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Let λ2 be the second largest eigenvalue of a graph. Powers (1988)

[4] gave some upper bounds of λ2 for general graphs and bipartite

graphs, respectively. Considering that these bounds are not always

attainable for connected graphs, we present sharp upper bounds

of λ2 for connected graphs and connected bipartite graphs in this

paper. Moreover, the extremal graphs are completely characterized.
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1. Introduction

Let G be a simple connected graph with n vertices and A(G) be its adjacency matrix. Since A(G) is
a real symmetric matrix, its eigenvalues must be real and may be ordered as λ1(G) � λ2(G) � · · · �
λn(G). If G has a u, v-path, then the distance from u to v, written dG(u, v) or simply d(u, v), is the least

length of a u, v-path. The eccentricity of a vertex u, written ε(u), is defined as maxv∈V(G) d(u, v). The

center of a graph G is the subgraph induced by the vertices of minimum eccentricity. Let Ska,b denote

the tree obtained from two disjoint stars K1,a and K1,b by joining a path of length k − 1 between their

centers. Let G ∪ H denote disjoint union of two graphs G and H. The degree of a vertex u in a graph G,

denoted by dG(u), is the number of neighbors of u in G. Let G[S] be an induced subgraph of G with the

vertex subset S.
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Since eigenvalues are often difficult to evaluate, it is sometimes useful to obtain bounds for them.

Several bounds have been found for the second largest eigenvalues of certain graph classes. The fol-

lowing results are well-known.

Theorem 1.1 [3]. Let T be a tree with n vertices. If n is odd, then λ2(T) �
√

n−3
2

. Equality holds if and

only if T is isomorphic to one of S3n−3
2

, n−3
2

, S4n−5
2

, n−3
2

and S5n−5
2

n−5
2

.

Theorem 1.2 [6]. Let T be a tree with n vertices. If n is even, then λ2(T) � λ2(S
4
n−4
2

, n−4
2

). Equality holds

if and only if T ∼= S4n−4
2

, n−4
2

.

For a general graph G, the following results are due to Powers and Hong.

Theorem 1.3 [4]. If G is a bipartite graph with n vertices and k = � n
4
�, then

λ2(G) �
⎧⎨
⎩ k if n = 4k or 4k + 1;√

k(k + 1) if n = 4k + 2 or 4k + 3.

Clearly, the bounds in Theorem 1.3 are always attainable. For n = 4k + r, where r ∈ {0, 1, 2, 3},
Kk,k+� r

2
� ∪ Kk,k+� r

2
	 is an extremal graph.

Theorem 1.4 [2]. Let G be a graph with n vertices. Then λ2(G) � n−2
2

. Equality holds if and only if

G ∼= Kn
2

∪ Kn
2
. Furthermore, if G is a connected graph, then λ2(G) �

√
n2−4
2

− 1.

However, if G is a connected graph with even n vertices, then both bounds of Theorems 1.3 and 1.4

are not attainable. This paper is focused on the sharp upper bounds of the second largest eigenvalues

of connected graphs.

2. Main results

Let Ba,a be the set of connected bipartite graphs obtained from two disjoint copies of complete

bipartite graph K� a
2
�,� a

2
	 by adding some edges from their vertices to an additional vertex u∗. Given a

connectedgraphG, letX beaneigenvector corresponding toλ2(G)with its coordinate xv corresponding

to a vertex v. For any vertex subset S ⊆ V(G), let S+ = {v ∈ S : xv > 0}. Similarly, we can define S−
and S0. Clearly, S = S+ ∪ S− ∪ S0. For two disjoint subsets V1 and V2 of V(G), denote by E(V1, V2) the
set of edges with one endpoint in V1 and the other in V2.

LetV ′ be a subset ofV(G)with |V ′| = l. Denoted byG−V ′ the subgraph obtained fromG bydeleting

all the vertices of V ′ together with their incident edges. If V ′ = {u}, we write G − u for G − {u}. The
following well-known result is the Interlacing Theorem, we cite it as our lemma.

Lemma 2.1 [1]. λi+l(G − V ′) � λi+l(G) � λi(G − V ′), where 1 � i � n − l.

Theorem 2.2. Let G = 〈S, T〉 be a connected bipartite graph with n vertices, for some odd integer n.

(i) If n = 4k + 1, then λ2(G) � k. Equality holds if and only if G ∈ B2k,2k.

(ii) If n = 4k + 3, then λ2(G) �
√

k(k + 1). Equality holds if and only if G ∈ B2k+1,2k+1.

Proof. If G is a complete bipartite graph, then λ2(G) = 0. Hence, Theorem 2.2 holds. Considering the

similarity and the convenience for illustrating, we only give the proof for the case of n = 4k + 1.

Now, suppose thatG is not a complete bipartite graph. That is,λ2(G) > 0. Let X be an eigenvector of

A(G) corresponding toλ2(G). Thenwecanpartition S andT into S = S+∪S−∪S0 andT = T+∪T−∪T0,
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Fig. 1. The partition of a bipartite graph G.

respectively. For convenience, we write N0 for S0 ∪ T0 (see Fig. 1). Note that X must be orthogonal to

the Perron vector of A(G) and λ2(G) > 0. Thus none of S+, S−, T+ and T− is empty.

Now consider a vertex v ∈ S+ with maximal entry xv. Note that λ2(G)xv = ∑
u∈N(v) xu and

N(v) ⊆ (T+ ∪ T− ∪ T0), then we have

λ2(G)max
v∈S+ xv � |T+|max

v∈T+ xv. (1)

Similarly, we have

λ2(G)max
v∈T+ xv � |S+|max

v∈S+ xv, (2)

λ2(G) min
v∈S− xv � |T−| min

v∈T− xv, (3)

and

λ2(G) min
v∈T− xv � |S−| min

v∈S− xv. (4)

Note that |S+| + |T+| + |S−| + |T−| � n = 4k + 1. By multiplying (1) and (2) together, (3) and

(4) together, respectively, we have

λ2(G) � min

{√
|S+||T+|,

√
|S−||T−|

}
� min

{ |S+| + |T+|
2

,
|S−| + |T−|

2

}
� k. (5)

Now,we consider the condition that equality holds.Without loss of generality, wemay assume that

|S+ ∪ T+| � |S− ∪ T−|. If equalities hold in (5), then both (1) and (2) are equalities. This implies that

(i) E(S+ ∪ T+, S− ∪ T−) = ∅;
(ii) for any vertex u ∈ S+, xu = max

v∈S+ xv, and for any vertex u ∈ T+, xu = max
v∈T+ xv;

(iii) G[S+ ∪ T+] is isomorphic to Kk,k .

If N0 = ∅, then by (i), G[S+ ∪ T+] and G[S− ∪ T−] are two independent components of G. Since

G is connected, N0 �= ∅. That is |N0| = 1. Hence, |S−| + |T−| = 2k. Since λ2(G) = k, by (5), we

have |S−| = |T−| = k. Furthermore, both (3) and (4) are equalities. Similarly, we can observe that

G[S− ∪ T−] is also isomorphic to Kk,k . Hence, G ∈ B2k,2k .

Now suppose that G ∈ B2k,2k . Note that G − u∗ ∼= Kk,k ∪ Kk,k . Taking V ′ = {u∗} and i = 1 in

Lemma 2.1, we have

k = λ2(G − u∗) � λ2(G) � λ1(G − u∗) = k.

Hence, λ2(G) = k. This completes the proof. �
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Lemma 2.3 [5]. Let e = uv be an edge of a graph G and C(e) be the set of all the cycles containing e. Let

P(G, λ) be the characteristic polynomial of A(G). Then

P(G, λ) = P(G − e, λ) − P(G − u − v, λ) − 2�C∈C(e)P(G − V(C), λ).

For two positive integers a, b with a � b, let 2Ka,b + e be the graph obtained from two disjoint

copies of Ka,b by joining an edge e = uv between their partition sets of b vertices.

Lemma 2.4. λ2(2Kk,k + e) >
√

k2 − 1.

Proof. Clearly, the inequality holds for k = 1. Now let k � 2. By Lemma2.3, we have P(2Kk,k+e, λ) =
λ4k−6f (λ)g(λ), where

f (λ) = λ3 − λ2 − k2λ + k2 − k

and

g(λ) = λ3 + λ2 − k2λ − k2 + k.

Note that f (
√

k2 − 1) = −√
k2 − 1 − k + 1 < 0 and g(

√
k2 − 1) = −√

k2 − 1 + k − 1 < 0. This

implies that both the largest roots of f (λ) and g(λ) aremore than
√

k2 − 1. Therefore,λ2(2Kk,k+e) >√
k2 − 1.

Theorem 2.5. Let G = 〈S, T〉 be a connected bipartite graph with n vertices, for some even integer n.

(i) If n = 4k, then λ2(G) � λ2(2Kk,k + e). Equality holds if and only if G ∼= 2Kk,k + e.

(ii) If n = 4k + 2, then λ2(G) � λ2(2Kk,k+1 + e). Equality holds if and only if G ∼= 2Kk,k+1 + e.

Proof. For convenience, we only elaborate our proof for the case of n = 4k. The case of n = 4k + 2 is

analogous and hence omitted here.

The claim is trivial for k = 1. Now suppose that k � 2 and G∗ is an extremal graph which has the

maximum second largest eigenvalue among all connected bipartite graphs of order n. Then by Lemma

2.4, we have λ2(G
∗) >

√
k2 − 1 > 1. Let X be the eigenvector of A(G∗) corresponding to λ2(G

∗).
Suppose S = S+ ∪ S− ∪ S0 and T = T+ ∪ T− ∪ T0 are two partition sets of G∗. Now, we give the

following claims.

Claim 2.6. |S+| = |T+| = |S−| = |T−| = k.

Proof. Similar to the proof of Theorem 2.2, we have λ2(G
∗) � min{

√
|S+||T+|,

√
|S−||T−|}. Note that

|S+| + |T+| + |S−| + |T−| � 4k. If the claim does not hold, then λ2(G
∗) �

√
(k + 1)(k − 1) =√

k2 − 1, a contradiction. �

Claim 2.7. Both G[S+ ∪ T+] and G[S− ∪ T−] are isomorphic to Kk,k.

Proof. Suppose to the contrary that uv �∈ E(G∗) for some u ∈ S+ and v ∈ T+. Then λ2(G
∗)xv �

(k − 1) max
w∈S+ xw and λ2(G

∗) max
w∈S+ xw � (k − 1) max

w∈T+ xw + xv. Hence

(
λ2(G

∗) − k − 1

λ2(G∗)

)
max
w∈S+ xw � (k − 1) max

w∈T+ xw. (6)

By symmetry, we have(
λ2(G

∗) − k − 1

λ2(G∗)

)
max
w∈T+ xw � (k − 1) max

w∈S+ xw. (7)
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Multiplying (6) and (7) together, we have λ2(G
∗) − k−1

λ2(G∗) � k − 1. It is easy to see

λ2(G
∗) � k − 1 + √

(k − 1)(k + 3)

2
�

√
k2 − 1, (8)

a contradiction. Hence, G[S+ ∪ T+] is isomorphic to Kk,k . Similarly, we have G[S− ∪ T−] ∼= Kk,k . �

Claim 2.8. max{|E(S+, T−)|, |E(S−, T+)|} � 1.

Proof. Without loss of generality, assume |E(S+, T−)| � |E(S−, T+)| = a. For a vertex v and a subset

U of V(G∗), let dU(v) be the number of edges from v to U and XU = ∑
u∈U

xu. For convenience, we write

X′
S− = ∑

v∈S−
dT+(v)xv and X′

T+ = ∑
v∈T+

dS−(v)xv , where
∑

v∈S−
dT+(v) = ∑

v∈T+
dS−(v) = a.

Note that λ2(G
∗)X′

S− = aXT− + X′
T+ and λ2(G

∗)X′
T+ = aXS+ + X′

S− . We have

(λ2(G
∗) + 1)(X′

T+ − X′
S−) = a(XS+ − XT−).

Hence, for any integer a � 2,

λ2(G
∗)(X′

T+ − X′
S−) = aλ2(G

∗)
λ2(G∗) + 1

(XS+ − XT−) � XS+ − XT− . (9)

(9) implies at least one of the following inequalities:

−λ2(G
∗)X′

S− � XS+; (10)

λ2(G
∗)X′

T+ � −XT− .

Without loss the generality, suppose that (10) holds. Note that λ2(G
∗)XS+ � kXT+ and λ2(G

∗)XT+ =
kXS+ + X′

S− . We have

(
λ2
2(G

∗) − k2
)
XS+ � kX′

S− � − k

λ2(G∗)
XS+ � −XS+ ,

since by Theorem1.3λ2(G
∗) � k. Soλ2

2(G
∗)−k2+1 � 0. That is,λ2(G

∗) �
√

k2 − 1, a contradiction.

Hence, Claim 2.8 holds.

If |E(S+, T−)| = |E(S−, T+)| = 1, thenG ∼= H (see Fig. 2), where bothH[S+ ∪T+] andH[S− ∪T−]
are isomorphic to Kk,k . By symmetry, we have

xu1 = xu2 = −xv1 = −xv2 .

In addition, all coordinates xw , forw ∈ S+ ∪ T+ \ {u1, u2}, are equal and we may denote them by xu0 .

Then

λ2(G
∗)xu0 = (k − 1)xu0 + xu1

and

λ2(G
∗)xu1 = (k − 1)xu0 + xu2 + xv2 = (k − 1)xu0 .

Hence,

λ2
2(G

∗) − (k − 1)λ2(G
∗) − (k − 1) = 0.

By (8), we have λ2(G
∗) �

√
k2 − 1, a contradiction. So two disjoint copies of Kk,k in G∗ can be

connected with just one edge. That is, G ∼= 2Kk,k + e. This completes the proof. �
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Fig. 2. The graph H.

For odd n, let 2K n−1
2

• K1 be the set of connected graphs obtained from two disjoint copies of

complete graph Kn−1
2

by adding some edges from their vertices to an additional vertex. Besides, for

even n, let 2Kn
2

+ e be the graph obtained from two disjoint copies of Kn
2
by joining an edge between

them. Similar to the proof of connected bipartite graphs, we have the following results.

Theorem 2.9. Let G be a connected graph with n vertices.

(i) If n is odd, then λ2(G) � n−3
2

. Equality holds if and only if G ∈ 2K n−1
2

• K1.

(ii) If n is even, then λ2(G) � λ2(2Kn
2

+ e). Equality holds if and only if G ∼= 2Kn
2

+ e.

For any connected graph (particularly, for any connected bipartite graph) with an even number of

vertices, we can find that the bounds of Theorems 2.5 and 2.9 are better then those of Theorems 1.3

and 1.4.
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