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INTRODUCTION

A group G is said to be conjugacy separable if any two elements x and y
of G, whose images are conjugate in every finite quotient of G, are
conjugate in G. The importance of this notion was pointed out by Mal’cev,

w xwho proved in 14 that if a finitely presented group G is conjugacy
separable, then G has a solvable conjugacy problem, that is, there exists an
algorithm to decide whether or not any two given elements of G are
conjugate.

In this paper we are concerned with the conjugacy separability of certain
amalgamated free products of groups.

w xBlackburn 3 proved that finitely generated torsion-free nilpotent groups
w xare conjugacy separable; and Baumslag 2 showed that free groups are

conjugacy separable. The result of Blackburn was extended by Remeslen-
w x w x w xnikov 15 and Formanek 9 to polycyclic-by-finite groups. Dyer 7 proved

that free-by-finite groups are also conjugacy separable. However, it is not
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known in general whether a finite extension of a conjugacy separable
group is conjugacy separable.

w x w xIn 21 Stebe and in 16 Remeslennikov show that the free product of
conjugacy separable groups is conjugacy separable. The extension of this
result to amalgamated free products is complicated for several reasons.
Note that if a group is conjugacy separable, then it must be residually
finite. Let G s G ) G be an amalgamated free product of the groups1 H 2
G and G amalgamating a common subgroup H. The first problem that1 2
one encounters is that the residual finiteness of G and G does not imply1 2

w xin general that G is residually finite. Baumslag 1 proved that if G and1
G are either both free or both torsion-free finitely generated nilpotent2
groups, and H is cyclic, then G s G ) G is residually finite. It is1 H 2
probably known that, if G and G are free-by-finite or finitely generated1 2

Ž .nilpotent-by-finite groups not necessarily both of the same type and H is
Žcyclic, then G s G ) G is residually finite we do not know an explicit1 H 2

.reference for this result, but we prove it in Proposition 3.2 .
w xIn 8 Dyer shows that if G and G are either both free or both finitely1 2

generated nilpotent groups, and H is cyclic, then G s G ) G is1 H 2
w xconjugacy separable. Tang 24 generalized this theorem of Dyer. To

explain the results of Tang, we need first some terminology. One says that
a group R has the unique root property if whenever x and y are elements

n n Ž .of R of infinite order, and x s y for some natural number n , then
x s y. A subgroup K of a group R is said to be isolated in R if whenever

n Ž .x g R, and x g K for some n s 1, 2, . . . , then x g K. Tang proves that
G s G ) G is conjugacy separable under the following conditions:1 H 2
Ž .i G and G are either both free-by-finite or both finitely generated1 2

Ž . Ž .nilpotent-by-finite groups; ii H is cyclic; and either iii G and G have1 2
Ž .the unique root property, or iii 9 H is isolated in G and G .1 2

In this paper we strengthen Tang’s theorems to prove that if G and G1 2
are free-by-finite or finitely generated nilpotent-by-finite groups and H is

Ž .cyclic, then G s G ) G is conjugacy separable see Theorem 3.8 . The1 H 2
methods we use to prove our results are quite different from those used in
the papers mentioned above. If R is a residually finite group, and x and y
are elements of R, then the images of x and y are conjugate in every
finite quotient of R if and only if x and y are conjugate in the profinite

ˆcompletion R of R. In the cases we are concerned with, namely if G and1
G are free-by-finite or finitely generated nilpotent-by-finite groups and H2

ˆis cyclic, the profinite completion G of G s G ) G is the amalgamated1 H 2
ˆ ˆ ˆ ˆ ˆ ˆfree product G s G Q G of G and G amalgamating H, in theˆ1 H 2 1 2

category of profinite groups. This simple observation allows us to use the
Ž w x.theory of profinite groups acting on profinite trees cf. 11, 26 . According
Ž w x.to the Bass]Serre theory of groups acting on trees cf. 19 , G s G )1 H

Ž .G acts in a natural way on a tree SS G associated with this amalgamated2
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ˆ ˆŽ .product. Similarly, G acts continuously on a profinite tree SS G associated
ˆ ˆwith G Q G . It turns out that, under our hypotheses G , G , and H areˆ1 H 2 1 2

Ž .closed in the profinite topology of G; this implies that SS G is embedded
ˆŽ .naturally in SS G . The methods of proof in the results of this paper are

ˆŽ . Ž .based on the study of the connections between SS G and SS G .
w xFinally, we point out that Shirvani 20 has also investigated conjugacy

separability in fundamental groups of graphs of groups, using techniques
similar to ours.

2. NOTATION AND TERMINOLOGY

Let G be a group, H and K subgroups of G, and h, k g G. Then, as
k y1 K � k 4 K � kusual, we define h s khk ; H s h ¬ h g H, k g K ; and h s h ¬

4 Ž . ² : Ž . �k g K . N h denotes the normalizer of h in G, i.e., N h s g gG G
² : y1 ² :4G ¬ g h g s h .

ŽRecall that a profinite group is an inverse limit of finite groups each of
.them endowed with the discrete topology , i.e., a compact, Hausdorff,

totally disconnected topological group. Let R be a residually finite group.
If x and y are elements of R, we use the notation x ; y to indicate thatR

ˆx and y are conjugate in R. Denote by R the profinite completion of R,
ˆthat is, R s ! lim RrU, where U runs through the collection U of all6 ˆnormal subgroups R of finite index. Then R is naturally embedded in R.

ˆNow, R is a profinite group and it induces a topology on R that is called
the profinite topology of R. An element x g R is called conjugacy distin-
guished if the conjugacy class of x in R is closed in the profinite topology
of R. One says that R is conjugacy separable if every element of R is
conjugacy distinguished. Equivalently, R is conjugacy separable if and only
if for any two elements x, y g R, x ; y implies that x ; y. Or, inR̂ R

other words, R is conjugacy separable if and only if for any two elements
x, y g R, x ; y for all N g U , implies that x ; y. If X is a subsetR r N R

Ž . Žof R, then Cl X and X denote the topological closures of X in R where
ˆ.R is endowed with its profinite topology and R, respectively.

Let G and G be residually finite groups, and assume that H is a1 2
common subgroup of G and G . We denote by G s G ) G the1 2 1 H 2
amalgamated free product of G and G amalgamating H. G. Baumslag1 2
has established the following result, which gives sufficient conditions for G
to be residually finite.

w xPROPOSITION 1.1 1, Proposition 2 . The group G s G ) G is residu-1 H 2
� 4 � 4ally finite if there exist families N ¬ l g L and N ¬ l g L of normal1l 2 l
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subgroups of finite index in G and G respectï ely, such that N l H s1 2 1l

N l H, for all l g L, F N s F N s 1, and F HN s F HN s2 l 1l 2 l 1l 2 l

H.

Let G and G be profinite groups with a common closed subgroup D.1 2
One says that the profinite amalgamated free product of G and G with1 2
amalgamated subgroup D exists if the canonical homomorphisms of G1
and G into the push-out of G and G over D in the category of profinite2 1 2
groups are monomorphisms. If it exists, we denote by G s G * G the1 D 2
amalgamated free product of G and G amalgamating D, in the category1 2
of profinite groups. One has the following criterion.

w xCriterion 17, Theorem 1.2 . The profinite amalgamated free product
� 4G s G * G exists if and only if there exist families N ¬ l g L and1 D 2 1l

� 4N ¬ l g L of open normal subgroups in G and G , respectively, such2 l 1 2
that N l D s N l D, for all l g L, and F N s F N s 1.1l 2 l 1l 2 l

One can easily see that if G s G * G is the profinite amalgamated1 D 2
free product of G and G amalgamating D, then G is the completion of1 2
G ) G with respect to the topology consisting of those normal subgroups1 D 2

Ž . ŽN of finite index in G ) G such that N l G is open in G i s 1, 2 cf.1 D 2 i i
w x.17 . Moreover this topology of G ) G is Hausdorff, and so one can1 D 2
think of G ) G as a dense subgroup of G.1 D 2

Next we recall some basic notions in the Bass]Serre theory of groups
w xacting on trees 19, 5 . A graph XX is a set with a distinguished subset of
Ž . Ž . Ž .vertices V s V XX , and a set of edges E s E XX s XX _ V XX , together

Ž .with two maps, d , d : XX ª V, that are the identity on V. If e g E, d e0 1 0
Ž .and d e are the initial and terminal vertices of e, respectively. If XX and1

XX 9 are graphs, a morphism w : XX ª XX 9 is a mapping such that d w s w di i
Ž . 1i s 0, 1 . If XX is a graph, for each edge e we introduce formal symbols e
Ž . y1s e and e , to be thought of as traveling along e one way or the

Ž y1 . Ž . Ž y1 . Ž .opposite way. We set d e s d e and d e s d e . If ¨ , w are0 1 1 0
vertices in a graph XX , a path, p joining ¨ to w is a finite sequence of¨ , w
vertices and symbols e"1, ¨ s ¨ , e« Ž1., ¨ , e« Ž2., ¨ , . . . , e« Žn.¨ s w, where0 1 1 2 2 n n
Ž . Ž Ž« Ž i.. Ž « Ž i.. Ž .« i s "1, ¨ s d e , ¨ s d e i s 1, . . . , n . If for every i,iy1 0 i 1

e« Ž i. / ey« Ž iq1., we say that this path is reduced. A reduced path p is ai iq1 ¨ , w
cycle if ¨ s w. A graph XX is connected if any two vertices in G are joined
by a path. A graph XX is a tree if it is connected, and it contains no cycles.

Ž .A graph of groups G , XX consists of a graph XX , and a family of groups
Ž . � Ž . 4G XX s G x ¬ x g XX ; in addition, for each edge e there is a pair of

i Ž . Ž Ž .. Ž .monomorphisms a : G e ª G d e , i s 0, 1 . Consider a graph ofe i
Ž .groups G , XX , where XX is a connected graph. Choose a maximal subtree

w x Ž .TT of XX . Following Dicks 5 , we say that a TT-specialization of G , XX to a
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Ž .group H is a system of homomorphisms c : G ¨ ª H, and elements¨
Ž . Ž .h g H, where ¨ g V XX and e g E XX , with the following properties:e

Ž . Ž .1 h s 1, for e g E TT ,e

Ž . Ž 0Ž .. Ž 1Ž .. y1 Ž .2 c a g s h c a g h , for every edge e g E XX with ini-¨ e e w e e
Ž .tial vertex ¨ and terminal vertex w, and each g g G e .

Ž .The fundamental group of the graph of groups G , XX is a group
Ž . � 4p G , XX having a TT-specialization w , t with the following universal1 ¨ e

� 4property: for every TT-specialization c , h to a group H, there exists a¨ e
Ž . Ž .unique homomorphism v : p G , XX ª H such that v t s h and1 e e

Ž . Ž .vw s c , for all ¨ g V XX and e g E XX . We observe that the funda-¨ ¨
Ž .mental group p G , XX is unique up to isomorphism and it is independent1

w xof the choice of TT 5, Theorem 2.4 . Next we recall the definition of the
Ž .standard tree SS s SS G , XX associated with the fundamental group G s

Ž . Ž . Ž . Ž Ž ..p G , XX of the graph of groups G , XX . Define G ¨ s w G ¨ , for1 ¨
Ž . Ž . 0Ž Ž .. Ž .¨ g V X , and G e s w a G e , for e g E X . Then SS s D?d Ž e. e x g XX0
Ž . Ž . Ž . Ž Ž .. Ž Ž ..GrG x . Define V SS s D? GrG ¨ , d gG e s gG d e and¨ g V 0 0

Ž Ž .. Ž Ž .. Ž .d gG e s gt G d e . The group G s p G , XX acts on SS in a natural1 e 1 1
way, and the quotient graph SSrG is XX . Note that if G s G ) G , then1 H 2

Ž .G is the fundamental group of a graph of groups G , XX , where XX consists
Ž . Ž .of one edge e and two vertices ¨ , ¨ , with G e s H, G ¨ s G and1 2 1 1

Ž .G ¨ s G . It follows that there is a corresponding standard tree2 2
Ž . Ž . Ž .SS G s SS G ) G , with a natural action of G on SS G . Consider now1 H 2

a graph XX consisting of one edge e and one vertex ¨ , and a graph of
Ž . Ž . 1Ž Ž .. 0Ž ..groups G , XX ; set G ¨ s G , a G e s H and a G s H . Then1 e 2 e 1

Ž . Ž .the fundamental group p G , X is an HNN extension HNN G , H , H , t1 1 1 2
Ž w x.cf. I.1.5 in 19 .

Let G be a group that acts on a connected graph XX ; denote by YY the
quotient graph XXrG, and let c : X ª XXrG be the canonical epimorphism
of graphs. A connected transversal S of c consists of a subtree LL of XX

that c maps isomorphically to a maximal subtree DD of XXrG, together
with a set of edges with initial vertices in LL such that c maps S _ LL

Ž . Gbijectively to E XXrG _ DD. We denote by XX the subgraph of fixed points
of XX under the action of G.

Ž . ŽA profinite graph or Boolean graph XX is a profinite space or Boolean
.space, i.e., a compact, Hausdorff, totally disconnected topological space

Ž .with a distinguished closed subset of vertices V s V XX and a subspace of
Ž . Ž . Ž .oriented edges E s E XX s XX _ V XX , together with two continuous

Ž . Ž . Ž .maps, d e , d e : XX ª V, that are the identity on V. If e g E, d e and0 1 0
Ž .d e are the initial and terminal vertices of e, respectively. If XX and XX 91

are graphs, a morphism w : XX ª XX 9 is a continuous mapping such that
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Ž .d w s w d i s 0, 1 . Observe that a profinite graph is in particular ai i
graph, and that a finite graph is profinite. It is easy to see that every
profinite graph is a projective limit of finite graphs. We say that a profinite
graph is connected if every finite epimorphic image of it is connected in
the usual sense. To explain the notion of profinite tree we need some

ˆadditional notation. Let Z be the profinite completion of the group of
ˆ ˆŽintegers. Observe that Z is a topological ring; in fact, Z s ŁZ , where pp

runs through the set of prime numbers, and Z denotes the ring of p-adicp
. Ž .integers. Let S, ) denote a profinite pointed space, that is, a profinite

space S with a distinguished point ); and let us assume, as usual, that a
Ž . Ž .map of profinite pointed spaces w : S, ) ª S9, )9 is a continuous map

Ž .such that w ) s )9. If A is a profinite abelian group, we consider it as
Ž .pointed space by thinking of zero as its distinguished point. If T , ) is a

ˆ ˆw xfinite pointed space, define Z T , ) to be the direct sum of copies of Z
ˆ� 4 Ž . w xindexed by T- ) ; we think of T , ) as being embedded in Z T , ) by
ˆ� 4identifying each t g T- ) with 1 in the corresponding copy of Z, and by

Ž .identifying ) with zero. Every profinite pointed space S, ) can be
Ž . Ž .expressed as a projective limit S, ) s lim S , ) of finite pointed spaces6 i

ˆŽ . w xS , ) . Then the groups Z S , ) form, in a natural way, a projectivei i
w xsystem of abelian profinite groups, and we denote by Z@S, )# or by A S, )

the abelian profinite group

w x w xA S, ) s lim Z S , ) .6 i

w x Ž .It is not hard to see that A S, ) is well-defined, and that S, ) is
w x w xnaturally embedded in A S, ) . In fact, A S, ) is the so-called free

Ž .profinite abelian group on the pointed space S, ) , and it is characterized
by the following universal property: whenever A is an abelian profinite

Ž .group and u : S, ) ª A is a continuous mapping of pointed spaces, there
w xexists a unique continuous homomorphism u : A S, ) ª A extending u .

Ž Ž . .Next, let XX be a nonempty profinite graph, and denote by E* XX , ) the
Ž . Ž .quotient space E* XX s XXrV XX obtained from XX by collapsing the set of

Ž .vertices V XX to a distinguished point ). Consider the following sequence
of abelian profinite groups and continuous homomorphisms,

d « ˆ0 ª A E* XX , ) ª A V XX ª Z ª 0,Ž . Ž .

Ž .where d and « are the continuous homomorphisms defined by d x s
Ž . Ž . Ž . Ž . Ž .d x y d x , for each x g XX y V XX , d ) s 0, and « ¨ s 1, for each1 0

Ž .¨ g V XX . One says that the graph XX is a profinite tree if the above
sequence is exact. It is easily seen that a profinite tree is a connected
profinite graph in the sense mentioned above, in fact a profinite graph is
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w Ž .x Žconnected if and only if the above sequence is exact at A V XX . For
w xmore information about profinite graphs the reader may consult 11 or

w x .26 .
Ž . ŽNext we consider a finite graph of profinite groups G , XX see Section 3

w x .in 26 for details about the statements and concepts in this paragraph .
This is defined as for abstract groups, with the additional requirements
that the vertex and edge groups be profinite and the monomorphisms a i

e
be continuous. The same universal property considered above, but in the
category of profinite groups, serves to define the profinite fundamental

Ž . Ž .group P G , XX of the finite graph of profinite groups G , XX . In the same1
manner one defines the standard profinite tree SS associated with

Ž . Ž .P G , XX ; and P G , XX acts continuously on SS in a natural way. When1 1
G s G * G is a profinite amalgamated free product, G can be similarly1 D 2
interpreted as the profinite fundamental group of the graph of profinite
groups over a graph consisting of one edge and two distinct vertices. It

Ž .follows that there is a corresponding standard profinite tree SS G s
Ž . Ž .SS G * G , with a natural action of G on SS G .1 D 2
Assume that the amalgamated free product of abstract groups G s

� 4G ) G is residually finite. Consider the family N ¬ l g L of all1 H 2 l

�normal subgroups of finite index of G. Define the families N s N l1l l

4 � 4G ¬ l g L and N s N l G ¬ l g L of normal subgroups of finite1 2 l l 2
index of G and G , respectively. Note that N l H s N l H, for all1 2 1l 2 l

l g L. Define profinite groups G s lim G rN , G s lim G rN , and6 61 1 1l 2 2 2 l

Ž .D s lim Hr H l N . Then D can be thought of as a common closed6 1l

subgroup of G and G . One can apply the above criterion to see that the1 2
profinite amalgamated free product G s G * G exists. In fact G is the1 D 2
profinite completion of G. Using the above notation, we consider the

Ž .standard tree SS G associated with G s G ) G , and the standard1 H 2
Ž .profinite tree SS G associated with G s G * G . Since G s lim GrN , it61 D 2 l

Ž . Ž .follows that SS G s lim SS G rN . Finally, it is easily seen that if G , G ,6 l 1 2
Ž .and H are closed in the profinite topology of G, SS G is naturally

Ž .embedded in SS G .
Ž .More generally, suppose G s p G , XX is the fundamental group of a1

ˆfinite graph of groups, and assume that G is residually finite. Then G s G
ˆŽ .is the profinite fundamental group P G , XX of a graph of profinite groups1

ˆ ˆ ˆŽ . Ž . Ž . Ž . Ž .G , XX , where G ¨ and G e are the completions of G ¨ and G e ,
with respect to the topologies induced from the profinite topology of G. It

ˆ ˆ ˆ ˆŽ . Ž . Ž .follows that G ¨ and G e are embedded in G s G s P G , XX . Let1
Ž . Ž . Ž .SS G denote the standard tree associated with G s p G , X , and SS G1

ˆ ˆŽ .the standard profinite tree associated with G s G s P G , XX . Since1
Ž . Ž .G s lim GrN, it follows that SS G s lim SS G rN, where N runs through6 6

the family of all normal subgroups of finite index of G. One easily checks
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Ž . Ž .that if the vertex subgroups G ¨ and edge subgroups G e are closed in
Ž . Ž .the profinite topology of G, SS G is naturally embedded in SS G .

2. PRELIMINARY RESULTS

In this section we establish some general results about abstract and
profinite groups acting on trees.

Ž .LEMMA 2.1. i Let XX be a profinite graph, and let YY be a profinite
connected subgraph of XX . Consider the profinite quotient graph XXrYY obtained

Ž w x.by collapsing YY to a single ¨ertex see Lemma 1.4 in 26 . Then the preimage
ZZ of a profinite connected subgraph RR of XXrYY is connected.

Ž .ii Let G be a profinite group that acts on a profinite tree TT. Assume
that TT and TT are disjoint G-in¨ariant profinite subtrees of TT. Then the sets of1 2
fixed points TT G and TT G are not empty.1 2

Ž .Proof. i The result is obvious if XX is a finite graph. Express XX as an
inverse limit of finite graphs, XX s lim XX . Denote by YY and ZZ the6 i i i
canonical images of YY and ZZ in XX , respectively. Clearly XXrYY s lim XX rYY .6i i i
Let RR be the image of RR in XX rYY . Then ZZ is the preimage of RR in XX .i i i i i i
Since RR is connected, so is ZZ ; hence, ZZ s lim ZZ is also connected.6i i i

Ž . Gii It suffices to prove that TT / B. Consider the profinite graph1
TT 0 obtained from TT by collapsing TT to a vertex denoted ¨ , and TT to a1 1 2

w xvertex denoted ¨ . Then by Proposition 1.17 in 25 , TT 0 is a profinite tree.2
Since TT and TT are G-invariant, there is a natural action of G on TT 01 2

w x Ginduced by the action on TT. By Theorem 2.8 in 26 , the subgraph TT 0 of
fixed points of TT 0 under the action of G is also a profinite tree with two
distinct vertices, and hence it contains an edge. It follows that TT G is not
empty. Next consider the profinite graph TT 9 obtained from TT by collaps-

w xing TT to a vertex denoted ¨ . Again by Theorem 2.8 in 26 , the subgraph1 1
TT 9G of fixed points of TT 9 under the action of G is a profinite tree.
Observe that the preimage of TT 9G l TT / B, for otherwise the quotient1
graph of TT G j TT obtained by collapsing TT G to a vertex denoted ¨ , and1 1
TT to a vertex denoted ¨ , would not be connected.1 2

The next result provides a criterion for the uniqueness of minimal
G-invariant subtrees of a tree on which a group G acts, in both the
abstract and the profinite setting.

Ž .LEMMA 2.2. i Let G be an abstract group that acts on a tree TT in such
a way that TTrG is a finite graph. Then there exists a minimal G-in¨ariant
subtree TT of TT. Moreo¨er, TT is unique if and only if G does not fix any edgeG G
of TT.
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Ž .ii Let G be a profinite group that acts on a profinite tree TT. Then there
is a minimal G-in¨ariant profinite subtree TT of TT. Moreo¨er, TT is unique ifG G

and only if G does not fix any edge of TT.

Ž .Proof. i To show the existence of minimal G-invariant subtrees it
suffices to prove that one can apply Zorn’s lemma to the collection of all
nonempty G-invariant subtrees of TT ordered by inclusion: just observe

Ž . Ž .that if TT i g I is a chain of such nonempty subtrees, then F TT is ai i
nonempty subtree; for let t9 be an element in the intersection of all the

X Ž .images TT in TTrG of each TT such a t9 exists since TTrG is finite ; leti i
Ž .t g T map to t9; then clearly all the t i g I are in the same orbit, andi i i

Ž .so Gt is a subset of every TT j g I . Suppose that TT and TT are two suchi j 1 2
minimal G-invariant subtrees. It suffices to show that TT l TT / B. Sup-1 2
pose TT l TT s B. Consider the tree TT 9 obtained from TT by collapsing TT1 2 1
to a point t and TT to a point t . Then G acts on TT 9 with fixed points t1 2 2 1
and t . Hence G fixes all edges of the path in TT 9 from t to t . Now the2 1 2
preimage of an edge of TT 9 consists of a single edge of TT. Thus a preimage
of a fixed edge of TT 9 must be an edge of TT fixed by G, contradicting the
assumption of the lemma.

Ž .ii Observe that in this case TT is a compact space, and so the
intersection of a chain of nonempty profinite subtrees of TT is nonempty.
Hence by Zorn’s lemma, there exists a minimal G-invariant profinite

< <subtree TT of TT. If G does not fix any vertex of TT, then TT ) 1, and so TTG G G

w x � 4is unique by Lemma 1.5 in 25 . Let ¨ be a vertex of TT fixed by G. Then ¨
is a minimal G-invariant profinite subtree. By Lemma 2.1, any minimal

� 4G-invariant profinite subtree must consist of only one vertex, say w . By
w x GTheorem 2.8 in 26 , the subgraph of TT of fixed points is also a profinite

Gtree. Hence, if ¨ / w then there exists an edge in TT , a contradiction.

Ž . Ž .LEMMA 2.3. i Let G s P G , XX be the profinite fundamental group1
Ž .of a finite graph of profinite groups G , XX , such that the natural homomor-

Ž . Ž .phism p G , XX ª P G , XX is an embedding. Let ¨ and ¨ be two1 1 1 2
Ž . Ž .different ¨ertices of XX , and assume that g g G ¨ and g g G ¨ , but1 1 2 2

Ž .G Ž¨1. Ž .G Ž¨ 2 .g f G e and g f G e . Then g and g are not conjugate in G.1 2 1 2
Ž .ii Let G s G * G be the profinite amalgamated free product of two1 D 2

profinite groups G and G amalgamating a common closed subgroup D. Let1 2
g g G _ DG1 and g g G _ DG2. Then g and g are not conjugate in G.1 1 2 2 1 2

Ž . Ž .iii Let G s P G , XX be the profinite fundamental group of a finite1
Ž . Ž .graph of profinite groups G , XX , such that each edge group G e is finite.

Ž .Let ¨ and ¨ be two different ¨ertices of XX , and assume that g g G ¨ and1 2 1 1
Ž . Ž .g g G ¨ , but g and g do not belong to a conjugate, in G ¨ and2 2 1 2 1

Ž . Ž .G ¨ respectï ely, of any edge group G e . Then g and g are not2 1 2
conjugate in G.
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Ž . Ž . Ž . Ž .Proof. Clearly ii and iii are consequences of i . To prove i , let
U be the collection of all open normal subgroups U of G. Consider

Ž .the fundamental group respectively, the profinite fundamental group
Ž . Ž Ž . . Ž Ž . Ž Ž . ..G U s p G U , XX respectively, G U s P G U , XX of the finite1 1

Ž . Ž . Ž . Ž Ž . . .graph of groups G , XX , where G x s G x r G x l U , for x g XX .U U
Then

$
G U s G U and G s lim G U .Ž . Ž . Ž .6

Ž . Ž . Ž . Ž Ž .Denote by g U and g U the images of g and g in G ¨ r G ¨ l1 2 1 2 1 1
. Ž . Ž Ž . . Ž . Ž .U and G ¨ r G ¨ l U , respectively. Choose U so that g U g U2 2 1 2
Ž Ž . Ž Ž . ..G Ž¨ 2 . Ž . Ž .f G e r G e l U , for e g E XX . It is easy to see that g U and1
Ž . Ž . Ž .g U are not conjugate in G U . Since G U is a free-by-finite group, one2

Ž . Ž w x.has that G U is conjugacy separable cf. Theorem 3 in 7 . Therefore
Ž . Ž . Ž .g U and g U are not conjugate in G U . It follows that g and g are1 2 1 2

not conjugate in G.

Ž .LEMMA 2.4. i Let R be a residually finite group and let C be a cyclic
subgroup of R such that the topology induced on C by the profinite topology of
R coincides with the profinite topology of C. Let C and C be subgroups of C1 2
which are conjugate in R. Then C s C .1 2

Ž .ii Let G be a profinite group, and D a closed procyclic subgroup of G.
Let D and D be closed subgroups of D which are conjugate in G. Then1 2
D s D .1 2

Ž .Proof. i Let N be any normal subgroup of R of finite index. Then
C NrN and C NrN are conjugate in RrN, and so they have the same1 2
order. Since they are subgroups of the finite cyclic group CNrN, it follows
that C NrN s C NrN. One deduces that the closures of C and C in1 2 1 2

Ž .the profinite topology of R and hence of C coincide. Since C is cyclic, C1
and C are closed in the profinite topology of C, and thus C s C .2 1 2

Ž . Ž .ii The proof in this case is similar to the one used in i .

In the following proposition we study the normalizer of a subgroup of a
vertex group of a fundamental group of a graph of groups, in both the
abstract and the profinite situation.

Ž .PROPOSITION 2.5. 1 Let G be a group that acts on a tree SS , such that
the stabilizer G is a cyclic group for each edge e. Let H be a subgroup of Ge ¨

Ž . Ž . Ž .for some ¨ g V SS . Assume that either i each G is finite, or ii thee
profinite topology of G induces on each G its full profinite topology. Then Ge

Ž .can be represented as a fundamental group of a graph of groups G , XX such
Ž . Ž .that XX s SSrG, G x s G , where Gs s x, and the normalizer N H ss G

Ž . Ž . Ž .p G9, YY , with YY a subgraph of XX , and G9 y s N H , for all y g YY.1 G Ž y .
Ž .2 Let G be a profinite group that acts continuously on a profinite tree

SS so that SSrG is finite. Suppose in addition that the stabilizer G is ae
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procyclic group for each edge e. Let D be a closed subgroup of G for some¨
Ž .¨ g V SS . Then G can be represented as a profinite fundamental group of a

Ž . Ž .graph of groups G , XX such that XX s SSrG, G x s G , where Gs s x, ands
Ž . Ž . Ž . Ž .N D s P G9, YY , with YY a subgraph of XX and G9 y s N D , forG 1 G Ž y .

all y g YY.

Ž . HProof. 1 Let TT s SS be the subtree of fixed points of H in SS .
Consider the natural epimorphism of graphs w : SS ª SSrG. First, we prove

Ž .that the normalizer N H acts on TT, and that the natural mapping c :G
Ž .TT ª TTrN H is the restriction w of w to TT.G < TT

Ž .Let g g N H and let t g TT; then hgt s gh9t s gt, where h, h9 g H;G
Ž .so gt g TT. Therefore N H acts on TT. Next, consider the case when HG

� 4 Ž .does not stabilize any edge of SS , i.e., TT s ¨ . Then N H is containedG
in G , and so c s w . Now, consider the case when H stabilizes some¨ < TT

edge of SS , say e. We need to show that if for some g g G, ge g TT, then
Ž . y1g g N H . First, observe that the stabilizer of ge is precisely gG g .G e

Hence H and gHgy1 are subgroups of gG gy1. If G is finite cyclic, thene e
H s gHgy1, since H and gHgy1 have the same order. If G is infinite, lete
K be any finite quotient of G; then by the above argument, the images of

y1 Ž .H and gHg in K coincide; hence, by the assumption ii in the state-
ment we get H s gHgy1. This proves that c s w .< TT

Ž .Consider a maximal subtree DD of TTrN H ; extend DD to a maximalG
subtree DD9 of SSrG; let S be a connected transversal of c ; then there is a

Ž .connected transversal S9 of w such that S9 l TT s S. Note that w S9 s XX .
Ž . w x Ž .Define YY s c S . Then according to Theorem I.13 in 19 , G s p G , XX ,1

Ž . Ž . Ž .where G x s G , with Gs s x and s g S9; and N H s p G9, YY ,s G 1
where

G9 x s N H s N H ,Ž . Ž . Ž .Ž .G Gs s

with Gs s x and s g S.
Ž . D2 Let TT s SS be the profinite subtree of fixed points of D in SS

Ž w x.cf. Theorem 2.8 in 26 . Consider the natural epimorphism of graphs w :
Ž .SS ª SSrG. First we prove that the normalizer N D acts on TT continu-G

Ž .ously, and the natural mapping c : TT ª TTrN D is the restriction w ofG < TT

w to TT.
Ž .Let g g N D and let t g TT; then dg t s gd 9t s g t, where d , d 9 g D;G

Ž .so d t g TT. Therefore N D acts on TT. Next, consider the case when DG

� 4 Ž .does not stabilize any edge of SS , i.e., TT s ¨ . Then N D is contained inG

G , and so c s w . Now consider the case when D stabilizes some edge of¨ < TT

Ž .SS , say e. We need to show that if for some g g G, g e g TT, then g g N D .G

First, observe that the stabilizer of g e is precisely g G gy1. Hence D ande
gDgy1 are subgroups of g G gy1. If G is finite cyclic, then D and gDgy1

e e
have the same order, and so D s gDgy1. If G is infinite, let K be anye



RIBES AND ZALESSKII762

finite quotient of G; then by the above argument, the images of D and
gDgy1 in K coincide; hence we get H s gHgy1. This proves that c s w .< TT

Ž .Consider a maximal subtree DD of TTrN D ; extend DD to a maximalG

Žsubtree DD9 of SSrG; let S be a connected transversal of c observe that S
.exists since SSrG is finite ; then there is a connected transversal S9 of w

Ž . Ž .such that S9 l TT s S. Note that w S9 s XX . Define YY s c S . Then
w x Ž . Ž .according to Proposition 4.4 in 27 , G s P G , XX , where G x s G , with1 s

Ž . Ž .Gs s x and s g S9; and N D s P G9, YY , whereG 1

G9 x s N D s N D , with Gs s x and s g S.Ž . Ž . Ž .Ž .G Gs s

Ž .Remark 2.6. If, in the statement 2 of the above proposition, SSrG is
infinite, the conclusion and proof are still valid, if one adopts the appropri-
ate definition of a profinite fundamental group of a profinite graph of

Ž w x.profinite groups cf. 27 .

Ž .COROLLARY 2.7. i Let G , G be residually finite groups with a1 2
common cyclic subgroup H. Assume that the profinite topology of G inducesi

Ž .the full profinite topology of H i s 1, 2 . Let G s G ) G be their1 H 2
Ž . Ž . Ž .amalgamated free product. Let h g H. Then N h s N h ) N h ,G G H G1 2

Ž . ² :where N h denotes the normalizer of h in G.G
Ž .ii Let G and G be profinite groups with a common closed procyclic1 2

Ž .subgroup D, such that G s G * G exists. Let d g D. Then N d s1 D 2 G

Ž . Ž .N d * N d .G D G1 2

Proof. This follows from the proof of the proposition: it corresponds to
the case in the proof when TT contains an edge.

Let G be a group acting on a tree SS . One says that an element g of G
is hyperbolic if g does not fix any vertex of SS . If G is the fundamental

Ž . Ž .group p G , XX of a graph of groups G , XX , one has that G acts on the1
Ž . Ž .standard tree SS G associated with G s p G , XX ; then we say that an1

element of G is hyperbolic, if it is hyperbolic with respect to this action.

Ž .LEMMA 2.8. Suppose that G is the fundamental group p G , XX of a1
Ž .finite graph of groups G , XX . Assume that G is residually finite and that

Ž . Ž .G ¨ and G e are closed in the profinite topology of G. Let a and b be two
ˆelements of G which are conjugate in G. Then a is hyperbolic if and only if b is

Ž .hyperbolic as elements of G .

ˆ Ž .Proof. Let G s G. Since G is the fundamental group p G , XX of a1
Ž .finite graph of groups G , XX and the vertex and edge groups are closed in

Ž . Ž .the profinite topology of G, then SS G is embedded in SS G , as was
indicated in the last paragraph of Section 1.

Let g g G be such that b s g agy1. Assume that a fixes some vertex of
Ž . Ž .SS G , say ¨ . We need to prove that b also fixes a vertex of SS G .1
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Ž w x.Suppose not. Then by a theorem of Tits cf., Prop. I.24 in 19 , there is an
Ž . � Ž .infinite straight line TT in SS G , defined as follows: let m s min l ¨ , b¨ ¬b

Ž Ž ..4 Ž .¨ g V SS G , where l ¨ , b¨ denotes the distance from ¨ to b¨ in the
Ž . Ž .tree SS G ; then TT is the subtree of SS G whose set of vertices isb

� Ž Ž .. Ž . 4¨ g V SS G ¬ l ¨ , b¨ s m . Moreover b acts freely on TT as a transla-b
² :tion of length m. Let TT be a segment of TT of length m. Then TT s b TT.b b

As mentioned in the last paragraph of Section 1, when G is the fundamen-
ˆŽ . Ž .tal group p G , XX of a finite graph of groups G , XX , one has G s G s1

ˆŽ . ² :P G , XX . Consider the closure TT s b TT of TT in the standard profinite1 b b
Ž .tree SS G . Observe that b does not fix any vertex of TT , for if b9¨ g TTb b

² :with b9 g b , ¨ g TT, and bb9¨ s b9¨ , then b¨ s ¨ , since b and b9
Ž . Ž ² :.commute. Consider the vertex g ¨ of SS G . Note that b and hence b1

Ž .fixes g ¨ , and so g ¨ g TT . It follows by Lemma 2.1 ii that b fixes some1 1 b
vertex in TT , which is a contradiction.b

Ž .PROPOSITION 2.9. Let G s p G , XX be the fundamental group of a1
Ž .finite graph of groups G , XX , and assume that G is residually finite, and that

Ž .G x is closed in the profinite topology of G, for all x in X. Let b g G. If b is
ˆ² : Ž .hyperbolic, then b acts freely on the standard tree SS G of G s G s

ˆŽ .P G , XX .1

Proof. Using the notation in the proof of Lemma 2.8, b acts on TT as ab
² :translation of length m, and therefore the group b acts freely on TT .b

² : ² :Moreover TT s b TT. We claim that b acts freely on TT . Remark that ifb b
² :b9 g b fixes one vertex of T , then it fixes all the vertices of T . Denoteb b

² :by K the closed subgroup of b consisting of those elements that act
² : ² :trivially on T ; we need to show that K s 1. Clearly K / b , since bb

² :acts freely on T . Now, b rK acts freely on the profinite tree T withb b
Ž² : . Ž ² : .finite quotient graph T r b rK for T r b is finite . Then, accordingb b

w x ² : ² :to 11, Theorem 1.7 , b rK is a free prosolvable group, and since b is
ˆ² :procyclic and nontrivial, one has b rK ( Z. Thus K s 1. This proves the

claim.
² : Ž . ² : Ž .If b s SS G , obviously b acts freely on SS G . If, on the other hand,

² : Ž . Ž .b / SS G , our result follows from Lemma 2.1 ii .

Remark 2.10. Let C be a nonempty class of finite groups closed under
subgroups, quotients, and extensions. Let G be an abstract group, and let
U be the collection of all normal subgroups U of G such that GrU g C.
If F U s 1, we say that G is residually C. Then lim U g U GrU is6U g U

called the pro-C completion of G. We say that G is conjugacy C-separable
if for any two elements x, y g G, x ; y for all U g U , implies thatG r U
x ; y. There are corresponding natural notions of pro-C trees, pro-CG
fundamental group of a finite graph of pro-C groups, and standard pro-C
tree. Then one can restate many of the results in this section in terms of
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pro-C topology and pro-C completions, rather than profinite topology and
Ž .profinite completion. Specifically the results 2.1]2.3, 2.5 ii , 2.6, 2.8, and

2.9 can be so restated, and the proofs remain valid using essentially the
same techniques that we have employed above.

3. THE MAIN RESULT

In this section we apply the techniques developed above to prove the
conjugacy separability of an amalgamated free product of groups that are
either free-by-finite or finitely generated nilpotent-by-finite, amalgamating
a cyclic group.

A group G is called subgroup separable if every finitely generated
wsubgroup of G is closed in the profinite topology of G. It is proved in 14,

x12 that free groups and finitely generated nilpotent groups are subgroup
separable; it easily follows that the groups considered in this paper, i.e.,
free-by-finite or finitely generated nilpotent-by-finite groups, are also
subgroup separable.

Ž w x.Let x be an element in a group R. Following Tang cf. 24 , one says
² : Žthat R is quasi x -potent in fact, Tang refers to this concept as weakly

² : .x -potent if there exists a positive integer r such that for every positive
integer n, there exists a normal subgroup U of R of finite index such thatn
in the quotient group GrU , the image of x has exactly order rn. Then

² :group R is said to be quasi potent if R is quasi x -potent for every
² :element x in R of infinite order. Observe that if R is quasi x -potent,

² :then the profinite topology of R induces on x its full profinite topology.

Ž w x .LEMMA 3.1 C. Y. Tang 24 , Lemma 3.2 . Let R be either a free-by-finite
or a finitely generated nilpotent-by-finite group. Then R is quasi potent.

ˆw ² :Consequently, if x is an element of infinite order in R, the closure of x in R
ˆ xis isomorphic to Z.

PROPOSITION 3.2. Let G , G be either free-by-finite or finitely generated1 2
nilpotent-by-finite groups, let H be a common cyclic subgroup of G and G .1 2
Then G s G ) G is residually finite, the profinite topology of G induces1 H 2

ˆŽ .on each G the full profinite topology of G i s 1, 2 , H is naturally embeddedi i
ˆ ˆ ˆ ˆ ˆin G and G , and G s G * G .ˆ1 2 1 H 2

Proof. The residual finiteness of G is probably known, but we do not
have an explicit reference for this fact; in any case, we prove it here. As
pointed out above, it follows from Lemma 3.1 that the profinite topology

ˆŽ .of G induces on H its full profinite topology i s 1, 2 , i.e., H is naturallyi
ˆ ˆ � 4embedded in G and G . Consider the family N ¬ l g L of all normal1 2 l

subgroups of finite index of G. First, we shall prove that the family
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� 4 ŽN s N l G ¬ l g L determines the full profinite topology of G i sil l i i
.1, 2 . For this it suffices to prove that for any given normal subgroup of

Ž .finite index N in G , one can find a l g L such that N F N i s 1, 2 . Ifi i il i
Ž w x.H is finite, this clearly can be done cf. Proposition II.12 in 19 . Suppose

² : ² t1: ² t2:H s h is infinite. Let h s H l N and h s H l N , for some1 2
natural numbers t and t . Now, by Lemma 3.1, G is quasi potent. Hence1 2 i
there exist integers r and r such that for any given integers n and n ,1 2 1 2
there exist normal subgroups M and M of G and G , respectively, such1 2 1 2
that the images of ht1 and ht2 in G rM and G rM have orders n r and1 1 2 2 1 1

² t1 n1 r1:n r , respectively. Hence M l N l H s h and M l N l H s2 2 1 1 2 2
² t2 n2 r2:h . Choose n and n such that t n r s t n r . Then M l N l1 2 1 1 1 2 2 2 1 1
H s M l N l H. Next we show that there exists l g L such that M l2 2 1
N s N and M l N s N . For this we shall find a normal subgroup M1 1l 2 1 2 l

Ž .of finite index in G such that M l G s M l N i s 1, 2 . Consider thei i i
natural epimorphism of groups

w : GsG ) G ª G sG r M lN ) G r M lN .Ž . Ž .1 H 2 0 1 1 1 HrŽM l N l H . 2 2 21 1

Since G is free-by-finite, there exists a free normal subgroup F of G of0 0
y1Ž .finite index. Define M s w F . It is easy to see that M satisfies the

required properties. This proves that the profinite topology of G induces
Ž .on each G its full profinite topology i s 1, 2 , so that we may assume thati

ˆ ˆ ˆ ˆG and G are naturally embedded in G, and clearly G is topologically1 2
ˆ ˆgenerated by G and G . Next, note that obviously N l H s N l H1 2 1l 2 l

Ž .for each l g L and F N s 1 i s 1, 2 ; furthermore, F N H s Hl il l il

Ž .i s 1, 2 , since G and G are subgroup separable, as we pointed out at1 2
the beginning of this section. It follows then from Proposition 1.1 that G is
residually finite.

To complete the proof it remains to show that

Ĝ

6

1

6

ˆ ˆH G6

6

Ĝ2

ˆis a push-out diagram in the category of profinite groups. Let h : G ª Ai i
Ž . Ž . Ž .i s 1, 2 be homomorphisms into a finite group A such that h x s h x1 2

ˆfor all x g H. Consider the natural embedding

ˆg : G s G ) G ª G1 H 2

ˆ ˆinduced by the natural embeddings G ª G and G ª G . Then there1 1 2 2
< <exists a unique homomorphism t : G ª A extending h and h .G G1 21 2
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ˆTherefore t induces a unique continuous homomorphism h: G ª A such
g Ž .that h s t . It follows that h extends h i s 1, 2 .i

LEMMA 3.3. Let G , G be either free-by-finite or finitely generated1 2
nilpotent-by-finite groups, and let H be a common cyclic subgroup of G and1
G . Then G , G , and H are closed in the profinite topology of G s G )2 1 2 1 H
G .2

ˆ ˆ ˆProof. By Proposition 3.2, G ) G is a dense subgroup of G. Let1 H 2
ˆ ˆk g G l G. Assume first that k g H l G. We need to prove that k g H.1

If k f H, then k has a canonical representation as k s w w w . . . , where1 2 3
Ž . Ž .w g G j G _ H, and if w g G respectively, if w g G then wi 1 2 i 1 i 2 iq1

ˆŽ .g G respectively, then w g G . It follows that w f H, since G l2 iq1 1 i 1
ˆ ˆH s G l H s H, because G and G are subgroup separable, as we2 1 2

pointed out at the beginning of this section. Hence k s w w w . . . is also1 2 3
ˆ ˆ ˆa canonical representation as an element of G ) G . Therefore k f H,ˆ1 H 2

contradicting our hypothesis.
ˆ ˆŽ .Suppose now that k g G l G _ H. Let k s w w w . . . be a canoni-1 1 2 3

cal representation of k in G s G ) G as above. Again this is also a1 H 2
ˆ ˆ ˆcanonical representation of k in G ) G . Since k g G , the length ofˆ1 H 2 1

ˆ ˆŽ . Žthis representation must be 1. Thus k s w g G l G j G s G l1 1 1 2 1
ˆ ˆ ˆ. Ž . Ž .G j G l G s G j H l G s G j H s G . So G l G s G .1 1 2 1 2 1 1 1 1

ˆSimilarly G l G s G .2 2

LEMMA 3.4. Let F be a free group, and K an infinite cyclic subgroup of F.
ˆŽ . Ž .Then N K s N K , where N K denotes the closure of N K in F.Ž . Ž .ˆF F F F

Proof. Since K is contained in a finitely generated free factor of F, we
may assume that F has finite rank. Let X be a basis of F. Let SS be the

ŽCayley graph of F with respect to X. Then SS is a tree cf. Proposition
w x. ² :I.15 in 19 . Say K s k . Consider the smallest K-invariant subtree TT of

SS containing the vertex 1. Then

w xTT s K 1, k ,D
Ž .¨gV XX

w xwhere 1, k denotes the unique reduced path from 1 to k in SS . Clearly TT

is a minimal K-invariant subtree. Observe that TTrK is finite. By Lemma
Ž .2.2 i , TT is the unique K-invariant subtree of SS , since K does not fix any

edges of SS . Note that SS is naturally embedded in the profinite Cayley
ˆ ˆgraph SS of free profinite group F with respect to X. Then the closure of

ˆTT in SS is

w xTT s K 1, k .D
Ž .¨gV XX
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Observe that K is closed in the profinite topology of F, i.e., K l F s K ;
therefore, TT l SS s TT. We claim that TT is a minimal K-invariant profinite

ˆsubtree of SS . For let R be a K-invariant profinite subtree of TT. Then
R l SS is a nonempty K-invariant subtree of TT, and so R l SS s TT; thus
R s TT, and hence we have proved the claim. One deduces from Lemma

ˆŽ .2.2 ii that TT is the unique minimal K-invariant profinite subtree of SS .
Ž . Ž .Now, N K acts naturally on TT, for if g g N K , then gTT is obvi-ˆ ˆF F

ˆously a minimal K-invariant profinite subtree of SS , and so TT s gTT. Next
consider the natural epimorphism of quotient graphs

w : TTrN K s TTrN K ª TTrN K .Ž . Ž . Ž .ˆF F F

Ž . Ž .We shall show that w is an isomorphism. If t , t g V TT , and w t s1 2 1
Ž . Ž .w t , then there exists d g N K such that d t s t . Since t and t areˆ2 F 1 2 1 2

elements of F, it follows that d g F. So w is an isomorphism, and hence
Ž .N K s N K , as desired.Ž . ˆF F

LEMMA 3.5. Let R be either a free-by-finite group or a finitely generated
R ² :nilpotent-by-finite group. Let r , r g R be such that r l r s B. Then1 2 1 2

R̂ ² :r l r s B.1 2

ˆ² :Proof. Since R is quasi potent by Lemma 3.1, the closure g in R of
ˆ² :any infinite cyclic subgroup g of R is isomorphic to Z, and, in particular,

R̂ ² :torsion-free. If either r or r has finite order, and r l r / B, then1 2 1 2
both of them must have finite order; in this case the result follows from

Ž w x w x w x.the fact that R is conjugacy separable cf. 7 , and 15 or 9 . Assume now
that both r and r have infinite order. Let F be a normal subgroup of1 2
finite index in R such that F is either free or a finitely generated nilpotent

y1 a ˆ ˆ² :group. Assume that g r g s r g r , for some g g R, a g Z. We shall1 2 2
R ² :show that then r l r / B, contradicting our hypothesis. Note that1 2

ˆ ² :g s d r for some r g R and d g F s F. Observe that F l r s F l1
n k² : ² : ² : ² : ² :r s r , and F l r s F l r s r , for some n, k g Z. So1 1 2 2 2

n y1 k y1 n y1 k² : Ž . ² :g r g g r . Hence d rr r d g r . Then for any normal sub-1 2 1 2
n y1 y1 ² k:group N of F of finite index one has d rr r d N g r NrN, in FrN.1 2

n y1 w x Ž n y1.FSince rr r g F, it follows from Lemmas 6 and 8 in 8 that rr r l1 1
² k: n y1 y1 ² k:r / B. Say frr r f g r , for some f g F. Substituting r by2 1 2 1
frr ry1 fy1 if necessary, we may assume that r n s r m, for some m g Z, and1 1 2

m y1 n y1 n aˆ Ž .that g g F s F. Then g r g s g r g s r . It follows from Lemma2 1 2
2.4 that the closed subgroup generated by r m coincides with the closed2

n a mŽ . ² :subgroup generated by r ; i.e., g normalizes r . Next we claim that2 2
either g centralizes r m or g inverts r m. To see this we consider two cases.2 2

m² :If R is free-by-finite, the claim follows from the fact that N r sŽ .F 2
m² : Ž .N r see Lemma 3.4 . If R is finitely generated nilpotent-by-finite,F̂ 2

m ˆ² :observe that g , r is a nilpotent closed subgroup of F; then, since g2
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m ˆ² : ² :normalizes r and since r ( Z by Lemma 3.1, we deduce that g2 2
m Ž a .n m y1centralizes r . This proves the claim. Thus, in any case, r s g r g g2 2 2

m ˆ ˆ² : ² : ² :r F r . Now, since r ( Z, and since ZrZ is torsion-free, one2 2 2
a ² : a y1 ² :deduces that r is in r . Put r 9 s r ; then g r g s r9 g r . Since2 2 2 1 2

Ž w x. ² :R ² :R is conjugacy separable cf. 7, 15, 9 , one gets r l r / B, as1 2
desired.

LEMMA 3.6. Let G be a free-by-finite or a finitely generated nilpotent-by-
² : ² :finite group. Let C s x and C s x be cyclic subgroups of G. If1 1 2 2

ˆC l C s 1, then C l C s 1, where C denotes the closure of C in G1 2 1 2 i i
Ž .i s 1, 2 .

Ž .Proof. Case i . G is free-by-finite. If either C or C is finite, then the1 2
result is clear. So, suppose C and C are infinite. Let F be a free normal1 2

Ž . Ž .subgroup of G of finite index. If C l C / 1, then F l C l F l C1 2 1 2
/ 1. Hence we may assume that G s F is free. Now, the subgroup
² : ² : � 4C , C s x , x is free on the basis x , x . By a theorem of M. Hall1 2 1 2 1 2
Ž w x.cf. Theorem 1 in 4 , there exists a subgroup U of F of finite index such

ˆthat U is free on a set that contains x and x . So U s U is a free1 2
profinite group on a set that contains x and x . Therefore, C l C s 1.1 2 1 2

Ž .Case ii . G is finitely generated nilpotent-by-finite. Recall that G is
residually finite, and that if H is a subgroup of G, then H is closed in the

Ž w x.profinite topology of G cf. 14 ; moreover, this topology induces on H
Ž w x.the full profinite topology of H cf. Theorem 20B in 10 . In particular, if

H is normal in G, then

$ ˆ ˆ ˆGrH ( GrH ( GrH.

If either C or C is finite, the result is clear; hence from now on we1 2
assume that C and C are infinite cyclic. Let N be a subgroup of G of1 2

Ž . Ž .finite index. If C l C / 1, then C l N l C l N / 1. Now, C l1 2 1 2 1
N s C l N and C l N s C l N, because C and C are cyclic, and the1 2 2 1 2
profinite topology of G induces on C and C their full profinite topolo-1 2
gies. Hence C l N l C l N / 1. Therefore, since G contains aŽ . Ž .1 2
nilpotent subgroup N of finite index, we may assume that G s N is
nilpotent.

We proceed by induction on the nilpotency class of G. If G is abelian,
the result is easily verified. Assume that the result holds for every nilpo-
tent group of class at most n, and suppose that G is nonabelian, nilpotent
of class n q 1. Next we claim that if A is a nontrivial abelian subgroup of
G which is normalized by C and C , and A l C / 1 / A l C , then1 2 1 2
C l C s 1. To see this observe first that C l A l C l A s 1,Ž . Ž .1 2 1 2

Ž .since A is abelian and since the closure of C l A respectively, C l A1 2
Ž .in G coincides with the closure of C l A respectively, C l A in A.1 2
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Ž .Now, AC is a subgroup of G, and since C : A l C is finite, onei i i
Ž .deduces, as above, that C l A s C l A i s 1, 2 . It follows that A li i

Ž .C l C s 1. Since A has finite index in AC i s 1, 2 , it also has finite1 2 i

index in AC l AC ; therefore, A l C l C has finite index in C l C .1 2 1 21 2
So C l C is finite, and thus C l C s 1. This proves the claim.1 2 1 2

Consider the last nontrivial term L of the lower central series of G.
Then L is in center of G. Set T s LC l LC , and note that C and C1 2 1 2
centralize T ; now, if C l T / 1 / C l T , then the result follows from1 2
the claim above. Hence we may assume that either 1 s C l T s C l1 1
LC or 1 s C l T s C l LC . In either case it follows that LC l2 2 2 1 1
LC s L. Then from the induction hypothesis applied to GrL, one de-2
duces that LC l LC s L. Therefore, C l C F L. Note that LC s1 2 11 2

ŽL = C , and hence LC s L = C since G induces on LC its full1 1 11
.profinite topology ; thus L l C s 1, and similarly, L l C s 1. Hence1 2

C l C s C l C l L s 1.1 2 1 2

LEMMA 3.7. Let G be either a finitely generated nilpotent-by-finite or a
ˆfree-by-finite group. Then, for e¨ery g g G of infinite order and e¨ery g g G

y1 y1 y1 y1² : ² :such that g g g s g , we ha¨e that either g gg s g or g gg s g .

Proof. Let H be a normal subgroup of finite index in G, where H is
either a finitely generated torsion-free nilpotent group or a free group.

Let 0 / n g Z. Observe that the result holds for g if it holds for g n; for
n ˆ y1 asuppose it holds for g , and assume that g g G and g gg s g for some

n n y1 nˆ ² :a g Z. Since g normalizes g , it follows that either g g g s g or
g g ngy1 s gyn ; hence either g g nagy1 s g n or g g nagy1 s gyn ; therefore,
either a s 1 or a s y1.

ˆ y1 a ˆLet g g G and let g g G be such that g gg s g , for some a g Z.
We need to show that a s 1 or a s y1. As observed above, we may
assume that g g H.

Case 1. H is finitely generated torsion-free nilpotent.

We proceed by induction on the nilpotency class of H. If H is abelian,
Ž . Ž . Ž . Ž .then H F C g F N g , and so C g and N g have finite index inG G G G

ˆŽ . Ž . Ž .G. Therefore C g and N g are the closures in G of C g andˆ ˆG G G
Ž . Ž . Ž . Ž . Ž .N g respectively; furthermore, N g rC g s N g rC g . For theˆ ˆG G G G G

general case, let Z be the center of H and assume Z / H. If g n g Z for
ssome natural number n / 0, we may assume g g Z. Then again H F

Ž . Ž . ² :C g F N g , and we proceed as above. Finally, suppose that g l ZG G
² : ² :s 1. Then g, Z s Z = g . Since HrZ is a finitely generated nilpotent

ˆ² : ² :group, we have that gZ ( Z. Therefore, g l Z s 1. Hence, by the
y1 y1induction hypothesis applied to GrZ, either g gZg s gZ or g gZg s

y1 y1 y1 y1g Z. Thus, either g gg s g or g gg s g .
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Case 2. H is free.

Ž w x. ² :By a theorem of M. Hall see 12 , g is a free factor of a subgroup L
of finite index in H; since L has finite index in G, there exists a normal
subgroup L of G of finite index such that L F H. It follows that forG G

² n:some natural number n, g is a free factor of L ; as observed above, weG
n ² :may substitute g by g , and hence we may assume that H s L and gG

² :is free factor of H. Since H s g ) K for some K F H and H has finite
ˆ ² : w xindex in G, we have that H s H s g @ K. By Corollary 3.13 of 26 one

Ž² :. Ž . ² : Ž² :.has that N g s C g s g . We deduce that N g l H sˆ ˆ ˆH H G
Ž² :. ² : Ž . Ž . Ž² :. ² :N g s g s C g s C g l H . Then N g r g sˆ ˆH H G G

ˆ ˆŽ² :. Ž Ž² :.. Ž² :.N g r H l N g F GrH ( GrH. Hence N g is containedˆ ˆ ˆG G G
² : ² : Ž² :.in G g . Now, since g centralizes g, we deduce that N gĜ

² : Ž² :. Ž² :.s g N g . We infer that g g N g either commutes with g orˆG G
inverts g.

THEOREM 3.8. Let G and G be groups that are free-by-finite or finitely1 2
Ž .generated nilpotent-by-finite not necessarily both of the same type , and

assume that H is a common cyclic subgroup of G and G . Let G s G )1 2 1 H
G be the amalgamated free product of G and G amalgamating H. Then G2 1 2
is conjugacy separable.

ˆProof. By Proposition 3.2, G is residually finite, and G s G s G *1 D
ˆ ˆ ˆ Ž .G , where G s G , G s G and D s H. Consider the standard tree SS G2 1 1 2 2

Ž .associated with G s G ) G , and the standard profinite tree SS G1 H 2
associated with G s G * G . By Lemma 3.3, G , G , and H are closed in1 D 2 1 2

Ž .the profinite topology of G, and therefore SS G is naturally embedded in
Ž . y1SS G . Let a, b elements of G, and assume that b s g ag , where g is an

element of G.

Ž . Ž .Case 1. The element a fixes a vertex of SS G i.e., a is not hyperbolic .

Ž .Then by Lemma 2.8, b also fixes some vertex of SS G . This means that a
and b are conjugate in G to elements of G or G . So we may assume that1 2
a, b g G j G . Then by Proposition 3.2 and Lemma 2.3, a and b are1 2
either both in G or both in G , or one of them is conjugate to an element1 2
of D, and so by Lemma 3.5, to an element of H; hence we may assume
that a and b are either both in G or both in G , say both are in G . By1 2 1
Lemma 3.3, G l G s G . Whence we may assume that a, b g G . If a1 1 1

Žw x w xand b are conjugate in G , then they are conjugate in G 7 , and 15 or1 1
w x.9 . So we may assume a and b are not conjugate in G .1

Claim. We may assume that a, b g H.

Ž .To prove this claim consider the vertex ¨ s 1G in SS G . Obviously G is1 1 1
the stabilizer of ¨ in G. Since b s g agy1, ¨ and g ¨ are fixed by b, and1 1 1
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y1 w x Ž .¨ and g ¨ are fixed by a. By Theorem 2.8 in 26 , the subgraph of SS G1 1
Ž .fixed by b is a profinite subtree. So there exists an edge e in SS G such1

Ž . Ž .that d e s ¨ and be s e . Similarly, there exists an edge e in SS G0 1 1 1 1 2
Ž . Ž .such that d e s ¨ and ae s e . Consider the edge e s 1D in SS G .0 2 1 2 2

Then there exist g , g X g G such that g e s e s g X e . So g bgy1 g D1 1 1 1 1 1 2 1 1
and g X ag Xy1 g D, since D is the stabilizer of e in G. By Lemma 3.5,1 1
aG1 l H / 1, and similarly bG1 l H / 1. Therefore we may assume that
a, b g H. This proves the claim.

² : ² :Now, by a slight variation of Lemma 2.4, a s b . Whence g g
Ž² :. Ž² :. Ž² :.N a s N a @ N a , by Corollary 2.7. According to LemmaG G D G1 2

Ž² :. Ž² :. Ž .3.7, there exist natural homomorphisms N a ª Aut a i s 1, 2Gi
Ž² :.into the finite group Aut a , that are trivial on D; these maps induce
Ž² :. Ž² :. Ž² :. Ž² :.a homomorphism w : NN a s N a @ N a ª Aut a . PutG G D G1 2

Ž . Ž² :. Ž² :.k s w g . Since the image of w is finite and N a ) N a is denseG D G1 2
Ž² :. Ž² :. Ž² :.in N a s N a @ N a , there exists an element g 9 gG LG D G1 2

Ž² :. Ž² :. Ž .NN a ) NN a such that w g 9 s k. Write g 9 s w w ??? w , withG D G 1 2 n1 2 y1Ž² :. Ž² :. Žeach w in NN a j NN a . Put a s w a w i s 1, . . . , n; a si G G i i iq1 i nq11 2
. ² : Ž "1a . Note that a g a F H in fact a s a if H is infinite, by Lemmai i
. Ž w x w x w x.3.7 . Since G and G are conjugacy separable cf. 7 , and 15 or 9 ,1 2

there exist elements g , g , . . . , g in G j G such that a s g a gy1
1 2 n 1 2 i i iq1 i

Ž . y1i s 1, . . . , n . Put g s g . . . g . Then g g G, and gag s1 n
g . . . g agy1 . . . gy1 s g 9ag9y1 s b. This completes the proof of Case 1.1 n n 1

Ž . ŽCase 2. The element a does not fix a vertex of SS G in other words, a
.is hyperbolic .

ŽBy Lemma 2.8, b is also hyperbolic. By a theorem of Tits cf. Prop. 24 in
w x. Ž .19 , there are infinite straight lines TT and TT in SS G defined asa b
follows: let

m s min l ¨ , a¨ ¬ ¨ g V SS G ,� 4Ž . Ž .Ž .1

m s min l ¨ , b¨ ¬ ¨ g V SS G ;� 4Ž . Ž .Ž .2

Ž . �then TT and TT are the subtrees of SS G , whose vertices are ¨ ga b
Ž Ž .. Ž . 4 � Ž Ž .. Ž . 4V SS G ¬ l ¨ , a¨ s m and ¨ g V SS G ¬ l ¨ , b¨ s m , respectively.1 2

Moreover a and b act freely on TT and TT as translations of lengths ma b 1
and m , respectively. Let TT and TT be segments of TT and TT of lengths2 1 2 a b

² : ² :m and m , respectively. Then TT s a TT , TT s b TT .1 2 a 1 b 2
Ž .Set e s 1H, the edge of SS G stabilized by H. We claim that one may

assume that e g TT l TT . To see this, consider g , g g G such that1 2 1 2
e g g TT and e g g TT . Set a9 s g agy1 and b9 s g bgy1. Then a9 and b91 1 2 2 1 1 2 2
are also hyperbolic, and one has corresponding straight lines TT s g TT ,a9 1 a

X X ² : X
TT s g TT . Define TT s g TT and TT s g TT . Then clearly TT s a9 TTb9 2 b 1 1 1 2 2 2 a9 1

² : Xand TT s b9 TT . Since a and b are conjugate in G if and only if a9 andb9 2
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b9 are conjugate in G, the claim follows. So from now on we assume that
e g TT l TT .1 2

Ž . ² :Consider the profinite subgraphs of SS G defined as TT s a TT anda 1
² : ² : ² :TT s b TT . By Proposition 2.9, a and b act freely on TT and TT ,b 2 a b

y1 ² :respectively. Since g ag s b, b also acts freely on gTT . By Lemmaa
Ž . ² :2.2 ii , gTT s TT . Then g e g TT . Choose b9 g b such that b9g e g TT .a b b 2

Then b9g e s ge, for some g g G. Hence b9g s gd , for some d g D. Now,
a s gy1 b9y1 bb9g s dy1 gy1 bgd . Therefore, using gy1 bg instead of b, we

Ž .can assume that g s d is in D.
Since a and b are hyperbolic, they can be written in G s G ) G , as1 H 2

Ž . Ž .a s ¨ ¨ . . . ¨ , b s w w . . . w n, m G 2 , where ¨ , w g G j G _ H,1 2 n 1 2 m i i 1 2
Ž .and if ¨ , w g G respectively, if ¨ , w g G then ¨ , w g Gi i 1 i i 2 iq1 iq1 2

Ž .respectively, then ¨ , w g G . Recall that by Lemma 3.3, D l G siq1 iq1 1 1
D l G s H; therefore the above expressions of a and b are also repre-2
sentations of a and b in R s G ) G , with ¨ , w f D. Since a and b are1 D 2 i i

w xconjugate in R by an element of D, we get n s m. By Lemma 8 in 22 ,
there exist elements d , . . . , d g D such that0 n

w s dy1 ¨ d , w s dy1 ¨ d , . . . , w s dy1 ¨ d , with d s d . )Ž .1 0 1 1 2 1 2 2 n ny1 n n 0 n

Ž . Ž . y1Subcase i . There is some i s 1, . . . , n such that ¨ D¨ l D s 1.i i

y1 w xThen, since w s d ¨ d , we obtain w g D¨ D. By Theorem 2.1 in 18i iy1 i i i i
w xand Theorem 1 in 23 , the product of two finitely generated subgroups of

Ž .G is closed in the profinite topology of G k s 1, 2 . So D¨ D l G sk k i k
Ž . y1H¨ H k s 1 or 2 . Therefore, w s h ¨ h , for some h , h g H. Theni i iy1 i i iy1 i

d hy1 s ¨ d hy1 ¨y1. From the assumption in this subcase, it followsiy1 iy1 i i i 1
Ž .that d s h and d s h . One deduces then from ) and Lemma 3.3i i iy1 iy1

w xthat d g H for all j s 0, 1, . . . , n. Thus by Lemma 8 in 22 , a and b arej
conjugate in G.

Ž . Ž . y1Subcase ii . For every i s 1, . . . , n , ¨ D¨ l D / 1.i i

By Lemma 3.6, ¨ H¨y1 l H / 1, and so ¨ H¨y1 l H has finite index ini i i i
H. It follows that ¨ D¨y1 l D has finite index in D. Therefore,i i

n
y1L s ¨ D¨ l DF i i

is1

is an open subgroup of D. Hence g s lh, for some h g H, l g L. So we
may assume that g s l.

² :Define L s a, L l H . Next we claim that L and L l H are normal-
ized by a. First, we prove that L is normalized by each ¨ . Indeed, L andi
¨y1L¨ are conjugate subgroups of the cyclic group D; hence by Lemmai i

Ž . y1 Ž . Ž2.4 ii , L s ¨ L¨ . Since ¨ g G j G , and G j G l D s H cf.i i i 1 2 1 2
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. Ž . y1Lemma 3.3 , it follows that L l H s ¨ L l H ¨ . Since a s ¨ ¨ . . . ¨ ,i i 1 2 n
the claim follows.

ŽNote now that since L is open in D, L l H is dense in L in fact L
. ² :s L l H ; hence L s a, L . Next observe that b g L. For, since b s

y1g ag , g g L, and L is normal in L, then b s al9 for some l9 g L;
hence from b s al9 g G, one deduces that l9 g G; thus l9 g H l L,
and so b g L.

Ž . ² : ² ² ::Since a is hyperbolic, L s L l H i a . Hence L s L , a . By$ ˆ² : ² : Ž . ² :Proposition 2.9, a l D s 1, and so L s L i a s L l H i a s L.
If L is abelian, then a s b, because g g L. If L is not abelian, let

² : y1 y1 n m Ž .D l H s x . Then axa s x . Say b s x a some n, m g Z , and
a b ˆ n m y1 y2 aŽ .g s x a some a , b g Z . Then x a s b s g ag s x a. Hence m

s 1, and 2a s n g Z. Therefore a s nr2 g Z. Set c s x n r2. Then c g D
y1l H F G, and cac s b.
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