Generalizations of Grillet's theorem on maximal stable sets and maximal cliques in graphs

Wenan Zang ${ }^{1}$
RUTCOR-Rutgers Centre for Operations Research, Rutgers University, P.O. Box 5062, New Brunswick, NJ 08903, USA

Received 21 July 1993

Abstract

Grillet established conditions on a partially ordered set under which each maximal antichain meets each maximal chain. Berge pointed out that Grillet's theorem can be stated in terms of graphs, made a conjecture that strengthens it, and asked a related question. We exhibit a counterexample to the conjecture and answer the question; then we prove four theorems that generalize Grillet's theorem in the spirit of Berge's proposals.

1. Results

Grillet [2] proved that in every partially ordered set containing no quadruple (a, b, c, d) such that
$a<b, c<d, b$ covers c,
and the remaining three pairs of elements are incomparable,
each maximal antichain meets each maximal chain. (Throughout this paper, the adjective maximal is always meant with respect to set-inclusion rather than size.) Berge [1] pointed out that Grillet's theorem can be stated in terms of graphs rather than partially ordered sets: if a comparability graph has the property that every induced P_{4} is contained in an induced A (see Fig. 1), then every maximal stable set meets each maximal clique. (The vertices of a comparability graph are the elements of a partially ordered set, with two vertices adjacent if and only if they are comparable.)
Then he went on to suggest possible generalizations of this statement. First, call a graph beautifully ordered if it has an acyclic orientation with no induced H_{1} and no

[^0]

A

Fig. 1.

Fig. 2.

Fig. 3.
induced H_{2} (see Fig. 2). Clearly every comparability graph is beautifully ordered. Berge asked:

If a beautifully ordered graph has the property that every induced P_{4} is contained in an induced A then does every maximal stable set meet each maximal clique?

The graph in Fig. 3 shows that the answer to the question is negative. Next, Berge made the following conjecture:

If G does not contain H_{1}, H_{2}, or H_{3} as induced subdigraphs and if every induced H_{4} can be embedded in an induced \vec{A} (see Fig. 4) then every maximal stable set meets each maximal clique.

A counterexample to this conjecture is an orientation of the undirected graph with vertices $c_{1}, c_{2}, \ldots, c_{7}$ and $s_{1}, s_{2}, \ldots, s_{7}$ such that every two c_{i} 's are adjacent, no two s_{i}^{\prime} s

Fig. 4.

Fig. 5.
are adjacent, and a c_{i} is adjacent to an s_{j} if and only if $i \neq j$. We direct each edge between c_{i} and c_{j} from c_{i} to c_{j} if and only if, with arithmetic modulo $7, j$ is one of $i+1$, $i+2, i+4$; we direct each edge between s_{i} and c_{j} from s_{i} to c_{j} if and only if the edge between c_{i} and c_{j} is directed from c_{i} to c_{j}.
Note that no beautifully ordered graph contains a subgraph isomorphic to either of the graphs F_{1} and F_{2} shown in Fig. 5. Chvátal (personal communication) proposed the following conjecture as a variation on Berge's problem concerning beautifully ordered graphs:

Let G be a graph with no induced subgraph isomorphic to F_{1} or \bar{F}_{1}. Then each maximal stable set in G meets each maximal clique in G if and only if each P_{4} in G extends into an A.

We shall prove two theorems that are weaker than Chvátal's conjecture but stronger than Grillet's theorem:

Theorem 1. Let G be a graph with no induced subgraph isomorphic to F_{1}, \bar{F}_{1}, or F_{2}. Then each maximal stable set in G meets each maximal clique in G if and only if each P_{4} in G extends into an A.

Theorem 2. Let G be a graph with no induced subgraph isomorphic to F_{1} or \bar{F}_{1}. Then each maximal stable set in G meets each maximal clique in G if and only if each P_{4} in G extends into an A and each plump P_{4} in G extends into a plump A (see Fig. 6).

In addition, we shall prove two theorems that generalize Grillet's theorem in the spirit of Berge's conjecture. The first of these theorems features the counterexample

Plump A

Fig. 6.

Fig. 7.
from Fig. 3; we shall refer to this directed graph as the acyclic pyramid; the cyclic pyramid featured in Theorem 4 is shown in Fig. 7.

Theorem 3. Let G be an oriented graph with no induced acyclic pyramid. If each P_{4} in G extends into an \vec{A}, then each maximal stable set in G meets each maximal clique in G.

Theorem 4. Let G be an oriented graph with no induced cyclic pyramid. If each P_{4} in G extends into an \vec{A}, then each maximal stable set in G meets each maximal clique in G.

Note that the hypotheses of Theorems 3 and 4 imply that each P_{4} in G is oriented as H_{4} in Fig. 2. Acyclic oriented graphs in which each P_{4} is oriented as H_{4} were introduced and studied by Hoàng and Reed [3] under the name of P_{4}-comparability graphs.

2. Proofs

Lemma 1. Let H be an F_{1}-free graph whose set of vertices is partitioned into a stable set S and a clique C. If each vertex in C has some neighbor in S, then there must exist two vertices in S such that each vertex in C is adjacent to at least one of them.

Proof. We proceed by induction on the number of vertices in C. Let v be a vertex in C. The induction hypothesis guarantees the existence of two vertices u_{1} and u_{2} in S such that each vertex in $C-v$ is adjacent to u_{1} or u_{2}. If v is adjacent to u_{1} or u_{2}, then we are done; otherwise, let u in S be a neighbor of v. If each vertex in C is adjacent to u_{1} or u then we are done; if each vertex in C is adjacent to u_{2} or u then we are done; hence we may assume that some v_{2} in C is adjacent neither to u_{1} nor to u and that some v_{1} in C is adjacent neither to u_{2} nor to u. But then $u_{1}, u_{2}, u, v_{1}, v_{2}, v$ induce an F_{1}, a contradiction.

As usual, we shall let $N(v)$ denote the set of all the neighbors of v and we shall set $N[v]=\{v\} \cup N(v)$.

Proof of Theorem 1. The "only if" part is trivial. To prove the "if" part, suppose to the contrary that a maximal stable set S shares no vertex with a maximal clique C. Let v_{1}, v_{2} be two nonadjacent vertices outside C such that each vertex in C is adjacent to at least one of v_{1}, v_{2} and such that, subject to this constraint, the size of $N\left(v_{1}\right) \cap N\left(v_{2}\right) \cap C$ is large as possible. (Such vertices exist by Lemma 1.)

Let I_{1} (resp. I_{2}) denote the set of all the vertices in C which are adjacent to v_{1} (resp. v_{2}) but nonadjacent to v_{2} (resp. v_{1}), and let I_{0} denote the set of all the vertices in C which are outside I_{1} and I_{2}. (Both I_{1} and I_{2} are nonempty, for otherwise C is not a maximal clique.)

Let w be a vertex outside $N\left[v_{1}\right] \cup N\left[v_{2}\right]$ such that w has neighbors in each of I_{1} and I_{2} and such that, subject to this constraint, the size of $N(w) \cap\left(I_{1} \cup I_{2}\right)$ is as large as possible. (Such a vertex exists, since for each choice of u_{1} in I_{1} and u_{2} in I_{2}, there is an induced A with vertices $v_{1}, u_{1}, u_{2}, v_{2}, w$.) We shall distinguish between two cases.

Case 1: $I_{1} \subseteq N(w)$ or $I_{2} \subseteq N(w)$. Switching I_{1} and I_{2} if necessary, we may assume that $I_{1} \subseteq N(w)$. Observe that each vertex in I_{0} is adjacent to w (otherwise this vertex, v_{1}, v_{2}, w, and u_{1} in I_{1}, and any u_{2} in $N(w) \cap I_{2}$ would induce an \bar{F}_{1}, a contradiction). Hence each vertex in C is adjacent to at least one of w, v_{2} and $\left|N(w) \cap N\left(v_{2}\right) \cap C\right|>$ $\left|N\left(v_{1}\right) \cap N\left(v_{2}\right) \cap C\right|$, contradicting our choice of v_{1}, v_{2}.

Case 2: $I_{1} \nsubseteq N(w)$ and $I_{2} \nsubseteq N(w)$. Let a_{1} be a vertex in $I_{1}-N(w)$ and let a_{2} be a vertex in $I_{2}-N(w)$. By assumption, the path $v_{1} a_{1} a_{2} v_{2}$ extends into an induced A; let v denote the fifth vertex of this A. Then vertex v is outside $C \cup\left\{v_{1}, v_{2}, w\right\}$. Now, v and w are nonadjacent (otherwise $v_{1}, v_{2}, a_{1}, a_{2}, v, w$ would induce an F_{1}, a contradiction). Now we shall distinguish between two subcases.

Subcase 2.1: $N(w) \cap I_{1} \subseteq N(v)$ or $N(w) \cap I_{2} \subseteq N(v)$. Switching I_{1} and I_{2} if necessary, we may assume that $N(w) \cap I_{1} \subseteq N(v)$. Now we must have $N(w) \cap I_{2} \subseteq N(v)$ (otherwise v_{2}, a_{2}, v, w along with any u_{1} in $N(w) \cap I_{1}$ and any u_{2} in $\left(N(w) \cap I_{2}\right)-N(v)$ would induce an \bar{F}_{1} in G, a contradiction). Since $a_{1} \in\left(N(v) \cap I_{1}\right)-N(w)$ (and $\left.a_{2} \in\left(N(v) \cap I_{2}\right)-N(w)\right)$, vertex v contradicts our choice of w.

Subcase 2.2: $N(w) \cap I_{1} \nsubseteq N(v)$ and $N(w) \cap I_{2} \nsubseteq N(v)$. In this subcase, $v_{1}, v_{2}, a_{1}, a_{2}$, v, w along any nonneighbor of v in $N(w) \cap I_{1}$ and any nonneighbor of v in $N(w) \cap I_{2}$ induce a F_{2} in G, a contradiction.

Proof of Theorem 2. The "only if" part is trivial. To prove the "if" part, we proceed as in the proof of Theorem 1 until we arrive at Case 2. Let u_{2} be a vertex in $N(w) \cap I_{2}$. By virtue of the hypothesis on the plump P_{4} induced by $v_{1}, v_{2}, a_{1}, u_{2}, a_{2}$, we get a vertex v such that $v_{1}, v_{2}, a_{1}, u_{2}, a_{2}, v$ induce a plump A in G. As in Case 2 of Theorem $1, v$ and w are nonadjacent; furthermore, each vertex in $N(w) \cap I_{1}$ must be adjacent to v (otherwise this vertex along with $v_{1}, a_{1}, u_{2}, v, w$ would induce an F_{1}). The rest is the same as Subcase 2.1 of Theorem 1.

Theorems 3 and 4 concern oriented graphs. In their proofs, we still let $N(v)$ stand for the set of all the neighbors of v (i.e. the set of all the in-neighbors and all the out-neighbors). Again, $N[v]=\{v\} \cup N(v)$.

Proof of Theorem 3. The argument follows the lines of the proof of Theorem 1. For each choice of u_{i} in I_{i}, the path $v_{1} u_{1} u_{2} v_{2}$ alternates; hence (switching subscripts if necessary) we may assume that each arc between v_{1} and I_{1} is directed towards I_{1} and that each arc between v_{2} and I_{2} is directed towards v_{2}. The choice of w is a little different: w is a vertex outside $N\left[v_{1}\right] \cup N\left[v_{2}\right]$ such that there is at least one arc directed from w to I_{1}, there is at least one arc directed from I_{2} to w, and such that, subject to these constraints, the size of $N(w) \cap\left(I_{1} \cup I_{2}\right)$ is as large as possible. (Such a vertex exists, since for each choice of u_{1} in I_{1} and u_{2} in I_{2}, there is an induced \vec{A} with vertices $v_{1}, u_{1}, u_{2}, v_{2}, w$.) The subsequent case analysis goes as in the proof of Theorem 1 with minor modifications: (i) the fact that G is F_{1}-free and F_{2}-free follows from the assumption that every P_{4} in G alternates, (ii) if I_{1} and I_{2} are switched in Subcase 2.1 then the directions of all arcs are reversed, (iii) the pyramid in Case 1 can be found by choosing u_{1} (resp. u_{2}) in I_{1} (resp. $N(w) \cap I_{2}$) so that the arc between u_{1} (resp. u_{2}) and w is directed towards u_{1} (resp. w); the pyramid found in Subcase 2.1 can be forced to be acyclic by the fact that both the arc between v_{2} and u_{2} and the arc between v_{2} and a_{2} are directed towards v_{2}.

Lemma 2. Let G be an oriented graph with no induced cyclic pyramid; assume that each P_{4} in G extends into an \vec{A}. Let C be a clique in G and let s_{1}, s_{2} be two nonadjacent vertices outside C such that, with $C_{1}=N\left(s_{1}\right) \cap C$ and $C_{2}=N\left(s_{2}\right) \cap C$:
(a) C_{1} and C_{2} are nonempty, disjoint, and their union is C;
(b) all arcs between s_{1} and C_{1} are directed from s_{1} to C_{1};
(c) all arcs between s_{2} and C_{2} are directed from C_{2} to s_{2}.

Then there exists a vertex w outside $N\left[s_{1}\right] \cup N\left[s_{2}\right]$ such that
(a) w is adjacent to all the vertices in C;
(b) at least one arc is directed from w to C_{1};
(c) at least one arc is directed from C_{2} to w.

Proof. We apply induction on the number of vertices in C. If $C_{1}=\left\{u_{1}\right\}$ and $C_{2}=\left\{u_{2}\right\}$ then the fifth vertex of any \dot{A} that contains the path $s_{1} u_{1} u_{2} s_{2}$ can play the
role of w. So we proceed to the induction step and assume, without loss of generality, that C_{1} includes at least two vertices.

Let $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of C_{1}. Then, for each u_{i}, the induction hypothesis guarantees the existence of vertex w_{i} outside $N\left[s_{1}\right] \cup N\left[s_{2}\right]$ such that the conclusion of Lemma 2 holds with $C-u_{i}$ in place of C and with $C_{1}-u_{i}$ in place of C_{1}. We may assume that w_{i} and u_{i} are nonadjacent for all i (else we are done with $w=w_{i}$). Now the mapping that assigns w_{i} to u_{i} is one-to-one. Note that no w_{i} is adjacent to another w_{j} (else at least one of the paths $w_{j} w_{i} u_{j} s_{1}$ and $w_{i} w_{j} u_{i} s_{1}$ would not alternate, a contradiction). It follows that C_{1} contains no cyclic triangle (else the cyclic triangle, say $u_{i} u_{j} u_{k} u_{i}$, would extend by w_{i}, w_{j}, w_{k} to an induced cyclic pyramid, a contradiction), and so C_{1} is a transitive tournament. Without loss of generality, suppose that $u_{1}, u_{2}, \ldots, u_{m}$ are enumerated in such an order that each edge $u_{i} u_{j}$ with $i<j$ is directed from u_{i} to u_{j}. Since each path $w_{m} u_{i} u_{m} w_{i}$ with $i<m$ alternates, each arc between $C_{1}-u_{m}$ and w_{m} is directed towards w_{m}, a contradiction.

Lemma 3. Let G be an oriented graph with no induced cyclic pyramid; assumed that each P_{4} in G extends into an \dot{A}. Let C be a clique in G and let s_{1}, s_{2} be two nonadjacent vertices outside C such that, with $C_{1}=N\left(s_{1}\right) \cap C, C_{2}=N\left(s_{2}\right) \cap C$, and $I_{1}=C_{1}-C_{2}, I_{2}=C_{2}-C_{1}$:
(a) $I_{1} \neq \emptyset, I_{2} \neq \emptyset$, and $C_{1} \cup C_{2}=C$.
(b) all arcs between s_{1} and I_{1} are directed from s_{1} to I_{1};
(c) all arcs between s_{2} and I_{2} are directed from I_{2} to s_{2}.

Then some vertex w outside C satisfies at least one of the following two conditions:
(1) w is adjacent to all the vertices of C and nonadjacent to s_{1}; furthermore, at least one arc is directed from I_{2} to w .
(2) w is adjacent to all the vertices of C and nonadjacent to s_{2}; furthermore, at least one arc is directed from I_{1} to w.

Proof. We shall use induction on the number of vertices in I_{0}, the set of all the vertices in C which are outside I_{1} and I_{2}. Since (1) follows directly from Lemma 2 when I_{0} is empty, we proceed to the induction step.

Let $c_{1}, c_{2}, \ldots, c_{s}$ be the vertices in I_{0}. For each c_{i}, the induction hypothesis guarantees the existence of a w_{i} which satisfies (1) or (2) in place of w (with $C-c_{i}$ in place of C). Note that $w_{i} \notin I_{0}$, and so $w_{i} \neq c_{i}$ (and so $w_{i} \notin C$). We may assume that w_{i} and c_{i} are nonadjacent for all i (else we are done with $w=w_{i}$).

Fact 1. Each arc between s_{1} and I_{0} is directed from s_{1} to I_{0}.

Proof. Suppose to the contrary that there is an arc directed from some c_{i} to s_{1}. Then s_{1} and w_{i} must be nonadjacent (otherwise s_{2} and w_{i} would be nonadjacent and, for any vertex v in I_{2}, at least one of paths $s_{1} w_{i} v s_{2}$ and $w_{i} s_{1} c_{i} s_{2}$ would fail to alternate, a contradiction).

If w_{i} satisfies (1) in place of w (and with $C-c_{i}$ in place of C), then there is an arc directed from some v in I_{2} to w_{i} and path $s_{1} c_{i} v w_{i}$ does not alternate, a contradiction. Thus w_{i} must satisfy (2) in place of w (and with $C-c_{i}$ in place of C); in particular, there is an arc directed from some u in I_{1} to w_{i}. But then $s_{1}, s_{2}, u, c_{i}, w_{i}$ along with an arbitrary vertex in I_{2} induce a cyclic pyramid, a contradiction.

Proof of Lemma (continued). For each i, write $w_{i} \in W_{1}$ if w_{i} is nonadjacent to s_{1} and $w_{i} \in W_{2}$ otherwise; set $D_{1}=\left\{c_{j} \in I_{0} \mid w_{j} \in W_{1}\right\}$ and $D_{2}=\left\{c_{j} \in I_{0} \mid w_{j} \in W_{2}\right\} ;$ note that each vertex in W_{2} is nonadjacent to s_{2}.

Fact 2. Each arc between s_{2} and D_{2} is directed from s_{2} to D_{2}.

Proof. Directly from Fact 1 and the fact that all paths $s_{2} c_{i} s_{1} w_{i}$ with $c_{i} \in D_{2}$ alternate.

Fact 3. If $W_{k} \neq \emptyset$ (and $k=1$ or $k=2$) then there is some w_{i} in W_{k} such that each arc between w_{i} and D_{k} is directed towards D_{k}.

Proof. Note that no w_{i} in W_{k} is adjacent to another w_{j} in W_{k} (else at least one of the paths $w_{j} w_{i} c_{j} s_{1}$ and $w_{i} w_{j} c_{i} s_{1}$ would not alternate, a contradiction). It follows that D_{k} contains no cyclic triangle (else the cyclic triangle, say $c_{i} c_{j} c_{l_{l}} c_{i}$, would extend by w_{i}, w_{j}, w_{l} to an induced cyclic pyramid, a contradiction), and so D_{k} is a transitive tournament. Without loss of generality, suppose that the elements of D_{k} are $c_{1}, c_{2}, \ldots, c_{r}$ and that each edge $c_{i} c_{j}$ with $i<j$ is directed from c_{i} to c_{j}. Since each path $w_{1} c_{i} c_{1} w_{i}$ with $i>1$ alternates, each arc between D_{k} and w_{1} is directed towards D_{k}.

Fact 4. There is some w_{i} in $W_{1} \cup W_{2}$ such that each arc between w_{i} and I_{0} is directed towards I_{0}.

Proof. Fact 3 allows us to assume that $W_{1} \neq \emptyset$ and $W_{2} \neq \emptyset$. By Fact 3 (with $s=1$), there is a vertex w_{i} in W_{1} such that each arc between w_{i} and D_{1} is directed from w_{i} to D_{1}. Note that w_{i} is not adjacent to s_{2} (else, for any u in I_{1}, at least one of the paths $s_{1} u w_{i} s_{2}$ and $s_{1} c_{i} s_{2} w_{i}$ would not alternate, a contradiction). For each vertex c_{j} in D_{2}, the arc between w_{i} and c_{j} is directed towards c_{j} : consider path $w_{i} c_{j} s_{1} w_{j}$ if w_{i} and w_{j} are nonadjacent and path $s_{2} c_{j} w_{i} w_{j}$ if w_{i} and w_{j} are adjacent.

Proof of Lemma 3 (conclusion). With w_{i} as in Fact 4, we shall distinguish between the following two cases:

Case 1: w_{i} satisfies (1) in place of w (and with $C-c_{i}$ in place of C). Note that w_{i} is not adjacent to s_{2} (else, for any u in I_{1}, at least one of the paths $s_{1} u w_{i} s_{2}$ and $s_{1} c_{i} s_{2} w_{i}$ would not alternate, a contradiction). Furthermore, for each v in I_{2}, the arc between w_{i} and v is directed towards w_{i} : consider the path $s_{1} c_{i} v w_{i}$.

Subcase 1.1.: The arc between s_{2} and c_{i} is directed towards c_{i}. Note that, for each u in I_{1}, the arc between u and w_{i} is directed towards w_{i} (consider the path $s_{2} c_{i} u w_{i}$). By Lemma 2 with s_{2} in place of s_{1}, w_{i} in place of s_{2}, c_{i} in place of C_{1}, and I_{1} in place of C_{2}, we find a vertex w outside $N\left[s_{2}\right] \cup N\left[w_{i}\right]$ such that w is adjacent to all the vertices in $\left\{c_{i}\right\} \cup I_{1}$; the arc between w and c_{i} is directed towards c_{i}; for some u in I_{1}, the arc between u and w is directed towards w. For each c_{j} in $I_{0}-c_{i}$, the arc between c_{j} and w_{i} is directed towards c_{j} (by our choice of w_{i}), and so c_{j} must be adjacent to w (else $w c_{i} c_{j} w_{i}$ would not alterante, a contradiction); each v in I_{2} must also be adjacent to w (else $s_{2} v u w$ would not alternate, a contradiction). Hence w satisfies (2).

Subcase 1.2: The arc between s_{2} and c_{i} is directed towards s_{2}. Note that, for each u in I_{1}, the arc between u and w_{i} is directed towards u (consider the path $s_{2} c_{i} u w_{i}$). By Lemma 2 with w_{i} in place of s_{2}, c_{i} in place of C_{1}, and I_{2} in place of C_{2}, we find a vertex w outside $N\left[s_{1}\right] \cup N\left[w_{i}\right]$ such that w is adjacent to all the vertices in $\left\{c_{i}\right\} \cup I_{2} ; p$ the arc between w and c_{i} is directed towards c_{i}; for some v in I_{2}, the arc between v and w is directed towards w. For each x in $I_{1} \cup\left(I_{0}-\left\{c_{i}\right\}\right)$, the arc between x and w_{i} is directed towards x, and so x must be adjacent to w (else $w c_{i} x w_{i}$ would not alternate, a contradiction). Hence w satisfies (1).

Case 2: w_{i} satisfies (2) in place of w (and with $C-c_{i}$ in place of C). If w_{i} is not adjacent to s_{1} then the condition of Case 1 is satisfied (since each path $s_{1} c_{i} v w_{i}$ with $v \in I_{2}$ alternates); hence may assume that w_{i} is adjacent to s_{1}. Since $w_{i} s_{1} c_{i} s_{2}$ alternates, the arc between s_{2} and c_{i} is directed towards c_{i}. The remainder of the argument follows the lines of Subcase 1.1.

Proof of Theorem 4. Suppose to the contrary that a maximal stable set S shares no vertices with a maximal clique C. Since each P_{4} in G alternates, G is F_{1}-free; hence Lemma 1 guarantees the existence of two vertices, say s_{1} and s_{2}, in S such that each vertex in C is adjacent to at least one of s_{1} and s_{2}. Let I_{1} (resp. I_{2}) denote the set of all the vertices in C which are adjacent to s_{1} (resp. s_{2}) but nonadjacent to s_{2} (resp. s_{1}), and let I_{0} denote the set of all the vertices in C which are outside I_{1} and I_{2}. (Both I_{1} and I_{2} are nonempty, for otherwise C is not a maximal clique.) Since each P_{4} in G alternates, we may assume (switching s_{1} and s_{2} if necessary) that each arc between s_{1} and I_{1} is directed towards I_{1}, and each arc between s_{2} and I_{2} is directed towards s_{2}. By Lemma $3, C$ is not a maximal clique, a contradiction.

3. Complexity

Let us call a graph grillet if it has the property that each of its maximal stable sets meets each of its maximal cliques. A natural question is this: how difficult is it to recognize graphs which are not grillet? Obviously, this problem is in NP; we are inclined to believe that it is NP-complete. Our Theorem 2 implies that this problem can be solved in polynomial time for graphs which contain no subgraph isomorphic to F_{1} or \bar{F}_{1}.

If G happens to be not grillet then this fact cannot be certified by exhibiting a "forbidden" induced subgraph of G : every G is an induced subgraph of a grillet graph. To see this, let $C_{1}, C_{2}, \ldots, C_{k}$ be all the maximal cliques of G, add to G pairwise nonadjacent vertices $v_{1}, v_{2}, \ldots, v_{k}$, and connect v_{i} to all the vertices in C_{i} for each $1 \leqslant i \leqslant k$.

The related problem of recognizing pairs (G, S) such that G is a graph and S is a maximal stable set in G disjoint at least one maximal clique of G is NP-complete: we shall reduce the satisfiability problem into this problem. Given a boolean formula as a conjunction of clauses $C_{1}, C_{2}, \ldots, C_{k}$, consider the graph G whose vertex-set consists of pairwise disjoint stable sets $S_{1}, S_{2}, \ldots, S_{k}$ and S. Vertices in each S_{i} are labeled by the literals that occur in C_{i}; two vertices in distinct S_{i} 's are nonadjacent if and only if they are labeled by x and \bar{x} for some x; vertices of S are $v_{1}, v_{2}, \ldots, v_{k}$ and each v_{i} is adjacent to all the vertices in all S_{j} such that $j \neq i$. It is easy to see that S is disjoint from at least one maximal clique of G if and only if the formula is satisfiable.

Acknowledgment

I am very grateful to Professor Vašek Chvátal for his invaluable guidance and for the many hours he spent in teaching me and in writing the paper.

References

[1] C. Berge, Problems 9.11 and 9.12, in: I. Rival, ed., Graphs and Order (Reidel, Dordrecht) 583-584.
[2] P. Grillet, Maximal chains and antichains, Fund. Math. 65 (1969) 157-167.
[3] C.T. Hoáng and B.A. Reed, P_{4}-comparability graphs, Discrete Math. 74 (1989) 173-200.

[^0]: ${ }^{1}$ This work was supported in part by the Air Force Office of Scientific Research under grant AFOSR-890512B.

