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The Scaling of Blood Flow Resistance: From a Single Vessel
to the Entire Distal Tree
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Department of Biomedical Engineering, Surgery, and Cellular and Integrative Physiology, Indiana University-Purdue University Indianapolis,
Indianapolis, Indiana

ABSTRACT Although the flow resistance of a single vessel segment is easy to compute, the equivalent resistance of a network
of vessel segments or the entire vasculature of an organ is difficult to determine in an analytic form. Here, we propose what we
believe is a novel resistance scaling law for a vascular tree (i.e., the resistance of a vessel segment scales with the equivalent
resistance of the corresponding distal tree). The formulation can be written as ðRs=RcÞfðLs=LcÞ (where Rs and Ls are the resis-
tance and length of a vessel segment, respectively, and Rc and Lc are the equivalent resistance and total length of the corre-
sponding distal tree, respectively), which was validated for the coronary vascular systems of the heart. The scaling law was
also shown to apply to the vascular systems of the lung, mesentery, muscle, eye, and so on. The novel resistance scaling
law, coupled with the 3/4-power scaling law for metabolic rates, can predict several structure-function relations of vascular trees,
albeit with a different exponent. In particular, the self-similar nature of the scaling law may serve as a diagnostic tool with the help
of noninvasive imaging modalities.
INTRODUCTION

The biological transport structure has significant similarities

across species despite remarkable diversity and size. The

vascular tree, whose function is to transport fluid within an

organism, is a major distribution system that has fractal

and scaling characteristics (1–4). A fundamental functional

parameter of a vessel segment or a tree is the hydraulic resis-

tance to flow, which determines the transport efficiency (5).

In a hydrodynamic analysis of mammalian and plant

vascular networks, a mathematical model of 3/4-power

scaling for metabolic rates has been reported (6). A number

of scaling relations of structure-function features were

further proposed for body size (7,8), temperature (9), species

abundance (8), body growth (9,10), and so on. Although the

3/4-scaling law was originally derived through a hemody-

namic analysis in the vascular tree system, one basic struc-

ture-function scaling feature of vascular trees remains

unclear: ‘‘How does the resistance of a vessel branch scale

with the equivalent resistance of the corresponding distal

tree’’?

In this study, we propose what we believe is a novel

scaling law of a single vessel resistance to the corresponding

distal tree. The scaling law is validated in both the actual

asymmetric coronary trees and the idealized symmetric

vascular trees for which there exist morphometric data in

the literature. The scaling law, also coupled with the 3/4-

power scaling law (QsfM3=4; where Qs is the inlet flow

rate of a tree and M is the perfused mass by the tree), can

predict several structure-function scaling laws of vascular

trees (11–13). The significance of the novel resistance
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scaling law is elaborated physiologically and, potentially,

clinically.

THEORY

Several concepts are first defined to formulate the resistance

scaling law. A vessel segment is defined as a stem, and the

tree distal to the stem is defined as a crown (see Fig. 1 in

Kassab (11)). Obviously, an entire tree consists of many

stem-crown units down to the smallest arterioles or venules.

The capillary network (vessel diameter <8 mm) (14) is

excluded from this analysis because it is not treelike in

structure. A stem is assumed to be a cylindrical tube with

no consideration of vessel tapering and other nonlinear

effects because they play a relatively minor role in deter-

mining the hemodynamics of the entire tree (6). Through

the well-known Hagen-Poiseuille law, the resistance of

the steady laminar flow in a stem of an entire tree,

Rs ¼ DPs

Qs
(where DPs is the pressure gradient along the

stem and Qs is the volumetric flow rate through the

stem), can be written as

Rs ¼
128mLs

pD4
s

¼ Ks

Ls

D4
s

; (1)

where Ds and Ls are the diameter and length of the stem,

respectively. The fluid viscosity, m, and Ks ¼ 128m=p are

considered constant for the stem. Furthermore, the resistance

of a crown, Rc ¼ DPc

Qs
(where DPc is the pressure gradient in

the crown from the stem to the terminal vessels), is proposed

as follows (see the Appendix for derivations):

Rc ¼ Kc

Lc

D4
s

; (2a)
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where Lc is the crown length that is defined as the sum of

the lengths of each vessel in the crown and Ds is the diameter

of the stem vessel proximal to the crown. Kc is a constant

that depends on the branching ratio, diameter ratio, total

number of tree generations, and viscosity in the crown. Since

Eq. 2a is applicable to any stem-crown unit, we obtain

Rmax ¼ KcLmax=D4
max such that Kc ¼ Rmax � D4

max=Lmax,

where Dmax, Lmax, and Rmax correspond, respectively, to

the most proximal stem diameter, the cumulative vascular

length, and the total resistance of the entire tree. In the nondi-

mensional form, Eq. 2a can be written as

�
Rc

Rmax

�
�
�

Ds

Dmax

�4

¼ A1

�
Lc

Lmax

�
: (2b)

Parameter A1 in Eq. 2b should be equal to one. From Eqs. 1

and 2a, we obtain the desired resistance scaling relation

between a single vessel (a stem) and the distal crown tree:�
Rs

Rc

�
¼ Ks

Kc

�
Ls

Lc

�
: (3)

Equations 1–3 relate the resistance of a single vessel to the

corresponding distal tree.

FIGURE 1 Relationship between

ðRc=RmaxÞ � ðDs=DmaxÞ4 and normal-

ized crown length (Lc=Lmax) in the

asymmetric entire (A) LAD, (B) LCx,

and (C) RCA trees of pig, which include

946,937, 571,383, and 836,712 stem-

crown units, respectively. (D–F) Rela-

tionship between Rc=Rs and Lc=Ls in

the LAD, LCx, and RCA trees of pig

corresponding to (A–C).
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METHODS

Morphometric vascular trees

The realistic asymmetric coronary arterial trees of hearts and idealized

symmetric vascular trees of many organs were used to verify the proposed

resistance scaling law. First, the asymmetric coronary arterial tree has

been reconstructed in pig hearts by using the growth algorithm introduced

by Mittal et al. (15) based on the measured morphometric data of Kassab

et al. (16). Briefly, vessels R40 mm were reconstructed from cast data,

whereas vessels <40 mm were reconstructed from histological data. After

the tree was reconstructed, each vessel was identified by a diameter-defined

Strahler order (16), which was developed based on the Strahler system (17).

Furthermore, symmetric vascular trees of many organs were constructed

in the Strahler system, based on available literature (18–29). The pulmonary

arterial tree of rats was obtained from the study of Jiang et al. (18); the

pulmonary arterial/venous trees of cats from Yen et al. (19,20); the pulmo-

nary arterial trees of humans from Singhal et al. (21,22) and Huang et al.

(23); the pulmonary venous trees of humans from Horsfield and Gordon

(24) and Huang et al. (23); the skin muscle arterial tree of hamsters from Ber-

tuglia et al. (25); the retractor muscle arterial tree of hamsters from Ellsworth

et al. (26); the mesentery arterial tree of rats from Ley et al. (27); the sartorius

muscle arterial tree of cats from Koller et al. (28); and the bulbular conjunc-

tiva arterial/venous trees of humans and the omentum arterial tree of rabbits

from Fenton and Zweifach (29).

Data analysis

For the asymmetric coronary arterial trees, full tree data are presented as log-

log density plots showing the frequency of data because of the enormity of

data points, i.e., the darkest shade reflects the highest frequency or density

and the lightest shade reflects the lowest frequency (30). The nonlinear

regression (SigmaStat 3.5, Systat Software, San Jose, CA) was used to

analyze the data in both the asymmetric and symmetric trees, which uses

the Marquardt-Levenberg algorithm (nonlinear regression) to find the

coefficients (parameters) of the independent variables that give the ‘‘best

fit’’ between the equation and the data.

RESULTS

Validation of the resistance scaling law
in entire vascular trees

We validated the predictions of these novel scaling laws in

both the asymmetric coronary trees and the symmetric

vascular trees for which there exist morphometric data in the

literature (e.g., vessels of various skeletal muscles, mesentery,

omentum, and conjunctiva) (18–29).

First, we analyzed the entire asymmetric coronary

LAD (left anterior descending artery), LCx (left circumflex

artery), and RCA (right coronary artery) trees with several

millions of vessels (15,16). Fig. 1, A–C, shows a log-log

plot of ðRc=RmaxÞ � ðDs=DmaxÞ4 as a function of normalized

crown length ðLc=LmaxÞ for LAD, LCx, and RCA trees,

respectively. Through the Marquardt-Levenberg algorithm

with the exponents of Lc=Lmax constrained to one, parameter

A1 in Eq. 2b has a value of 1.027 (R2 ¼ 0.990), 0.993 (R2 ¼
0.997), and 1.084 (R2 ¼ 0.975) for LAD, LCx, and RCA

trees, respectively. The values of A1 obtained from morpho-

metric data are in agreement with the theoretical value of

one. Corresponding to Fig. 1, A–C, Fig. 1, D–F, shows

a log-log plot of Rc=Rs as a function of Lc=Ls. Parameter
Ks=Kc in Eq. 3 has a value of 2.647 (R2 ¼ 0.954), 2.943

(R2 ¼ 0.918), and 2.147 (R2 ¼ 0.909) for LAD, LCx, and

RCA trees, respectively.

Furthermore, Fig. 2, A and B, shows the log-log plots

of ðRc=RmaxÞ � ðD0=DmaxÞ4 and Rc=Rs as a function of

Lc=Lmax and Lc=Ls, respectively, in the vascular trees of

various species (16,18–29). Corresponding to Fig. 2, A and

B, we used the Marquardt-Levenberg algorithm to calculate

the parameters A1 and Ks=Kc in Eqs. 2b and 3, respectively,

whereas the exponents of Lc=Lmax and Lc=Ls were con-

strained to one. Parameters A1 in Eq. 2b and Ks=Kc in

Eq. 3 with correlation coefficient for various species

(16,18–29) are listed in Table 1. The standard errors and

coefficients of variations are used as a measure of the vari-

ance or spread around the regression line. The standard

FIGURE 2 (A) Corresponding to Table 1, the relationship between

ðRc=RmaxÞ � ðDs=DmaxÞ4 and normalized crown length (Lc=Lmax) in the

symmetric vascular tree for various species (16,18–29). (B) Corresponding

to A, the relationship between Rc=Rs and Lc=Ls.

Biophysical Journal 96(2) 339–346
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errors and parameter coefficients of variation of A1 in Table 1

are <0.1% and <10.0%, respectively. The data in Table 1

have a mean value (averaged over all organs and species)

of 1.01 5 0.06 for parameter A1. Using the same Mar-

quardt-Levenberg algorithm, a nonlinear regression fit of

all raw data yields a mean of 1.01 (R2 ¼ 0.95) for parameter

A1. Both the mean value and the nonlinear regression fit of

all data agree with the theoretical value of one. Fig. 2 B
shows much smaller Rc=Rs in the pulmonary vascular tree

than other organs at the same value of Lc=Ls. Accordingly,

the Ks=Kc values (Table 1) are similar except for the pulmo-

nary vasculature with a larger value. The Ks=Kc values are

also calculated based on equations Ks ¼ 128m=p and

Kc ¼ Rmax � D4
max=Lmax, which is compared with the

Ks=Kc values obtained from the Marquardt-Levenberg algo-

rithm, as shown in Fig. 3. The viscosity is determined based

on an empirical in vivo relation that depends on the vessel

diameter (31). The comparison shows good agreement.

The Ks=Kc values in the pulmonary vasculature have a larger

value because the cross section area (CSA) of the pulmonary

tree has a large increase from proximal to terminal vessels in

the pulmonary tree and the resistance of the entire tree ðRmaxÞ
is much smaller. The value of Ks=Kc in human pulmonary

arterial and venous trees is even larger than that in cats and

rats. From the definition of K3 (see Appendix), it is noted

that K3 decreases with the increase of the total number of

tree generations. The major reason for the large value of

Ks=Kc is that the human pulmonary tree has many more

TABLE 1 Parameters A1 in Eq. 2b and ðKs=KcÞML in Eq. 3

with correlation coefficient calculated from the Marquardt-

Levenberg algorithm, respectively, for various species

(16,18–29)

Species Vessel (N) A1 R2 ðKs=KcÞML R2 Reference

Pig RCA (11) 1.06 0.93 2.38 0.88 16

Pig LAD (11) 1.02 0.99 5.32 0.97 16

Pig LCx (10) 1.01 0.98 5.79 0.99 16

Rat PA (11) 1.07 0.90 5.03 0.86 18

Cat PA (10) 1.03 0.98 24.3 0.90 19

Cat PV (10) 1.02 0.99 14.1 0.85 20

Human PA (17) 0.97 0.98 2002.0 0.85 21

Human PA (15) 0.98 0.98 1956.0 0.91 23

Human PA (17) 0.95 0.97 445.0 0.80 22

Human PV (15) 0.97 0.98 726.0 0.96 21

Human PV (15) 0.94 0.95 96.3 0.95 24

Hamster SKMA (4) 0.97 0.98 1.16 0.92 25

Hamster RMA (4) 1.00 1.00 1.76 0.98 26

Rat MA (4) 1.11 0.83 4.99 0.55 27

Cat SMA (4) 1.04 0.96 6.66 0.61 28

Human BCA (5) 1.11 0.88 7.40 0.60 29

Human BCV (5) 1.10 0.86 2.35 0.54 29

Rabbit OV (4) 0.88 0.90 3.11 0.68 29

N, total number of Strahler orders in the respective vascular tree; RCA, right

coronary artery; LAD, left anterior descending artery; LCx, left circumflex

artery; PA, pulmonary artery; PV, pulmonary vein; SKMA, skin muscle

arteries; SMA, sartorius muscle arteries; MA, mesentery arteries; OV,

omentum veins; BCA, bulbular conjunctiva arteries; RMA, retractor muscle

artery; BCV, bulbular conjunctiva vein.
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generations from the stem to each terminal, which is ~2 times

larger than the pulmonary tree in cats and rats. Therefore the

human pulmonary tree with more tree generations has a larger

value of Ks=Kc. The agreement between experimental

measurement and theoretical relations illustrates that the

novel proposed resistance scaling law of Eqs. 2 and 3 can

be applied to a general vascular tree down to the smallest

arterioles or venules.

Resistance scaling law of partial vascular trees

Fig. 4, A and B, shows the relations between

ðRc=RmaxÞ � ðDs=DmaxÞ4 and normalized crown volume

ðLc=LmaxÞ and between Rc=Rs and Lc=Ls, respectively, in

the LAD, LCx, and RCA epicardial trees. Parameter A1 in

Eq. 2b has a value of 0.902 (R2 ¼ 0.907), 0.895 (R2 ¼
0.887), and 1.000 (R2 ¼ 0.888); and parameter Ks=Kc in

Eq. 3 has a value of 3.29 (R2 ¼ 0.875), 3.48 (R2 ¼ 0.816),

and 3.12 (R2 ¼ 0.927) for the LAD, LCx, and RCA epicar-

dial trees, respectively.

DISCUSSION

This study provides what we believe is a novel resistance

scaling law that relates the resistance of a vessel branch to

the equivalent resistance of the corresponding distal tree in

various vascular trees of different organs and species. The

significance of the resistant scaling law is that the hydraulic

resistance of a distal vascular tree can be estimated from the

proximal vessel segment. This has wide implications, from

understanding fundamental vascular design to the diagnosis

of disease in the vascular system.

FIGURE 3 A comparison of ðKs=KcÞML from the nonlinear regression of

anatomical data and ðKs=KcÞEQ based on equations Ks ¼ 128m=p and

Kc ¼ Rmax � D4
max=Lmax. The comparison can be represented as

ðKs=KcÞEQ ¼ A� ðKs=KcÞBML. When A is constrained to be 1 in the Mar-

quardt-Levenberg algorithm, B has a value of 1 (R2 ¼ 0.983).
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The resistance scaling law

The mechanisms responsible for blood flow regulation in

vascular trees are of central importance but are still poorly

understood (32). The arteriolar beds are the major site of

vascular resistance (33–36), which contributes to the mainte-

nance and regulation of regional blood flow. Although arte-

riolar resistance plays an important role in the etiology of

many diseases, in particular, hypertension (37–39), it has

been difficult to predict the resistance in the arteriolar beds.

The proposed resistance scaling law addresses this issue.

The resistance scaling laws (Eqs. 2 and 3) are derived

based on the relation of diameter ratio ðDR ¼ Di=Di�1Þ;
length ratio ðLR ¼ Li=Li�1Þ; and branching ratio ðBR ¼
Ni=Ni�1Þ in a symmetric tree as DR ¼ BR�

1
2þ3 and

LR ¼ BR�
1
3; where 3 ¼ 0 and 3 ¼ 1 represent the area

preservation, pD2
i�1 ¼ BR� pD2

i ; and Murray’s law,

FIGURE 4 (A) Relationship between ðRc=RmaxÞ � ðDs=DmaxÞ4 and

normalized crown volume (Lc=Lmax) in the LAD, LCx, and RCA epicardial

trees of pig with diameter of mother vessels larger than 1 mm, which include

132, 90, and 192 vessel segments, respectively. (B) Relationship between

Rc=Rs and Lc=Ls in the LAD, LCx, and RCA epicardial trees of pig corre-

sponding to A.
pD3
i�1 ¼ BR� pD3

i ; respectively. The parameter Kc ¼ KsK3

in Eq. 2 where K3 depends on 3 and the branching ratio and total

number of generations, as shown in Appendix. The detailed

formulations are outlined in the Appendix.

Although the total CSA may increase dramatically from

the aorta to the arterioles, the variation is significantly

smaller in most organs except for the lung. The increase of

CSA toward the capillaries is typically inferred from the

decrease in velocity. The velocity between the most proximal

and distal levels in various organs of mammals is found to

vary by about a factor of 5 (40–48) except for the pulmonary

vascular trees (49,50). This is clearly reflected by Table 1, in

which Ks=Kc ¼ 1
K3

is relatively small except for the pulmo-

nary vasculature. This implies that wall shear stress increases

from the arteries to the arterioles in most organs, which is

consistent with previous measurements (30,43,44).

Structure-function scaling laws obtained
from the resistance scaling law

A mathematical model (the 3/4-power scaling law) was derived

in a symmetric vasculature to characterize the allometric scaling

laws (6), based on the minimum energy theory. The 3/4-power

scaling law can be written as QsfM3=4, where Qs is the volu-

metric flow rate of the aorta and M is body mass. In a stem-crown

unit, Qs is the volumetric flow rate of the stem and M is the mass

perfused by the stem-crown unit. The volumetric flow rate of the

stem is Qs ¼ pD2
s Us=4; where Ds and Us are, respectively, the

diameter and the mean flow velocity of the stem (averaged over

the cross section of stem). Similar to the model of West et al. (6),

the pressure drop from the stem to the capillaries ðDPcÞ and the

mean flow velocity of the stem ðUsÞ are independent of the

perfused mass so that DsfM3=8 and the resistance of the crown

ðRc ¼ DPc=QsÞ is inversely proportional to the volumetric flow

rate ðRcfQ�1
s fM�3=4Þ. Since DsfM3=8, RcfM�3=4, and Kc

is a constant, Eq. 2 yields that the crown length LcfM3=4. The

cumulative length-mass scaling in pig hearts, LcfM3=4, has

recently been verified by our group (51). This relation, in

conjunction with the flow-mass relation ðQsfM3=4Þ, yields

the flow-length relation ðQsfLcÞ in the stem-crown unit, which

has been previously validated (11).

Here, the crown length LcfM3=4 is different from the bio-

logical length lfM1=4 (7). The biological length ðlÞ is the

cumulative length along a path from inlet (level zero) to

the terminal (level N), whereas the crown length is the total

length of all vessels from inlet to the terminals. Although the

biological length shows that the vascular physiology and

anatomy are four dimensional, the crown length depicts

a 3/4-power relation between the total length of the entire/

partial biological system and the perfused mass.

Clinical implications of the resistance scaling law

The self-similar nature of the structure-function scaling laws

in Eqs. 2 and 3 implies that they can be applied to a partial

tree clinically (e.g., a partial tree obtained from an

Biophysical Journal 96(2) 339–346
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angiogram, computerized tomography, or magnetic reso-

nance imaging). Here, we verified the hypothesis using the

LAD, LCx, and RCA epicardial pig trees obtained from casts

truncated at 1 mm diameter to mimic the resolution of nonin-

vasive imaging techniques. The good agreement between

experiments and theory, as shown in Fig. 4, illustrates that

the resistance scaling laws can be applied to partial vascular

trees as well as entire trees.

The resistance scaling law is fundamental to many diag-

nostic hemodynamic measurements (e.g., blood pressure,

wedge pressure, total peripheral resistance, cardiac output,

etc.). Specifically, the proportionality constant of the scaling

law in the epicardial coronary arterial trees may serve as

a diagnostic parameter of vascular function. The crown resis-

tance for each primary branch can also be calculated from

Eq. 2 or 3. The crown resistance in diseased heart with

congestive heart failure or ischemia heart disease can be

estimated based on flow rates obtained from noninvasive

techniques (e.g., angiography, MRI, etc.) and pressure

measurements. The deviations from established crown resis-

tance of normal patients may emerge as diagnostic indices

for various vascular diseases.

Critique of the resistance scaling law

The resistance scaling law was derived from a Taylor expan-

sion that rigorously requires an infinite series. This implies

that the scaling law should better predict those trees that

have more generations. Furthermore, this study only consid-

ered the scaling relation in organs without substantial vascular

tone. The balance between myogenic, flow-dependent, and

metabolic flow control should be included in future studies.

Significance of the resistance scaling law

The novel resistance scaling law (Eq. 2) provides a theoret-

ical and physical basis for understanding the hemodynamic

resistance of the entire tree (or a subtree) and provides a ratio-

nale for clinical diagnosis. The scaling law illustrates the

relationship between the structure (tree) and function (resis-

tance) in which the crown resistance is proportional to the

crown length and inversely proportional to the fourth power

of stem diameter D4
s . The small crown resistance corresponds

to a small crown length, thus matching the transport effi-

ciency of the crown. An increase of stem diameter can

decrease the resistance, which may contribute to the self-

scaling of a biological transport system (52–54). The novel

scaling law provides an integration between a single vascular

unit and the whole (millions of vessels) and imparts a ratio-

nale for the diagnosis of disease processes as well as the

assessment of therapeutic trials.

APPENDIX

An idealized symmetric crown distal to the stem is composed of Ntotal levels

or generations from the stem (level zero) to each terminal (the smallest arte-

Biophysical Journal 96(2) 339–346
riolar bifurcation, level Ntotal). The resistance of a symmetric crown, Rc, can

be written as

Rc ¼ Rs þ
XNtotal

i¼ 1

Ri

Ni

; Ri ¼
128mLi

pD4
i

¼ Ks

Li

D4
i

;

i ¼ 1;/;Ntotal;

(A1)

where

Rs ¼
128mLs

pD4
s

¼ Ks

Ls

D4
s

and Ks ¼
128m

p
;

and Rs, Ls, and Ds are the resistance, length, and diameter of the stem,

respectively, and Ks is a constant. Similarly, Ri, Li, and Di are the resistance,

length, and diameter of a vessel in level i, respectively, and Ni is the total

number of vessels in level i. Here, the effect of viscosity is neglected because

the capillary network is not included in the analysis, where the viscosity has

a significant effect (31). Eq. A1 can be written as

Rc ¼ Ksð Ls�
D2

s

�2
þ
XNtotal

i¼ 1

NiLi�
NiD2

i

�2
Þ

¼ Ksð Ls�
D2

s

�2
þ
XNtotal

i¼ 1

NiLi�
D2

s

�2�
�

NiD
2
i

D2
s

�2
Þ: (A2)

To complete the derivation, we introduce the following three definitions:

1. Branching Ratio: The branching ratios (BR ¼ Ni=Ni�1, i ¼ 1;/;Ntotal)

are relatively constant in each level from the stem (level 0) to the smallest

arterioles or venules (level Ntotal) within an organ of a given species

(16,18–29), such that Ni ¼ BRi.

2. Diameter Ratio: The diameter ratio is defined as DR ¼ Di=Di�1,

i ¼ 1;/;Ntotal. It can be shown that NipD2þ3
i ¼ Ni�1pD2þ3

i�1 , where

3 ¼ 0 represents NipD2
i ¼ Ni�1pD2

i�1 area preservation from one level

to the next. Conversely, 3 ¼ 1 represents Murray’s law; i.e.,

NipD3
i ¼ Ni�1pD3

i�1. This provides the relation ð Di

Di�1
Þ ¼ ð Ni

Ni�1
Þ�

1
2þ3.

Therefore, the diameter ratio relates to the branching ratio as

DR ¼ BR�
1

2þ3 or Di ¼ BR�
i

2þ3Ds.

3. Length Ratio: The length ratio is defined as LR ¼ Li=Li�1,

i ¼ 1;/;Ntotal. West et al. (6) proposed that the perfused volume from

one level to the next is approximately unchanged, so that
4
3
pðLi

2
Þ3Ni ¼ 4

3
pðLi�1

2
Þ3Ni�1, which leads to the relation ð Li

Li�1
Þ ¼ ð Ni

Ni�1
Þ�

1
3.

Therefore, the relation between length ratio and branching ratio can be

expressed as LR ¼ BR�
1
3 or Li ¼ BR�

i
3Ls.

From Equations Ni ¼ BRi, Di ¼ BR�
i

2þ3Ds, Li ¼ BR�
i
3Ls, and Eq. A2,

we obtain the following:

Rc ¼ Ks

ðD2
sÞ2
�

Ls þ Ls �
PNtotal

i¼ 1

BRi �BR
� i

3�
BRi �BR

�2i
2þ 3

�2

�

¼ Ks � Ls�
D2

s

�2

 
1 þ

XNtotal

i¼ 1

BR
2i
3

BR
2i3

2þ 3

!

¼ Ks � Ls�
D2

s

�2

 
1 þ

XNtotal

i¼ 1

BRð23� 23
2þ 3Þi

! : (A3)

Eq. A3 relates the crown resistance to the branching ratio of the vascular

tree. From Taylor expansion, it is known that 1
1�x ¼

1þ x þ x2 þ x3 þ x4 þ. for �1 < x < 1. When 0%3 < 1, the last term�
1þ

PNtotal

i¼1

BRð
2
3
� 23

2þ3
Þi� can be written as BRð

2
3
� 23

2þ3
ÞNtotal �

�
1þ

PNtotal

i¼1

�
1

BR
ð2
3
� 23

2þ3
Þ

�i�
with �1 <

�
1

BR
ð2
3
� 23

2þ3
Þ

�
< 1. With Taylor expansion, Eq. A3 can be written as
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Rc ¼ Ks � Ls

ðD2
sÞ2
� BRð23� 23

2þ 3ÞNtotal

�
 

1 þ
PNtotal

i¼ 1

�
1

BR

�
2
3
� 23

2þ 3

�
�i
!

¼ Ks � Ls�
D2

s

�2
� BRð23� 23

2þ 3ÞNtotal � 1

1� 1

BR

�
2
3
� 23

2þ 3

�
¼ Ks � Ls�

D2
s

�2
� BR

2
3Ntotal

�BRð� 23
2þ 3ÞNtotal � 1

1�
�

1

BR

�
2
3
� 23

2þ 3

��

:

(A4)

The crown length is defined as the sum of the lengths of each vessel in the

crown, such that Lc ¼ Ls þ
PNtotal

i¼1

NiLi. Based on a similar Taylor expansion of

Eq. A4, the crown length can be written as

Lc ¼ Ls �
�

1 þ
XNtotal

i¼ 1

�
BR

2
3

�i
�

¼ Ls � BR
2
3Ntotal � 1

1� 1

BR
2
3

: (A5)

From Eqs. A4 and A5, we obtain the following equation:

Rc ¼
Ks � Ls�

D2
s

�2
� BR

2
3Ntotal � 1

1�
�

1

BR
2
3

�

�
 

BRð� 23
2þ 3ÞNtotal �

�
1� 1

BR
2
3

�

1�

�
1

BR

�
2
3
� 23

2þ 3

��
!

¼ Ks � Lc

D4
s
�
�

BRð� 23
2þ 3ÞNtotal � BR

2
3�1

BR
2
3�BRð 23

2þ 3Þ
�
:

(A6)

When 3 ¼ 1, we obtain

Rc ¼
Ks � Lc

D4
s

�
 

BR�
2
3Ntotal � BR

2
3 � 1

BR
2
3

� ðNtotal þ 1Þ
!
: (A7)

When 3 > 1, we find

Rc ¼
Ks � Lc

D4
s

�
 

BR�
2
3Ntotal � BR

2
3 � 1

BR
2
3 � BRð43� 23

2þ 3Þ

!
:

(A8)

If we define K3 ¼ ðBRð�
23

2þ3
ÞNtotal � BR

2
3�1

BR
2
3�BR

ð 23
2þ3
ÞÞ, ðBR�

2
3
Ntotal � BR

2
3�1

BR
2
3

�

ðNtotal þ 1ÞÞ, ðBR�
2
3
Ntotal � BR

2
3�1

BR
2
3�BR

ð4
3
� 23

2þ3
ÞÞ for 0%3 < 1, 3 ¼ 1, and 3 > 1,

respectively, Eqs. A6–A8 can be written as
Rc ¼ KsK3

Lc

D4
s

: (A9)

Finally, we set Kc ¼ KsK3 such that Eq. A9 can be written as

Rc ¼ Kc

Lc

D4
s

; (A10)

where Kc depends on the branching ratio, diameter ratio, total number of tree

generations, and blood viscosity.

It should be noted that although K3 is a constant for a given crown, it does

vary over the crowns due to Ntotal. We found modest variation of Kc for most

vasculatures (factor of 5) except for the pulmonary tree (factor of 10).

Regardless, this is a negligible variation given that the range of variables

in Fig. 2 A is very large (eight decades on both the x axis and the y axis).

In such a broad range, the relatively small variation of Kc can be neglected,

as verified by the validation here.
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