g1t =g'ag’~! = b. This completes the proof of Case 1.

Case 2. The element a does not fix a vertex of .A(G) (in other words, a
is hyperbolic).

By Lemma 2.8, b is also hyperbolic. By a theorem of Tits (cf. Prop. 24 in
[19]), there are infinite straight lines 7, and 7, in SA(G) defined as
follows: let

min{l/(v, av) |v € V(#(G))},
min{l(v,bv) |v € V(A(G))};

m,

m,

then 9, and .9, are the subtrees of (G), whose vertices are {v €
V(AG) | (v, av) = m,} and {v € V(AG)) | (v, bv) = m,}, respectively.
Moreover a and b act freely on .7, and .7, as translations of lengths m;,
and m,, respectively. Let 7] and .7, be segments of .7, and .7, of lengths
m, and m,, respectively. Then .7, = {a)9;, 7, = {b)7,.

Set e = 1H, the edge of A(G) stabilized by H. We claim that one may
assume that e € 9, N.9,. To see this, consider gl,g2 € G such that
ecgJ,and e € g,7,. Set a’ = g,ag;* and b’ = g,bg,*. Then a’ and b’
are also hyperbolic, and one has correspondmg straight lines .7, = g,.7,

= g,7,. Define 7', = g,.9; and 7, = g,7,. Then clearly 7, = <a >7’1
and I, = {b')J",. Since a and b are conjugate in G if and only if a’ and
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b’ are conjugate in G, the claim follows. So from now on we assume that
e €I NI,
Con5|der the profinite subgraphs of AT defined as .7, = ( >, and
= (b)7,. By Proposmon 2.9, {ay and {b) act freely on .7, and .7,
respectlvely Since yay ' = b, {b)y also acts freely on 347 By Lemma
2.2ii), v7, =9,. Then ye €.9,. Choose b’ € {by such that b'ye €.9,.
Then b'ye = ge, for some g € G. Hence b’y = gé, for some 6 € A. Now,
a=vy bbby = 6 1g tbgb. Therefore, using g 'bg instead of b, we
can assume that y (= §) isin A.

Since a and b are hyperbolic, they can be written in G = G, *; G,, as
a=uvw,...0, b=ww,...w, (n,m > 2), where v;, w; € (G, U G,)\ H,
and if v, w; € G, (respectively, if v, w, € G,) then v,.,, w;,, € G,
(respectively, then v, ,, w,,, € G,). Recall that by Lemma 3.3, AN G, =
A N G, = H, therefore the above expressions of a and b are also repre-
sentations of ¢ and b in R = I', *, I',, with v;,, w; & A. Since a and b are
conjugate in R by an element of A, we get n = m. By Lemma 8 in [22],
there exist elements §,,..., §, € A such that

wy =8 0,8, wy,=0810,8,,...,w,=810,8,, with §; =35, (*)

n n

Subcase (i). There is some i (= 1,...,n) such that v,Av;* N A = 1.

Then, since w; = §;'v;8,, we obtain w, € Av,A. By Theorem 2.1 in [18]
and Theorem 1 in [23], the product of two flnltely generated subgroups of
G, is closed in the profinite topology of G, (k=1,2). So Avy,A NG, =

Hu;H (k = 1 or 2). Therefore, w; = h;*,v;h;, for some h;_,, h, € H. Then

8, _,h; Y =0v,8,h; v . From the assumption in this subcase, it follows
that 8 = h; and 5,_1 = h;_,. One deduces then from (*) and Lemma 3.3
that (Sj cH forall j =0,1,...,n. Thus by Lemma 8 in [22], a and b are

conjugate in G.
Subcase (ii). Forevery i (=1,...,n), v,Av;' N A # 1.

By Lemma 3.6, v,Hv;* N H # 1, and so v,Hv;* N H has finite index in
H. 1t follows that v;Av;"* N A has finite index in A. Therefore,

A= NvAyytNA
i=1
is an open subgroup of A. Hence y = Ah, for some h € H, A € A. So we
may assume that y = A.

Define L = {a, A N H). Next we claim that A and A N H are normal-
ized by a. First, we prove that A is normalized by each v,. Indeed, A and
v Av,; are conjugate subgroups of the cyclic group A; hence by Lemma
2.4Gi), A =v*Av,. Since v,€ G,UG,, and (G, UG, NnA=H (cf.
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Lemma 3.3), it follows that A N H = v,(A N H)v; !. Since a = vy, ... v,
the claim follows.

Note now that since A is open in A, A N H is dense in A (in fact A
= A N H);, hence L = {a, A). Next observe that b € L. For, since b =
yay™', y€ A, and A is normal in L, then b = aX’ for some \' € A;
hence from b = al’ € G, one deduces that A’ € G; thus A' € HN A,
andso b € L.

Since a is hyperbolic, L = (A N H) X {a). Hence L = {A,{a)y. By
Proposition 2.9, {a) N A =1,andso L = A X {ay= (A N H) X {ay= L.
If L is abelian, then a = b, because y € L. If L is not abelian, let
ANH=<{x). Then axa * =x"* Say b =x"a" (some n,m € 7), and
v=x%P (some a, B € 7). Then x"a™ =b = yay ! = x 2%. Hence m
=1,and2a =n € Z. Therefore a =n/2 € 7. Set ¢ =x"/?. Then ¢ € A
NH<G,and cac™* =b. 1
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