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We present explicit BPS field configurations representing one non-Abelian monopole with one minimal
weight ’t Hooft operator insertion. We explore the SO(3) and SU(2) gauge groups. In the case of SU(2)

gauge group the minimal ’t Hooft operator can be completely screened by the monopole. If the gauge
group is SO(3), however, such screening is impossible. In the latter case we observe a different effect of
the gauge symmetry enhancement in the vicinity of the ’t Hooft operator.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

’t Hooft operators [1] play a central role in recent studies of
the Montonen–Olive duality [2] as electric–magnetic duals of the
Polyakov–Wilson operators [3]. Their significance as Hecke opera-
tors in the geometric Langlands program is elucidated in [4].

By a ’t Hooft operator we understand a line operator such that
in the three-dimensional space transverse to the line it amounts to
an insertion of a Dirac monopole imbedded into the gauge group
in question. In other words, in the vicinity of an insertion point in
the three-dimensional space, we impose the following boundary
conditions [5] on the gauge fields

F = B

2
dΩ2, (1)

where dΩ2 is the volume form of a unit sphere surrounding the
point and B is the Lie algebra element satisfying exp(2π iB) = I.
The ’t Hooft charge of such an operator takes values in H2(S2,

π1(G)). It vanishes if the gauge group G is SU(2) and is Z/2Z val-
ued if G is SO(3). Strictly speaking only the operators with nonzero
’t Hooft charge are significant in [1], but here we forgo this re-
striction and adopt the more general definition of [3] and [4].
A minimal ’t Hooft operator is an insertion of a Dirac monopole
of the lowest possible charge. Here we focus on such minimal op-
erator insertions.

The exact analytic solutions we present in Section 2 probe min-
imal ’t Hooft operators with a monopole. These solutions are new
and can be interpreted as a nonlinear superposition of a Dirac
monopole imbedded in the gauge group and a ’t Hooft–Polyakov
monopole. These configurations arise in various theories. The most
relevant to the electric–magnetic duality setting mentioned above
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is to view these as solutions in the maximally supersymmetric
Yang–Mills theory in four-dimensional space–time. In that case
the Dirac monopole singularity is interpreted as a ’t Hooft time-
like line operator. This is a codimension two operator. Under the
electric-magnetic duality such operators are mapped to Wilson line
operators. Since Wilson lines can terminate on quarks, a natural
question posed by the duality is what the dual of this phenomenon
is. What is the point, i.e. codimension three, operator that the
’t Hooft line can end on? A natural candidate is the ’t Hooft–
Polyakov monopole. This suggestion, however, faces the following
difficulty. While the field configuration near the ’t Hooft opera-
tor insertion line is singular and the operator itself is concentrated
on a line, the ’t Hooft–Polyakov monopole configuration is smooth
and has a definite size. Viewed in the three-dimensional space the
question is: how can a finite size smooth object screen a point
like singularity? Having obtained exact solutions, we explore this
screening effect in detail in Section 3.

Before we describe the field configurations we are after, we
would like to emphasize that our solutions can be interpreted in
a number of other theories. They arise as half-BPS configurations
in the N = 2 super-Yang–Mills in four dimensions. In string theory
they provide a D(p + 2)-brane world-volume description of a pair
of parallel D(p + 2)-branes connected by a finite Dp-brane with
one or two semi-infinite Dp-branes ending on the pair. These solu-
tions also arise in the context of a pure Yang–Mills theory at finite
temperature. In this case the field Φ in our expressions should
be interpreted as a Euclidean time component A0 of the gauge
field and the Bogomolny equation (2) as a self-duality condition
on R

3 × S1 for S1 independent configurations.
Our solutions are static and are described by the fields (A(�x),

Φ(�x)) on a three-dimensional space depending on the coordinate
vector �x. We denote the relative position of the observation point �x
with respect to the position of the ’t Hooft operator by �z, while the
relative position of the observation point with respect to the po-
sition of the center of the ’t Hooft–Polyakov monopole is denoted
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by �r. We consider maximal symmetry breaking at infinity with the
symmetry breaking scale λ set by the Higgs field eigenvalues at
the space infinity.

Now we spell out the exact conditions on the gauge field A and
the Higgs field Φ describing a single monopole in the presence of
a ’t Hooft operator. BPS monopoles [6,7] with ’t Hooft operator
insertions are solutions of the Bogomolny equation [7]

Fij = −εi jk[Dk,Φ], (2)

with prescribed Dirac type singularities. Explicitly, for the minimal
charge, the condition (1) implies that the Higgs field near the in-
sertion point at �z = �0 is gauge equivalent to

SO(3): Φ jk = −iε1 jk
1

2|�z| + O
(|�z|0), (3)

SU(2): Φαβ = σ 3
αβ

1

2|�z| + O
(|�z|0). (4)

The above conditions are written is a particular gauge for concrete-
ness. Of course, one can perform any everywhere smooth gauge
transformation to obtain an equivalent description. Here εi jk is a
completely antisymmetric tensor and σ 1, σ 2, and σ 3 are the Pauli
sigma matrices.

To simplify our notation we denote the distances from the ob-
servation point to the singularity and to the monopole by z = |�z|
and r = |�r| respectively. When the separation �d = �z − �r, between
the ’t Hooft operator insertion and the non-Abelian monopole is
large, i.e. d = |�d| � 1, 1/λ, we expect the fields Φ = (Φi j) and
A = (Aij) with

SO(3): Φi j = −2iεi jkφ
k, Aij = −2iεi jk Ak, (5)

SU(2): Φ = �σ · �φ, A = �σ · �A, (6)

to approach those of the ’t Hooft–Polyakov BPS monopole solution
[6,10,11]

�φ =
(

λ coth(2λr) − 1

2r

)�r
r
, (7)

�A =
(

λ

sinh(2λr)
− 1

2r

)�r × d�x
r

. (8)

We present the solutions satisfying the above conditions in Sec-
tion 2 and analyze them in Section 3. We used the technique of
the Nahm transform [8], outlined in the Appendix A, to obtain the
explicit solutions presented here. More general solutions with two
singularities appear in [9]. The solutions below are exact and have
been explicitly verified analytically and numerically.

2. Solutions

It is convenient to introduce D = 2zd + 2�z · �d = (z + d)2 − r2,
and to use the vector-valued functions �φ = (φ1, φ2, φ3) and �A =
(A1, A2, A3). Then the monopole solutions of the Bogomolny equa-
tion (2) satisfying the boundary conditions (3) and (4) are provided
by Eqs. (5) and (6) above with �φ and �A given respectively as fol-
lows:

SO(3) Case:

�φ =
((

λ + 1

4z

)
k

l
− 1

2r

)�r
r

− r

2zl
√

D

(
�d − �r · �d

r2
�r
)

,

�A =
((

λ + z + d

2D

)√
D
l

− 1

2r

)�r × d�x
r

− r

2l
√

D

( �z × d�x
z

+
(

k√
D

− 1

)
(�r · (�z × d�x))

rz

�r
r

)
, (9)

where
l = (z + d) sinh(2λr) + r cosh(2λr), (10)

k = (z + d) cosh(2λr) + r sinh(2λr). (11)

SU(2) Case:

�φ =
((

λ + 1

2z

) K
L − 1

2r

)�r
r

− r

zL

(
�d − �r · �d

r2
�r
)

,

�A =
((

λ + z + d

D

) D
L − 1

2r

)�r × d�x
r

− r

L

(�z × d�x
z

+
( K

D − 1

)
(�r · (�z × d�x))

rz

�r
r

)
, (12)

where

L = (
(z + d)2 + r2) sinh(2λr) + 2r(z + d) cosh(2λr), (13)

K = (
(z + d)2 + r2) cosh(2λr) + 2r(z + d) sinh(2λr). (14)

3. Analysis

The form of the expressions (9) and (12) makes the large sep-
aration limit transparent. Indeed, in this limit the fields near the
’t Hooft operator insertion (d → ∞, z finite) reproduce those of
Eqs. (3), (4), while near the monopole core (d → ∞, r finite) they
approach the ’t Hooft–Polyakov solution (7), (8).

There is a substantial difference in the behavior of these so-
lutions as we decrease d and the non-Abelian monopole and the
’t Hooft operator collide. The SO(3) solution at d = 0 becomes an-
other ’t Hooft operator with the Higgs field

�φ =
(

λ − 1

4r

)�r
r
, (15)

while the SU(2) solution in this limit becomes trivial with F = 0,
and Φ constant. The latter illustrates the screening effect, in which
a non-Abelian monopole completely screens the point-like sin-
gularity of the ’t Hooft operator. A priori one might think such
screening impossible since the ’t Hooft–Polyakov monopole has a
finite size of order 1/λ and finite energy density in the core, while
the Dirac singularity of the ’t Hooft operator is pointlike with the
energy density divergent at one point. Electric–magnetic duality,
however, suggests such screening as a possible dual explanation of
screening of Wilson line operators by quarks. Our solution (12) re-
solves this seeming contradiction as we now explain.

There is a number of ways to explore the size of the monopole.
One is via the energy density distribution E ∼ 1

2 Tr(F 2 + (DΦ)2) =
(∂2

x1
+ ∂2

x2
+ ∂2

x3
)Tr Φ2 and another is by how much the gauge sym-

metry is broken by the Higgs field. In particular, we might think
of the position of the monopole as the point where the Higgs field
vanishes and the gauge symmetry is fully restored. A word of cau-
tion is due here. Even though the parameter �d is a good indication
of the monopole relative position when d is large, it is not the
point where the Higgs field vanishes, rather, at �d (i.e. at �r = �0) we
have

SO(3): | �φ| = 1

4d(1 + 4λd)
,

SU(2): | �φ| = 1

4d(1 + 2λd)
. (16)

For the two gauge groups the profiles of |Φ|2 = 1
2 TrΦ2 at large

separation parameter d look remarkably similar to each other. They
do differ drastically, however, for small values of d. One can in-
fer from Figs. 1(a) and 1(b) how the position and size of the
monopole vary with d. The shaded areas in these graphs corre-
sponds to the values of |Φ|2 � 1/2 and we choose the asymptotic
condition to be |Φ(∞)| = λ = 1. The coordinate z3 is chosen along
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(a) Gauge group SO(3)

(b) Gauge group SU(2)

Fig. 1. Higgs field profiles for λ = 1. Dashed lines correspond to |Φ|2 = 1
2 , the

shaded area |Φ|2 � 1
2 , and the dark region indicates the position of the monopole

core.

the line originating at the ’t Hooft operator and passing through
the monopole. The dark area in the middle corresponds to the val-
ues of |Φ|2 < 0.007, giving a good indication of the position of the
monopole center.

In the case of the SU(2) gauge group, Fig. 1(b), the monopole
shrinks to zero size as it approaches the singularity and screens
the ’t Hooft operator completely. In the case of the SO(3) gauge
(a) Gauge group SO(3)

(b) Gauge group SU(2)

Fig. 2. Energy density contour plots for λ = 1.

group, as the parameter d → 0, the longitudinal size of the
monopole decreases somewhat, approaching a constant. Instead
of the monopole shrinking to zero size, we observe it spreading
transversely and eventually encircling the singularity. This is also
indicated by the expression (15) representing the limiting con-
figuration to be a ’t Hooft operator surrounded by a sphere of
vanishing Higgs field at z = 1

2λ
.

Energy density plots of Figs. 2(a) and 2(b) support this picture.
They present the contour levels of � �φ2, which is proportional to
the energy density E , due to Bogomolny Eq. (2) and the Bianchi
identity. As d → 0 the energy density for the SO(3) gauge group
case approaches a steady distribution diverging at the origin, while
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Fig. 3. Positions of the monopole �T ’tHP, the ’t Hooft operator �T D , and the observa-
tion point �x.

Fig. 4. Brane diagram signifying the Nahm data on an interval (−λ,λ) and a semi-
infinite interval (λ,∞). This diagram depicts the Nahm data defining an SU(2)

monopole in the presence of one minimal charge ’t Hooft operator.

for the SU(2) case the energy density decreases uniformly and, at
d = 0, vanishes everywhere.

4. Comments

One can view the two solutions discussed here as part of the
same picture since every SU(2) solution can be viewed as one
with the gauge group SO(3) by factoring out the center of the
group. Thus, we can reinterpret Eq. (12) combined with Eq. (5) as
an SO(3) monopole with the charge two ’t Hooft operator inser-
tion. Such an interpretation provides a topological reason for our
observations in the previous section. For the gauge group SO(3)

the ’t Hooft charge takes value in Z/2Z. The solution (5), (9) has
’t Hooft charge one operator insertion and thus it is topologically
protected. The solution (5), (12), however, has Dirac charge two
and vanishing ’t Hooft charge operator insertion which, as a re-
sult, can be screened completely. One can view the latter charge
two configuration as a limit of two minimal ’t Hooft operators ap-
proaching each other. We explore such a limit in more detail in [9].
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Appendix A

Here we briefly outline the Nahm transform techniques, which
led us to the solutions presented. For the configuration of one non-
Abelian SU(2) monopole positioned at �T ’tHP in the presence of a
minimally charged ’t Hooft operator at �T D , we denote the relative
positions by �r = �x − �T ’tHP, �z = �x − �T D , �d = �T ’tHP − �T D (see Fig. 3).
We also let r = |�r|, z = |�z|, and d = |�d|.
The relevant Nahm data for this case is given by a piecewise
constant vector-valued function (see Fig. 4)

�T (s) =
{ �T ’tHP ∈ R

3, for s ∈ (−λ,λ),
�T D ∈ R

3, for s > λ,
(17)

and a 2-component spinor f+ satisfying 1
2 f †

+ �σ f+ = �T ’tHP − �T D = �d.

It follows that it satisfies f+ f †
+ = d + �σ · �d. For convenience we also

define spinors ζ+ and ζ− satisfying ζ±ζ
†
± = z + �σ · �z.

The next step of the Nahm transform is for any observation
point �x to define the following Weyl operator

/D†
xΨ =

(
I2×2 ⊗ d

ds
+

3∑
j=1

σ j ⊗ (
T j(s) − x j))

× ψ(s) − δ(s − λ) f+Δλ, (18)

acting on Ψ = ( ψ(s)
Δλ

)
, and to find solutions of the equation

/D†
xΨn = 0. In our case it has two-dimensional space of solutions.

We organize an orthonormal basis (Ψ1,Ψ2) in this space into a
matrix Ψ = (Ψ1,Ψ2) so that the nth column is the nth element of
this basis.

An explicit solution Ψ = ( ψ(s)
Δλ

)
we find is

ψ(s) =

⎧⎪⎨
⎪⎩

√
r

sinh(2λr) e �σ ·�rs N, for s ∈ [−λ,λ),

e �σ ·�z(s−λ) ζ− f †
−

f †
−ζ−

√
r

sinh(2λr) e �σ ·�rλN, for s > λ,
(19)

Δλ = − ζ
†
+

ζ
†
+ f+

√
r

sinh(2λr)
e �σ ·�rλN, (20)

where N is the normalization constant given by

N =
√

z + d + √
D −

√
z + d − √

D �σ · �r/r√
2(z + d + r coth 2λr)

, (21)

D = (z + d)2 − r2 = 2zd + 2�z · �d, (22)

chosen to ensure that the solutions are ortho-normalized

(
Ψ †,Ψ

) = Δ
†
λΔλ +

∞∫
−λ

ds ψ†(s)ψ(s) = I2×2. (23)

The Higgs field and connection are then given by

Φ = λΔ
†
λΔλ +

∞∫
−λ

ds ψ†sψ, (24)

A = i �dx ·
(

Δ
†
λ
�∇xΔλ +

∞∫
−λ

ds ψ† �∇xψ

)
, (25)

giving directly our solution Eqs. (6), (12).
Formulating the Nahm transform for the SO(3) case is com-

pletely analogous, even though the computations are a little more
tedious. In this case the Nahm data is defined on the whole real
line with discontinuities at s = ±λ. Also, besides the f+ , spinor ac-
counting for the discontinuity in the Nahm data at s = λ, we also
have a spinor f− corresponding to the discontinuity at s = −λ. We
present the brane configuration for the corresponding Nahm data

in Fig. 5. The Weyl operator acts on Ψ =
( ψ(s)

Δλ

Δ−λ

)
and it has a term

containing δ(s + λ) f− . An ortho-normalized solution of /D†
xΨ leads

to the expressions in Eqs. (5), (9).
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Fig. 5. Brane diagram for the Nahm data corresponding to an SO(3) monopole at �T ’tHP and one minimal charge ’t Hooft operator at �T D . The data is defined on R and is
continuous outside the points s = −λ, λ.
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