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Summary

Objective: To determine the time sequence of biochemical and structural events associated with, and hypothesized to underlie, age-associated
tensile weakening of macroscopically normal adult human articular cartilage of the knee.

Methods: Macroscopically normal human articular cartilage of the lateral and medial femoral condyles (LFC and MFC) from Young (21—39
yrs), Middle (40—59 yrs), and Old (>60 yrs) age donors were analyzed for tensile properties, surface wear, and cell and matrix composition.

Results: Variations in tensile, compositional, and surface structural properties were indicative of early, intermediate, and late stages of age-
associated cartilage deterioration, occurring at an earlier age in the MFC than the LFC. Differences between Young and Middle age groups
(indicative of early-to-intermediate stage changes) included decreased mechanical function in the superficial zone, with a loss of (or low) ten-
sile integrity, and surface wear, with faint striations and mild staining on the articular surface after application of India ink. Differences between
Middle and Old age groups (indicative of intermediate-to-late stage changes) included maintenance of moderate level biomechanical function,
a decrease in cellularity, and a decrease in matrix glycosaminoglycan content. Tissue fluorescence increased steadily with age.

Conclusions: Many of these age-associated differences are identical to those regarded as pathological features of cartilage degeneration in
early osteoarthritis. These findings provide evidence for the roles of mechanical wear, cell death, and enzymatic degradation in mediating the
progression through successive and distinguishable stages of early cartilage deterioration.

© 2007 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction Biomechanical weakening of articular cartilage with age
. . . . . may be due to alterations in cellularity or matrix properties,
With aging, the tensile properties of macroscopically normal and reflect (1) consequences of cell death, (2) mechanical
adult human knee articular cartilage diminish markedly" . wear at the surface, (3) degradation of extracellular matrix
In particular, tensile strength and stiffness in the superficial components, or (4) modification of the collagen network
layer of human femoral condylar cartilage diminish by through crosslinks. Mechanical weakening with age may
~65% between ~24 yrs of age and ~90 yrs of age. In the arise from cell death and reflect an inability of the remain-
deeper layers of cartilage, tensile strength also decreases ing cells to synthesize and remodel matrix components to
with age in the adult, with strength values being ~50% of maintain tissue homeostasis. However, whether cartilage
those of superficial layer cartilage at the same ages. Such undergoes an age-associated decrease in cellularity is
age-related weakening of cartilage may predispose the controversial. The cell density, as determined from cell
knee joint to development of pain, dysfunction, and the clas- counting in histological sections, of macroscopically nor-
sical histopathological features of osteoarthritis (OA). How- mal human articular cartilage of the femoral condyles
ever, it is unknown how the age-related biomechanical has been shown to decrease with age'? but this may
changes vary between sites within the knee joint and what be dependent on anatomical location and depth from the
the structural or compositional basis for these changes are. articular surface®. Further, it is unclear if this decrease in
ra— — - cellularity is due to cell death or if the presence of empt
This work was supported by the Arthritis Foundation, HHMI lacunae is due to cell loss during histological preparation®.
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Alternatively, cartilage weakening may relate directly to
mechanical wear®, with both cartilage weakening and
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Chondrocyte and synoviocyte groduction of pro-inflamma-
tory cytokines and proteases’® may cause cleavage and
denaturation of the collagen network®'®, fragmentation
and loss of proteoglycans'™'2 and tissue weakening.
However, these may be manifestations of more advanced
stages of osteoarthritic degeneration. Finally, modifications
to the collagen network such as the accumulation with age
of products of non-enzymatic glycation, including pentosi-
dine'® ', have been associated with a decrease in instan-
taneous deformation and increased collagen stiffening®.
This could give rise to a more brittle and fragile collagen
network and contribute to age-associated tensile weaken-
ing'®. These four postulated mechanisms of biomechanical
weakening with age may, alone or in combination, underlie
progressive cartilage degeneration and, ultimately, end-
stage OA.

The site-specific pattern and severity of changes in car-
tilage properties in the knee joint may give insight into
the mechanism of age-related cartilage weakening. The
compositional, structural, and functional properties of ar-
ticular cartilage appear to be modulated by the extent
and pattern of joint loading across the knee joint. Areas
of high weight-bearing are associated with a relatively
high concentration of aggrecanase cleavage products'
and low equilibrium tensile modulus'” compared to areas
loaded more intermittently. In addition, the medial com-
partment of the knee is subjected to higher joint forces
than the lateral compartment during the stance phase
of normal gait'®'®. This loading pattern may cause early
degenerative changes to be more prevalent in the medial
femoral condyle (MFC) than the lateral femoral condyle
(LFC)*°. When degenerative changes are present, they
are usually more severe in the MFC than the LFC?' and
include a decrease in cartilage thickness of the MFC, but
not the LFC of patients with knee OA22. Functionally, the
cartilage of the MFC also has a lower indentation stiffness
than that of the LFC?324, Overall cartilage function, composi-
tion, and structure appear to change progressively in early
degeneration and OA'®'72%26 Thus, comparison of the
MFC and LFC cartilage with respect to age-associated
differences in the function, composition, and structure may
provide insight into the mechanisms of age- and OA dis-
ease-associated degeneration.

The hypothesis underlying this study was that human
articular cartilage, devoid of gross erosion, exhibits tensile
softening with age in a site-associated manner due to
changes in composition and structure, reflecting sequen-
tial stages of early cartilage degeneration. As a first step
to test a causal link between specific changes and biome-
chanical weakening, this study sought to establish the ex-
tent of variations in the relevant properties of individual
human tissue samples that were macroscopically normal
with age. Once principal age-associated changes are es-
tablished, further study with experimentally controlled
manipulations of those properties could test the role of
specific processes as a pathogenic mechanism resulting
in cartilage degeneration. Thus, the objectives were to an-
alyze, in macroscopically normal and structurally charac-
terized human articular cartilage from adults of young,
middle, and old age and taken from different depths at
the LFC and MFC sites, (1) tensile biomechanical proper-
ties, (2) density of cells, (3) content of extracellular matrix
components, and (4) fluorescence indicative of non-
enzymatic glycation products. The results were interpreted
in terms of the mechanisms of cartilage weakening, as
postulated above, and early, intermediate, and late adult
stages of age-associated degeneration.

Materials and methods
SAMPLE SELECTION AND PREPARATION

Samples were selected from 31 human cadaveric donors
distributed among three adult age groups, Young (20—39
yrs), Middle (40—59 yrs), and Old (>60 yrs). Donor tissue
was obtained from tissue banks with donation areas in the
Western and Southern areas of the United States. Donors
were excluded if they had a history of knee arthritis or if
the cause of death was due to a high velocity impact that
might cause acute knee injury. Donor joints were excluded
either if osteophytes were present or if subchondral bone
was exposed by cartilage erosion in the femoral
compartment.

Samples used for the present study were the normal sub-
sets of samples used, in part, in a previous study on inden-
tation stiffness and structural indices of wear®®. These
samples were considered normal because, at harvest,
they were devoid of macroscopic cartilage erosion or visible
unevenness or granularity of the articular surface. Opposing
tibial surfaces displayed mild degeneration or small defects
(area of 0.13 + 0.06 cm?, mean =+ SD, range of 0—0.2 cm?).
Samples were from the anterior region of the MFC (n=28)
and LFC (n=28) approximately 1.5 cm lateral or medial to
the intercondylar notch. The anterior region of each condyle
was selected for study because it exhibits moderate degen-
erative changes in the articular surfaces during aging®. In
addition, this region is relatively flat*’?® and facilitates ten-
sile mechanical testing. The samples were from donors
who were distributed approximately evenly between males
(n=4-7) and females (n= 3—5) within each age group. Al-
though donors were not selected based on body mass in-
dex (BMI), BMI was similar between age groups (ANOVA
P=0.3, Table ).

In the prior study, parts of these samples were examined
for cartilage thickness, histopathology (Mankin—Shapiro
score, surface irregularity), and surface roughening (reflec-
tance score after India ink staining). Cartilage thickness
[Fig. 1(A)] did not vary with age group and did not vary
with medial or lateral locations, consistent with the selection
of non-eroded cartilage specimens. The reflectance score
decreased with age group, indicating more ink staining,
and was lower in MFC samples compared to those of the
LFC [Fig. 1(B)]. In addition, the variance of the reflectance
score indicated more variation in ink staining with age in
the LFC and high variation in all age groups of the MFC
[Fig. 1(C)]. Consistent with this, the Mankin—Shapiro histo-
pathology score?® of these normal samples, while being low
in general (e.g., compared to degenerate samples), in-
creased slightly in the MFC from Young to Old age groups
[Fig. 1(D)], primarily due to a higher surface irregularity
score [Fig. 1(E)]. Thus, while these samples were judged
to be macroscopically normal, there was evidence for very
mild age- and site-associated surface roughening at the
articular surface.

Samples were initially harvested in the form of 10-mm di-
ameter osteochondral cores with a notch placed in the pos-
terior-most edge of the core in order to maintain orientation.
Samples were soaked in an excess volume (~5 ml each) of
phosphate buffered saline (PBS) with proteinase inhibitors
(PI; 1 mM phenylmethylsulfonyl fluoride, 2 mM ethylenedia-
minetetraacetic acid, 5 mM benzamidine hydrochloride, and
10 mM N-ethylmaleimide)®® at 4°C for 1 h and then stored
at —70°C until use. Samples were thawed in ~1 ml of
PBS with PI for 15 min at room temperature prior to analy-
sis. Control studies with cartilage slices from Young and Old
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Table |
Donor description: age, BMI, and n of human female and male donors of osteochondral cores from the LFC and MFC reported as
mean £ S.E.M.
Lateral femoral condyle Medial femoral condyle
Young Middle Ol Young Middle Old
Age (yr)
Female 33+2 47 +£3 73+5 33+2 47 £3 70+2
Male 29+3 49 £1 69+2 29+3 49 £1 70+3
Female + male 30+2 48 £1 70+3 30+2 48 £1 70+2
BMI (kg/m?)
Female 28+4 19+1 24+3 28+4 19+1 19+3
Male 25+1 24+2 24 +1 25 +1 24+2 24 +1
Female + male 26+2 23+1 2442 26+2 23+1 2242
n
Female 5 3 4 5 3 4
Male 4 6 6 4 7 5
Female + male 9 9 10 9 10 9

donors confirmed that there was negligible loss of glycos-
aminoglycan (GAG) or DNA into the PBS + PI bath solution
(<8% of the total).

BIOMECHANICAL PROPERTIES

Portions of each core were separated into superficial,
middle, and deep layers and analyzed by tensile testing.
The cartilage of each core was sliced into ~0.3-mm-thick
layers, at a distance from the articular surface of 0% (super-
ficial layer, including the articular surface), 30% (middle
layer), and 60% (deep layer) of the average cartilage thick-
ness. These slices were cut into tapered specimens, with
a 0.8-mm-wide and 4-mm-long gage region oriented parallel
to the splitline pattern, for tensile testing using a methodol-
ogy® that is a combination of previous equilibrium and con-
stant strain-rate test protocols'”-*2. Each tapered specimen
was elongated to 10 and 20% strains at 0.25%/s and al-
lowed to stress relax to equilibrium at each strain. This
was then followed by elongation of the specimen at a con-
stant rate of 5 mm/min until failure. The force data were nor-
malized to the width and thickness of the sample to obtain
stress in units of megapascals (MPa), and the displacement
data were normalized to the initial length to obtain strain (di-
mensionless). The equilibrium test results were analyzed to
determine tensile equilibrium modulus, and the dynamic
test results were used to assess tensile ramp modulus, ten-
sile strength, and failure strain.

BIOCHEMICAL PROPERTIES

Portions of tissue slices, adjacent to tensile samples,
were analyzed for cell and matrix properties. These portions
were weighed wet, lyophilized, weighed dry, and solubilized
with proteinase K (ProK). The solubilized portions were
used to determine total DNAS3 hydroxyproline®*, and
GAG content®®, as well as intrinsic fluorescence at excita-
tion (Ex) and emission (Em) wavelengths corresponding
to maximum fluorescence of pyridinoline (Ex 295/Em
395 nm®%) and pentosidine (Ex 335/Em 385 nm®") cross-
links, consistent with peaks in fluorescence maps®®. DNA
was converted to cell number using a conversion factor of
7.3 pg DNA/human chondrocyte®. Hydroxyproline content
was converted to collagen (COL) content using 7.1 as
the mass ratio of collagen to hydroxyproline®. Sulfated
GAG content was calculated by comparison to known

concentrations of shark chondroitin sulfate. The contents
of DNA, COL, and GAG were calculated as the mass nor-
malized to wet weight. Fluorescence data are reported as
a ratio of pentosidine-associated fluorescence to pyridino-
line-associated fluorescence, the latter of which is stable
with age'®.

The residual portions of the cartilage sections were ana-
lyzed for denatured collagen exactly as described previ-
ously®. Briefly, proteoglycan was extracted with guanidine
hydrochloride (Gnd), degraded collagen was extracted
with alpha-chymotrypsin («CT), and the remaining tissue
was digested with ProK. As a positive control for detecting
denatured collagen, this analysis was also performed on
portions of full-thickness cartilage from the patellae of
a 56-yr-old human donor, with some portions analyzed
directly and other portions heated to 80°C for 4 h in 0.1 M
sodium phosphate and Pl to denature the collagen in
a controlled manner. The aCT and ProK solutions were an-
alyzed for COL as described above, and the percent of COL
in oCT (denatured) was calculated as that in «CT compared
to the sum in oCT and ProK solutions.

STATISTICS

The effect of age group on the various mechanical and
biochemical parameters was assessed using repeated
measures ANOVA with anatomical location (LFC or MFC)
and depth from the surface (superficial, middle, or deep)
as repeated factors. When anatomical location was found
to have a significant independent effect (P < 0.05) or a sig-
nificant interactive effect with layer (P < 0.05), the locations
were analyzed separately. When age group or depth from
the articular surface had an effect (P < 0.05), planned com-
parisons were made between age groups at each depth or
between depths for each age group; when age group and
depth both had effects or had an interactive effect, planned
comparisons were only made for age groups at each depth.
Each of these planned comparisons was tested using a sig-
nificance level a =0.05 divided by the number of compari-
sons made for a group (e.g., « =0.025 for comparisons of
Young vs Middle, Young vs Old, and Middle vs Old groups,
since Young, Middle, and Old groups are each used in two
comparisons)®°. For results that were expressed as a ratio
or percentage, data were arcsine transformed to improve
normality prior to the above statistical analyses. All data
are reported as mean =+ s.E.m.




Osteoarthritis and Cartilage Vol. 15, No. 9

1045

Thickness
[mm]

0.8

0.4 1

Mean reflectance
score

i i
n

0.03

0.015

Variance of
reflectance score

e

Histopathology
index

Surface
irregularity

Young Middle Old
Lateral femoral condyle

Young Middle Old
Medial femoral condyle

Fig. 1. Structural and surface properties of human articular cartilage
from the LFC and MFC. Cartilage thickness (A), reflectance score
assessed after India ink staining (B), the variance of reflectance
score (C), overall histopathological index of cartilage degeneration
(D), and surface irregularity assessed by histopathological grading
(E) from donors of Young (21—39 yrs old), Middle (40—59 yrs old),
and Old (>60 yrs old) age groups. n=8—12. *P <0.05,
**P < 0.005 vs Young age samples.

Results
BIOMECHANICAL PROPERTIES

Variation of a number of tensile properties with age group
occurred in a manner that was dependent on sample ana-
tomical location (site) and depth from the articular surface
(Fig. 2). Ramp modulus [Fig. 2(B)], strength [Fig. 2(C)],
and failure strain [Fig. 2(D)] were lower in the MFC than
LFC (P<0.005, P<0.01, and P<0.005, respectively),
and equilibrium modulus [Fig. 2(A)] showed a similar trend
(P=0.2). Each of these tensile properties was depth-
dependent (each, P < 0.005), with the equilibrium modulus
being 167% higher, the ramp modulus being 176% higher,
the strength being 29% higher, and the failure strain being

54% lower in the superficial layer than the deep layer.
More specific age-associated differences are described be-
low, as a function of site and depth.

In the LFC, a number of tensile properties of superficial,
middle, and deep layers varied with age in a manner sug-
gesting that the superficial layer was affected earliest (by
Middle age), while the middle layer was affected later (by
Old age), with the deep layer not showing any age-related
variation. In the LFC, the tensile integrity of the superficial
layer of the Young age group was higher than that of the
Middle and Old age groups. The equilibrium modulus
[Fig. 2(A)], ramp modulus [Fig. 2(B)], and strength
[Fig. 2(C)] of the superficial layer were 21% (P=0.2) and
30% (P=0.06), 46% (P < 0.005) and 47% (P < 0.005),
and 35% (P < 0.005) and 39% (P < 0.005) lower, respec-
tively, in Middle and Old age samples than corresponding
values in Young age samples. In middle layer cartilage of
the LFC, the ramp modulus (P=0.09), and strength
(P=0.04) tended to be lower in the Old age group than
the Young age group. In the LFC, failure strain did not
vary between age groups in superficial, middle, or deep
layers [P =0.09—-0.8, Fig. 2(D)].

In the MFC, a number of tensile properties showed a pat-
tern of variation distinctly different from that of the LFC; the
MFC showed relatively little variation with age and depth. In
the MFC, the tensile integrity of the superficial layer was
relatively low in all age groups. In the superficial, middle,
and deep layers, the equilibrium modulus [P=0.3—0.9,
Fig. 2(A)], ramp modulus [P=0.2—1.0, Fig. 2(B)] and
strength [P=0.09—-0.8, Fig. 2(C)] did not vary with age
group. The failure strain of the superficial layer was higher
in Middle age samples [P < 0.025, Fig. 2(D)], but did not
vary with age in the middle or deep layer (P=0.05—1.0).
Taken together, these results show a pattern of age-associ-
ated tensile weakening which occurs at an early age in the
LFC and evidence for a tissue that is already weak by a
Young age in the MFC.

BIOCHEMICAL PROPERTIES

Variation of a number of biochemical properties with age
group also occurred in a manner that was dependent on site
and depth from the surface (Fig. 3). Water content
[Fig. 3(A)], DNA [Fig. 3(B)], COL in «CT [Fig. 3(D)], and
GAG [Fig. 3(F)] tended to be higher (P < 0.05, P=0.09,
P<0.005, and P<0.05 respectively), and COL
[Fig. 3(C)] and fluorescence ratio [Fig. 3(E)] was lower in
the MFC than the LFC (P< 0.05 and P < 0.005, respec-
tively). There was a depth-dependence in DNA
(P<0.005), COL in aCT (P<0.005), fluorescence ratio
(P <0.005), and GAG (P < 0.005), but not water content
(P=0.2) or COL (P=0.5). In particular, DNA, COL in
oCT, and fluorescence ratio were 180%, 29%, and 15%
higher, respectively, and GAG was 66% lower in the super-
ficial layer than the deep layer. The controlled heating of pa-
tellar cartilage increased collagen denaturation from 8 + 1%
to 76 &+ 3%, confirming the method of analysis of degraded
collagen and the effectiveness of aCT extraction. At partic-
ular sites and depths, there were notable age-associated
differences in these cartilage components, as described be-
low. Overall, deterioration of certain biochemical properties
appeared to occur at stages subsequent to the decrease of
tensile integrity noted above.

The water content indicated the absence of marked age-
associated swelling of cartilage of these three age groups
[Fig. 3(A)]. In the superficial, middle, and deep layers, the
water content did not vary with age group in the LFC
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Fig. 2. Tensile biomechanical properties of samples described in Fig. 1. For specimens from the superficial, middle, and deep layers, the

tensile equilibrium modulus (A), tensile ramp modulus (B), tensile strength (C), and failure strain (D) were determined from equilibrium and

then non-equilibrium failure testing of articular cartilage from Young (Y), Middle (M), and Old (O) age donors. n=9—12. *P < 0.05,
**P < 0.005 vs Young age samples.

(P=0.2—1.0) or MFC (P=0.3—1.0) and was ~73% of the
wet weight.

The DNA content, a measure of cell density, of the MFC
superficial layer varied with age, while that of the LFC su-
perficial layer, and also of the middle and deep layers of
the MFC and LFC did not [Fig. 3(B)]. For DNA content, there
was an interactive effect of anatomical location and layer,
so the sites (LFC, MFC) were analyzed separately. In the
MFC, the DNA content of the superficial layer of Young
age samples tended to be higher than that of both Middle
and Old age samples (by 30%, P=0.05 and 34%,
P=0.05, respectively). In the LFC, the DNA content of
the superficial layer tended to decrease from Young to
Old age (by 10%, P =0.3). These differences in DNA con-
tent occurred at a stage after tensile properties were weak

(by Middle age in the MFC whereas tensile integrity was al-
ready low at a Young age, and by Old age in the LFC
whereas tensile properties diminished at the Middle age).
In the LFC and MFC, the DNA content of the middle and
deep layers was similar between age groups (P=
0.1—1.0). Thus, the pattern of age-associated decrease in
cell density, indicated by decreases in DNA content, of the
superficial layer was delayed relative to the age-associated
decrease in tensile integrity.

Age-associated changes in the collagen network were
manifest as an alteration of the fluorescence ratio
[Fig. 3(E)], but not as an alteration of the total COL content
[Fig. 3(C)] or COL in aCT [Fig. 3(D)]. COL content and COL
in «CT in the superficial, middle, and deep layers of the LFC
and MFC did not show any age-associated change
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Fig. 3. Biochemical properties of human articular cartilage samples described in Fig. 1. Cartilage tissue adjacent to the mechanical test
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DNA, COL, and GAG were each normalized to wet weight. n=9—-12. *P < 0.05, **P < 0.005 vs Young age samples. {{P < 0.005 vs Middle
age samples.
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(P=0.1-0.9). The fluorescence ratio, on the other hand,
showed an increase with age at each depth, with differ-
ences depending on the site. In the LFC superficial layer,
the fluorescence ratio was higher in the Old age group
than in the Young age group (by 79%, P < 0.005). The fluo-
rescence ratio was also higher in the LFC middle layer (by
51%, P < 0.025, and by 74%, P < 0.01, respectively), and
tended to be higher in the LFC deep layer (by 26%,
P=0.09, and by 53%, P<0.025, respectively) in Middle
and Old age groups than in the Young age group. In the
MFC, the fluorescence ratio in the superficial layer tended
to be higher in Middle (by 30%, P=0.05) and was higher
in Old (by 85%, P < 0.005) age samples than Young age
samples, but was not distinguishably different with age in
middle and deep layers (P=0.08—0.7). Taken together,
these results indicated that although the content of collagen
and degradation products in these macroscopically normal
samples were indistinguishable in aging, there was an
age-associated increase in pentosidine-associated fluores-
cence in the superficial layers, subsequent to tensile weak-
ening by Middle age in the LFC and subsequent to the weak
tensile state at Young age in the MFC.

The GAG content showed age-associated differences
that were localized to the deep and middle layers, and not
evident in the superficial layer [Fig. 3(F)]. In the LFC, the
GAG contents of the middle and deep layers tended to be
lower in the Old age groups than in the Young age group
(by 31%, P < 0.005 and 34%, P=0.04, respectively) and
also lower in the Old age groups and Middle age groups
(by 25%, P=0.2 and 31%, P < 0.005, respectively). In
the MFC, the GAG of the middle and deep layers tended
to be lower in the Old age group than in the Young age
group (P=0.2, and P=0.03, respectively). The pattern of
decrease in GAG content in the middle and deep layers
from Middle to Old age groups appeared subsequent to
the low levels of tensile integrity in the Young (LFC) or Mid-
dle (MFC) age groups.

Discussion

This study of macroscopically normal human articular
cartilage identified a pattern of age-associated changes in
biomechanical integrity, cellularity, content of matrix compo-
nents, and fluorescence index of non-enzymatic glycation,
some of which appear related to structural indices of sur-
face wear. These changes were prominent in cartilage at
certain anatomical locations and depths. Changes of a sim-
ilar sequence generally occurred at an earlier age in the
MFC than in the LFC. The decrease in tensile integrity of
the superficial layer (Fig. 2) and increase in surface wear
(Fig. 1) occurred from Young to Middle age groups in the
LFC samples while low tensile integrity of the superficial
layer and surface wear were already evident in MFC sam-
ples at the Young age. This was followed by a decrease
in tissue cellularity in the superficial layer [Young to Middle
in the MFC, Fig. 3(B)], increased fluorescence [from Middle
to Old in all layers of the LFC and a trend from Middle to Old
in the superficial layer of the MFC, Fig. 3(E)], and de-
creased GAG content of the deep layer [from Middle to
Old in the LFC and MFC, Fig. 3(F)]. These age-associated
changes appear to represent stages of mild cartilage de-
generation that may progress to, or predispose the joint
to, the development of OA.

Several factors may limit the interpretation of the results
of this study. Diet, lifestyle, and genetics of human donors
were not controlled for or analyzed. However, samples

were chosen to minimize effects of such factors by choos-
ing approximately equal numbers of male and female do-
nors for each age group, and selecting macroscopically
normal, non-eroded cartilage samples; also, BMI was simi-
lar between age groups. The macroscopically normal sam-
ples of this study were obtained from donors without OA
because normal-appearing cartilage in OA joints are sub-
jected to elevated levels of matrix degrading enzymes®.
However, such exclusion of OA donor samples may have
selected for tissue properties that are present in non-OA
samples and protective against OA. The sample sites, the
anterior region of the MFC and LFC, provided a relatively
flat region’-2® for analysis; however, age-related changes
vary with region in the knee joint, and in this region are typ-
ically less severe or delayed relative to those in the central
weight-bearing regions, as well as the patella and uncov-
ered area of the tibial plateau®®. Finally, although 31 donors
were analyzed, the sample size limits the statistical power.
For certain variables of interest, such as the tensile ramp
modulus and strength, significant differences were detected
for the sample size of n=9—-10 per group. However, for
other variables, such as equilibrium modulus, differences
between Young, Middle, and Old age groups would have
had to be ~45% for detection, and higher than the
20—30% difference seen in this study. The analysis of hu-
man cartilage samples in discrete layers and a single orien-
tation was done to limit sources of variability in measures of
biomechanical and biochemical properties. Such an analy-
sis of cartilage layers was done at the expense of analysis
of the full thickness of tissue, although indentation analysis
of adjacent tissue was reported previously?®. The standard-
ized sampling of layers may also affect the interpretation of
the results. Dimensions and orientation with respect to the
splitline pattern*' of tapered tensile test specimens were
uniform among samples in this stud¥ and chosen to be sim-
ilar to those of previous studies'’*? to allow for direct
comparisons.

The changes in tensile integrity, surface wear, and tissue
composition were suggestive of early, intermediate, and
late stages of age-associated deterioration occurring in
a zonal pattern (Fig. 4) at an earlier age in the MFC than
the LFC. Early-to-intermediate age-associated changes in-
cluded surface wear and decreased mechanical function
of the superficial zone, demonstrated here by India ink
staining and histopathological indices of roughness as
well as loss of, or low, tensile biomechanical integrity.
This was followed by intermediate-to-late stage changes
by a decrease in cellularity in the superficial zone and net
depletion of GAG in the deep zone. Many of these age-
associated degenerative changes are essentially identical
to those regarded as features of cartilage in early OA*S.

With regard to these proposed stages of age-associated
articular cartilage deterioration, some differences between
the MFC and LFC locations were striking. There was
a greater amount of degeneration in medial than lateral
samples by Old age as indicated by the increased histopa-
thology score. Further, the reflectance scores of medial
samples were much lower than those of lateral samples, es-
pecially at Middle and Old ages, indicating an increase in
surface wear. Each of these would lead to the expectation
for more weakened tissue in the MFC, which was the
case. Features such as higher cellularity in the superficial
layer and lower failure strain in middle and deep layers of
MFC samples compared to those of corresponding LFC
samples may indicate intrinsic differences between articular
cartilage of the MFC and LFC. Alternatively, rather than be-
ing an indicator of advanced stages of age-associated
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Fig. 4. Summary of cartilage changes at early, intermediate, and late stages of age-associated degeneration in particular zones. Changes
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intrinsic fluorescence, and loss of GAG (&4).

changes, the low tensile integrity of the MFC at Young ages
may be indicative of a difference in LFC and MFC matura-
tion (age <21 yrs), due to differences in contact forces or
pressures 445 In addition, differential contact with the me-
nisci between the LFC and MFC samples might cause
site variations in the contact area through which load is
transmitted and, therefore alter the joint pressures experi-
enced at those sites*®

The observed mechanical weakening of the LFC was lo-
calized to the superficial layer and coincided with changes
in articular surface structure, rather than changes in bio-
chemical or cellular composition. Tensile weakening at
that site occurred during early-to-intermediate stages
[from Young to Middle age groups, Fig. 2(B, C)] and paral-
leled the mild age-associated decreases in reflectance
score and notable age-associated increase in the variance,
an indicator of the roughness of the articular surface
[Fig. 1(B, C)]. Samples including the articular surface (top
of specimen at 0%) were used because of |ts |mportance
to the tensile properties of articular cartrlage , to overall
cartilage deformatron during joint Ioadrng , and to its sensi-
tivity to aging*? and degeneration'”. The age-associated in-
crease in surface irregularity, detected by histology and
image analyésrs of ink-stained surfaces performed in our
prior study®®, indicated that there were mild alterations of
the articular surface. How this structural alteration relates
to the presence and/or loss of molecular components of
the superficial zone remains to be determined. Nonethe-
less, the results of this study indicate that mild disruptions
of the articular surface may be the structural basis for
age-associated tensile weakening.

The analysis of tensile integrity expanded upon results of
previous studies by assessing the effect of age at each site.
This allowed separation of the confounding effects of osteo-
arthritic degeneration, site, and age on tensile integrity,

factors which typically are present because of the preva-
lence of OA at advanced age 8 and because cartlla%e de-
generation occurs earlier in the MFC than the LFC?°. The
range of values of tensile moduli and strength were gener-
ally similar to those obtained in previous studies of tensile
equilibrium'” and dynamic stiffness and failure*?. The
age-associated decrease in tensile strength of ~10% per
decade of age of macroscoplcally normal human articular
cartilage noted by Kempson*? would appear to represent,
based on the current study [Fig. 2(C)], the combination of
an age-associated decrease of tensile strength of the LFC
and low strength of the MFC at all ages. Furthermore, the
tensile weakening with age, in addition to changes with
degeneration and OA, noted by Akizuki et al.'” (middle-
age fibrillated and old-age OA cartilage), with tensile
equilibrium moduli being ~85% and 70% lower than those
of young normal cartilage, appears to be partially (~20%)
attributable to age-associated tensile weakening demon-
strated in this study [Fig. 2(A)]. Thus, both age and site
on the femoral condyle contribute markedly to variation in
cartilage tensile biomechanical properties.

The analysis of DNA content helps to clarify the contro-
versy about age-associated changes in cartilage cellularity
at different depths. Measures of DNA in macroscopically
normal human articular cartilage were made possible in
small portions of tissue by an assay of DNA®? that has im-
proved sensitivity and specificity*® over other assays®%%'.
The measure of DNA in this study does indicate an age-
associated decrease in cellularity, localized to the MFC su-
perficial layer [Fig. 3(B)]. This result parallels the decrease
of cell density as measured by cell counting in histological
sections, where cell density decreased with age in macro-
scopically normal artlcular cartllage from weight-bearing
zones after 40 yrs of age'?, especially in the superficial
zone®. It remains unclear if the decrease in cell density
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noted in the prior histological analyses is due to cell death
or if the presence of empty lacunae is due to a histological
artifact of cell loss*. The biochemical analyses support the
notion that the measured DNA is within cells, rather than
in the extracellular space, since tissue extracts with Gnd
and aCT (that remove 90% of GAG) contained virtually
no DNA (<2% of the total in the tissue, data not shown).
One caveat, however, is that the biochemical measure of
DNA does not describe cell activity or organization, and
focal sites of hypo- and hypercellularity may exist. The de-
crease in cell density in the superficial zone of cartilage
may contribute to the inability of remaining cells to main-
tain extracellular matrix in this region, and, thus, to the
eventual deterioration and loss of mechanical integrity.

The constancy of total and denatured collagen content in
samples from different adult age groups is consistent with
and expands on the idea that collagen turnover is modest
in mature, macroscopically normal cartilage. The total colla-
gen content [Fig. 3(C)] and denatured collagen content
[Fig. 3(D)] agree with previously reported values®'%2 and,
further, varied little with age or depth from the articular sur-
face. The low levels of collagen denaturation [2—4%,
Fig. 3(D)], and absence of marked site-associated varia-
tions, are consistent with the source of tissue, i.e., joints
undergoing normal aging rather than osteoarthritic degener-
ation, which typically exhibit extensive cartilage collagen de-
naturation (~10%)%'. Taken together, these findings
suggest that the early age-related cartilage weakening,
prominent in the LFC superficial layer [Fig. 2(B, C)], is un-
likely to be due to collagen denaturation, at least of the
extent present in OA and inflammatory arthritis; indeed,
both osteoarthritic cartilage and IL-1-treated cartilage ex-
plants exhibit tensile softening or weakening that is associ-
ated with markedly increased levels of denatured
collagen® %1753,

The fluorescence ratio may reflect cumulative effects of
matrix and collagen remodeling, which, in turn, affect carti-
lage tensile properties. The general age-associated in-
crease in fluorescence ratio is consistent with the
accumulation of end products of non-enzymatic glyca-
tion'®'%. Such glycation and increased fluorescence have
been associated, on one hand, with increased stiffness
and lower collagen turnover® that may be protective to car-
tilage; evidence for a protective effect are the increases in
fluorescence ratio in the LFC superficial layer from Middle
to Old age and in the MFC superficial layer from Young to
Middle to Old age [Fig. 3(E)], during which times tensile
properties are maintained (Fig. 2). On the other hand, in-
creased glycation has been associated with increased
brittleness (lower failure strain) and/or lack of collagen re-
modeling that may precipitate weakening (lowered strength
and ramp modulus) of cartilage'®; the absence of such
changes in tensile properties in this study suggests that gly-
cation does not have such detrimental effects. It should be
noted, however, that this measure of intrinsic fluorescence
was an index of crosslink fluorescence and that may be af-
fected by other matrix components.

The pattern of variation in GAG content with depth is
generally similar to that found in previous studies®5,
but also showed an age-associated decrease of GAG con-
tent in the deep layer of articular cartilage [Fig. 3(F)]. The
measure of sulfated GAG, by reaction with DMMB, was
standardized to a chondroitin sulfate standard, and is in-
dicative of charge content since keratan sulfate (one an-
ionic charge group per disaccharide) gives half as much
signal per mass as does chondroitin sulfate (two anionic
charge groups per disaccharide)®**. No attempt was

made to assess specific alterations of GAG or aggrecan
structure that change with skeletal development and
aging®® % and OA?®. The decrease with age of GAG in
the deep layer from Middle to Old age [Fig. 2(F)] occurs
without additional elevation in fluorescence [Fig. 2(G)],
suggesting that substantial turnover of both GAG and col-
lagen matrix is occurring. The localization in the deep layer
is intriguing, particularly given recent evidence that
changes in subchondral bone turnover can markedly affect
the overlying articular cartilage®® 2.

More work is needed to fully elucidate the causes and
consequences of age-associated tensile weakening. The
results of this study point to a role for surface wear and fa-
tigue as major changes in early cartilage deterioration with
cell loss being a downstream event. Tensile weakenin
may be directly related to wear at the articular surface®®,
with disruption of the collagen network in areas within or ad-
jacent to striations. Consequences of this initial surface
wear may include further disruption of the collagen network,
loss of extracellular matrix molecules, and loss of cells. Ini-
tial age-associated tensile weakening appears not to be
due to enzyme-mediated degradation of the collagen net-
work and proteoglycan, or to an age-associated increase
in collagen crosslinking, because tensile weakening occurs
early at the articular surface, and occurs prior to the alter-
ation of these matrix components. Further study is needed
of joints with more advanced stages of degeneration to es-
tablish the sequence of events leading to the development
of OA. The extent and localization of changes in particular
tissue properties sets the stage for further studies with spe-
cific and graded manipulations to test the mechanistic rela-
tionship for the sequence of events described in Fig. 4.
Diminished tissue integrity, associated with aging in the
LFC, and with the MFC in general, appears to be an early
and sensitive marker of cartilage degeneration and may
causally contribute to degeneration and the development
of OA.
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