DISCRETE MATHEMATICS

Discrete Mathematics 143 (1995) 259-268

Generalizations of Grillet's theorem on maximal stable sets and maximal cliques in graphs

Wenan Zang¹

RUTCOR-Rutgers Centre for Operations Research, Rutgers University, P.O. Box 5062, New Brunswick, NJ 08903, USA

Received 21 July 1993

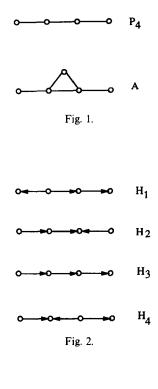
Abstract

Grillet established conditions on a partially ordered set under which each maximal antichain meets each maximal chain. Berge pointed out that Grillet's theorem can be stated in terms of graphs, made a conjecture that strengthens it, and asked a related question. We exhibit a counterexample to the conjecture and answer the question; then we prove four theorems that generalize Grillet's theorem in the spirit of Berge's proposals.

1. Results

Grillet [2] proved that in every partially ordered set containing no quadruple (a, b, c, d) such that

a < b, c < d, b covers c,

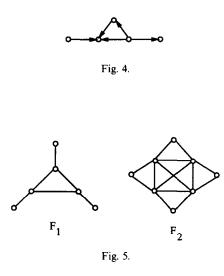

and the remaining three pairs of elements are incomparable,

each maximal antichain meets each maximal chain. (Throughout this paper, the adjective maximal is always meant with respect to set-inclusion rather than size.) Berge [1] pointed out that Grillet's theorem can be stated in terms of graphs rather than partially ordered sets: if a comparability graph has the property that every induced P_4 is contained in an induced A (see Fig. 1), then every maximal stable set meets each maximal clique. (The vertices of a comparability graph are the elements of a partially ordered set, with two vertices adjacent if and only if they are comparable.)

Then he went on to suggest possible generalizations of this statement. First, call a graph beautifully ordered if it has an acyclic orientation with no induced H_1 and no

¹ This work was supported in part by the Air Force Office of Scientific Research under grant AFOSR-89-0512B.

⁰⁰¹²⁻³⁶⁵X/95/\$09.50 © 1995—Elsevier Science B.V. All rights reserved SSDI 0012-365X(94)00019-F


induced H_2 (see Fig. 2). Clearly every comparability graph is beautifully ordered. Berge asked:

If a beautifully ordered graph has the property that every induced P_4 is contained in an induced A then does every maximal stable set meet each maximal clique?

The graph in Fig. 3 shows that the answer to the question is negative. Next, Berge made the following conjecture:

If G does not contain H_1 , H_2 , or H_3 as induced subdigraphs and if every induced H_4 can be embedded in an induced \tilde{A} (see Fig. 4) then every maximal stable set meets each maximal clique.

A counterexample to this conjecture is an orientation of the undirected graph with vertices $c_1, c_2, ..., c_7$ and $s_1, s_2, ..., s_7$ such that every two c_i 's are adjacent, no two s_i 's

are adjacent, and a c_i is adjacent to an s_j if and only if $i \neq j$. We direct each edge between c_i and c_j from c_i to c_j if and only if, with arithmetic modulo 7, j is one of i + 1, i + 2, i + 4; we direct each edge between s_i and c_j from s_i to c_j if and only if the edge between c_i and c_j is directed from c_i to c_j .

Note that no beautifully ordered graph contains a subgraph isomorphic to either of the graphs F_1 and F_2 shown in Fig. 5. Chvátal (personal communication) proposed the following conjecture as a variation on Berge's problem concerning beautifully ordered graphs:

Let G be a graph with no induced subgraph isomorphic to F_1 or \overline{F}_1 . Then each maximal stable set in G meets each maximal clique in G if and only if each P_4 in G extends into an A.

We shall prove two theorems that are weaker than Chvátal's conjecture but stronger than Grillet's theorem:

Theorem 1. Let G be a graph with no induced subgraph isomorphic to F_1 , \overline{F}_1 , or F_2 . Then each maximal stable set in G meets each maximal clique in G if and only if each P_4 in G extends into an A.

Theorem 2. Let G be a graph with no induced subgraph isomorphic to F_1 or \overline{F}_1 . Then each maximal stable set in G meets each maximal clique in G if and only if each P_4 in G extends into an A and each plump P_4 in G extends into a plump A (see Fig. 6).

In addition, we shall prove two theorems that generalize Grillet's theorem in the spirit of Berge's conjecture. The first of these theorems features the counterexample

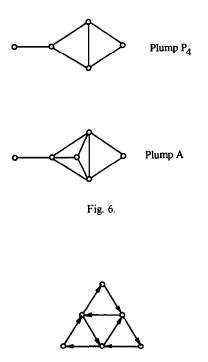


Fig. 7.

from Fig. 3; we shall refer to this directed graph as the *acyclic pyramid*; the *cyclic pyramid* featured in Theorem 4 is shown in Fig. 7.

Theorem 3. Let G be an oriented graph with no induced acyclic pyramid. If each P_4 in G extends into an \vec{A} , then each maximal stable set in G meets each maximal clique in G.

Theorem 4. Let G be an oriented graph with no induced cyclic pyramid. If each P_4 in G extends into an \tilde{A} , then each maximal stable set in G meets each maximal clique in G.

Note that the hypotheses of Theorems 3 and 4 imply that each P_4 in G is oriented as H_4 in Fig. 2. Acyclic oriented graphs in which each P_4 is oriented as H_4 were introduced and studied by Hoàng and Reed [3] under the name of P_4 -comparability graphs.

2. Proofs

Lemma 1. Let H be an F_1 -free graph whose set of vertices is partitioned into a stable set S and a clique C. If each vertex in C has some neighbor in S, then there must exist two vertices in S such that each vertex in C is adjacent to at least one of them.

Proof. We proceed by induction on the number of vertices in C. Let v be a vertex in C. The induction hypothesis guarantees the existence of two vertices u_1 and u_2 in S such that each vertex in C - v is adjacent to u_1 or u_2 . If v is adjacent to u_1 or u_2 , then we are done; otherwise, let u in S be a neighbor of v. If each vertex in C is adjacent to u_1 or u_1 or u then we are done; if each vertex in C is adjacent to u_2 or u then we are done; hence we may assume that some v_2 in C is adjacent neither to u_1 nor to u and that some v_1 in C is adjacent neither to u_2 , u_1 , u_2 , v_1 , v_2 , v induce an F_1 , a contradiction.

As usual, we shall let N(v) denote the set of all the neighbors of v and we shall set $N[v] = \{v\} \cup N(v)$.

Proof of Theorem 1. The "only if" part is trivial. To prove the "if" part, suppose to the contrary that a maximal stable set S shares no vertex with a maximal clique C. Let v_1, v_2 be two nonadjacent vertices outside C such that each vertex in C is adjacent to at least one of v_1, v_2 and such that, subject to this constraint, the size of $N(v_1) \cap N(v_2) \cap C$ is large as possible. (Such vertices exist by Lemma 1.)

Let I_1 (resp. I_2) denote the set of all the vertices in C which are adjacent to v_1 (resp. v_2) but nonadjacent to v_2 (resp. v_1), and let I_0 denote the set of all the vertices in C which are outside I_1 and I_2 . (Both I_1 and I_2 are nonempty, for otherwise C is not a maximal clique.)

Let w be a vertex outside $N[v_1] \cup N[v_2]$ such that w has neighbors in each of I_1 and I_2 and such that, subject to this constraint, the size of $N(w) \cap (I_1 \cup I_2)$ is as large as possible. (Such a vertex exists, since for each choice of u_1 in I_1 and u_2 in I_2 , there is an induced A with vertices v_1, u_1, u_2, v_2, w .) We shall distinguish between two cases.

Case 1: $I_1 \subseteq N(w)$ or $I_2 \subseteq N(w)$. Switching I_1 and I_2 if necessary, we may assume that $I_1 \subseteq N(w)$. Observe that each vertex in I_0 is adjacent to w (otherwise this vertex, v_1, v_2, w , and u_1 in I_1 , and any u_2 in $N(w) \cap I_2$ would induce an \overline{F}_1 , a contradiction). Hence each vertex in C is adjacent to at least one of w, v_2 and $|N(w) \cap N(v_2) \cap C| > |N(v_1) \cap N(v_2) \cap C|$, contradicting our choice of v_1, v_2 .

Case 2: $I_1 \not\subseteq N(w)$ and $I_2 \not\subseteq N(w)$. Let a_1 be a vertex in $I_1 - N(w)$ and let a_2 be a vertex in $I_2 - N(w)$. By assumption, the path $v_1a_1a_2v_2$ extends into an induced A; let v denote the fifth vertex of this A. Then vertex v is outside $C \cup \{v_1, v_2, w\}$. Now, v and w are nonadjacent (otherwise v_1, v_2, a_1, a_2, v, w would induce an F_1 , a contradiction). Now we shall distinguish between two subcases.

Subcase 2.1: $N(w) \cap I_1 \subseteq N(v)$ or $N(w) \cap I_2 \subseteq N(v)$. Switching I_1 and I_2 if necessary, we may assume that $N(w) \cap I_1 \subseteq N(v)$. Now we must have $N(w) \cap I_2 \subseteq N(v)$ (otherwise v_2, a_2, v, w along with any u_1 in $N(w) \cap I_1$ and any u_2 in $(N(w) \cap I_2) - N(v)$ would induce an $\overline{F_1}$ in G, a contradiction). Since $a_1 \in (N(v) \cap I_1) - N(w)$ (and $a_2 \in (N(v) \cap I_2) - N(w)$), vertex v contradicts our choice of w.

Subcase 2.2: $N(w) \cap I_1 \not\subseteq N(v)$ and $N(w) \cap I_2 \not\subseteq N(v)$. In this subcase, v_1, v_2, a_1, a_2, v , w along any nonneighbor of v in $N(w) \cap I_1$ and any nonneighbor of v in $N(w) \cap I_2$ induce a F_2 in G, a contradiction. \Box

Proof of Theorem 2. The "only if" part is trivial. To prove the "if" part, we proceed as in the proof of Theorem 1 until we arrive at Case 2. Let u_2 be a vertex in $N(w) \cap I_2$. By virtue of the hypothesis on the plump P_4 induced by v_1, v_2, a_1, u_2, a_2 , we get a vertex v such that $v_1, v_2, a_1, u_2, a_2, v$ induce a plump A in G. As in Case 2 of Theorem 1, v and w are nonadjacent; furthermore, each vertex in $N(w) \cap I_1$ must be adjacent to v (otherwise this vertex along with v_1, a_1, u_2, v , w would induce an F_1). The rest is the same as Subcase 2.1 of Theorem 1. \Box

Theorems 3 and 4 concern oriented graphs. In their proofs, we still let N(v) stand for the set of all the neighbors of v (i.e. the set of all the in-neighbors and all the out-neighbors). Again, $N[v] = \{v\} \cup N(v)$.

Proof of Theorem 3. The argument follows the lines of the proof of Theorem 1. For each choice of u_i in I_i , the path $v_1u_1u_2v_2$ alternates; hence (switching subscripts if necessary) we may assume that each arc between v_1 and I_1 is directed towards I_1 and that each arc between v_2 and I_2 is directed towards v_2 . The choice of w is a little different: w is a vertex outside $N[v_1] \cup N[v_2]$ such that there is at least one arc directed from w to I_1 , there is at least one arc directed from I_2 to w, and such that, subject to these constraints, the size of $N(w) \cap (I_1 \cup I_2)$ is as large as possible. (Such a vertex exists, since for each choice of u_1 in I_1 and u_2 in I_2 , there is an induced \vec{A} with vertices v_1, u_1, u_2, v_2, w .) The subsequent case analysis goes as in the proof of Theorem 1 with minor modifications: (i) the fact that G is F_1 -free and F_2 -free follows from the assumption that every P_4 in G alternates, (ii) if I_1 and I_2 are switched in Subcase 2.1 then the directions of all arcs are reversed, (iii) the pyramid in Case 1 can be found by choosing u_1 (resp. u_2) in I_1 (resp. $N(w) \cap I_2$) so that the arc between u_1 (resp. u_2) and w is directed towards u_1 (resp. w); the pyramid found in Subcase 2.1 can be forced to be acyclic by the fact that both the arc between v_2 and u_2 and the arc between v_2 and a_2 are directed towards v_2 . \Box

Lemma 2. Let G be an oriented graph with no induced cyclic pyramid; assume that each P_4 in G extends into an \vec{A} . Let C be a clique in G and let s_1 , s_2 be two nonadjacent vertices outside C such that, with $C_1 = N(s_1) \cap C$ and $C_2 = N(s_2) \cap C$:

- (a) C_1 and C_2 are nonempty, disjoint, and their union is C;
- (b) all arcs between s_1 and C_1 are directed from s_1 to C_1 ;
- (c) all arcs between s_2 and C_2 are directed from C_2 to s_2 .

Then there exists a vertex w outside $N[s_1] \cup N[s_2]$ such that

- (a) w is adjacent to all the vertices in C;
- (b) at least one arc is directed from w to C_1 ;
- (c) at least one arc is directed from C_2 to w.

Proof. We apply induction on the number of vertices in C. If $C_1 = \{u_1\}$ and $C_2 = \{u_2\}$ then the fifth vertex of any \vec{A} that contains the path $s_1u_1u_2s_2$ can play the

role of w. So we proceed to the induction step and assume, without loss of generality, that C_1 includes at least two vertices.

Let $u_1, u_2, ..., u_m$ be the vertices of C_1 . Then, for each u_i , the induction hypothesis guarantees the existence of vertex w_i outside $N[s_1] \cup N[s_2]$ such that the conclusion of Lemma 2 holds with $C - u_i$ in place of C and with $C_1 - u_i$ in place of C_1 . We may assume that w_i and u_i are nonadjacent for all *i* (else we are done with $w = w_i$). Now the mapping that assigns w_i to u_i is one-to-one. Note that no w_i is adjacent to another w_j (else at least one of the paths $w_j w_i u_j s_1$ and $w_i w_j u_i s_1$ would not alternate, a contradiction). It follows that C_1 contains no cyclic triangle (else the cyclic triangle, say $u_i u_j u_k u_i$, would extend by w_i, w_j, w_k to an induced cyclic pyramid, a contradiction), and so C_1 is a transitive tournament. Without loss of generality, suppose that $u_1, u_2, ..., u_m$ are enumerated in such an order that each edge $u_i u_j$ with i < j is directed from u_i to u_j . Since each path $w_m u_i u_m w_i$ with i < m alternates, each arc between $C_1 - u_m$ and w_m is directed towards w_m , a contradiction. \Box

Lemma 3. Let G be an oriented graph with no induced cyclic pyramid; assumed that each P_4 in G extends into an \tilde{A} . Let C be a clique in G and let s_1, s_2 be two nonadjacent vertices outside C such that, with $C_1 = N(s_1) \cap C$, $C_2 = N(s_2) \cap C$, and $I_1 = C_1 - C_2$, $I_2 = C_2 - C_1$:

- (a) $I_1 \neq \emptyset$, $I_2 \neq \emptyset$, and $C_1 \cup C_2 = C$.
- (b) all arcs between s_1 and I_1 are directed from s_1 to I_1 ;
- (c) all arcs between s_2 and I_2 are directed from I_2 to s_2 .
- Then some vertex w outside C satisfies at least one of the following two conditions:
 - (1) w is adjacent to all the vertices of C and nonadjacent to s_1 ; furthermore, at least one arc is directed from I_2 to w.
 - (2) w is adjacent to all the vertices of C and nonadjacent to s_2 ; furthermore, at least one arc is directed from I_1 to w.

Proof. We shall use induction on the number of vertices in I_0 , the set of all the vertices in C which are outside I_1 and I_2 . Since (1) follows directly from Lemma 2 when I_0 is empty, we proceed to the induction step.

Let $c_1, c_2, ..., c_s$ be the vertices in I_0 . For each c_i , the induction hypothesis guarantees the existence of a w_i which satisfies (1) or (2) in place of w (with $C - c_i$ in place of C). Note that $w_i \notin I_0$, and so $w_i \neq c_i$ (and so $w_i \notin C$). We may assume that w_i and c_i are nonadjacent for all *i* (else we are done with $w = w_i$).

Fact 1. Each arc between s_1 and I_0 is directed from s_1 to I_0 .

Proof. Suppose to the contrary that there is an arc directed from some c_i to s_1 . Then s_1 and w_i must be nonadjacent (otherwise s_2 and w_i would be nonadjacent and, for any vertex v in I_2 , at least one of paths $s_1w_ivs_2$ and $w_is_1c_is_2$ would fail to alternate, a contradiction).

If w_i satisfies (1) in place of w (and with $C - c_i$ in place of C), then there is an arc directed from some v in I_2 to w_i and path $s_1c_ivw_i$ does not alternate, a contradiction. Thus w_i must satisfy (2) in place of w (and with $C - c_i$ in place of C); in particular, there is an arc directed from some u in I_1 to w_i . But then s_1, s_2, u, c_i, w_i along with an arbitrary vertex in I_2 induce a cyclic pyramid, a contradiction. \Box

Proof of Lemma (continued). For each *i*, write $w_i \in W_1$ if w_i is nonadjacent to s_1 and $w_i \in W_2$ otherwise; set $D_1 = \{c_j \in I_0 | w_j \in W_1\}$ and $D_2 = \{c_j \in I_0 | w_j \in W_2\}$; note that each vertex in W_2 is nonadjacent to s_2 .

Fact 2. Each arc between s_2 and D_2 is directed from s_2 to D_2 .

Proof. Directly from Fact 1 and the fact that all paths $s_2c_is_1w_i$ with $c_i \in D_2$ alternate. \Box

Fact 3. If $W_k \neq \emptyset$ (and k = 1 or k = 2) then there is some w_i in W_k such that each arc between w_i and D_k is directed towards D_k .

Proof. Note that no w_i in W_k is adjacent to another w_j in W_k (else at least one of the paths $w_j w_i c_j s_1$ and $w_i w_j c_i s_1$ would not alternate, a contradiction). It follows that D_k contains no cyclic triangle (else the cyclic triangle, say $c_i c_j c_i c_i$, would extend by w_i , w_j , w_i to an induced cyclic pyramid, a contradiction), and so D_k is a transitive tournament. Without loss of generality, suppose that the elements of D_k are c_1, c_2, \ldots, c_r and that each edge $c_i c_j$ with i < j is directed from c_i to c_j . Since each path $w_1 c_i c_1 w_i$ with i > 1 alternates, each arc between D_k and w_1 is directed towards D_k . \Box

Fact 4. There is some w_i in $W_1 \cup W_2$ such that each arc between w_i and I_0 is directed towards I_0 .

Proof. Fact 3 allows us to assume that $W_1 \neq \emptyset$ and $W_2 \neq \emptyset$. By Fact 3 (with s = 1), there is a vertex w_i in W_1 such that each arc between w_i and D_1 is directed from w_i to D_1 . Note that w_i is not adjacent to s_2 (else, for any u in I_1 , at least one of the paths $s_1 u w_i s_2$ and $s_1 c_i s_2 w_i$ would not alternate, a contradiction). For each vertex c_j in D_2 , the arc between w_i and c_j is directed towards c_j : consider path $w_i c_j s_1 w_j$ if w_i and w_j are nonadjacent and path $s_2 c_j w_i w_j$ if w_i and w_j are adjacent. \Box

Proof of Lemma 3 (conclusion). With w_i as in Fact 4, we shall distinguish between the following two cases:

Case 1: w_i satisfies (1) in place of w (and with $C - c_i$ in place of C). Note that w_i is not adjacent to s_2 (else, for any u in I_1 , at least one of the paths $s_1 u w_i s_2$ and $s_1 c_i s_2 w_i$ would not alternate, a contradiction). Furthermore, for each v in I_2 , the arc between w_i and v is directed towards w_i : consider the path $s_1 c_i v w_i$.

266

Subcase 1.1.: The arc between s_2 and c_i is directed towards c_i . Note that, for each u in I_1 , the arc between u and w_i is directed towards w_i (consider the path $s_2c_iuw_i$). By Lemma 2 with s_2 in place of s_1 , w_i in place of s_2 , c_i in place of C_1 , and I_1 in place of C_2 , we find a vertex w outside $N[s_2] \cup N[w_i]$ such that w is adjacent to all the vertices in $\{c_i\} \cup I_1$; the arc between w and c_i is directed towards c_i ; for some u in I_1 , the arc between w and c_i is directed towards c_i ; for some u in I_1 , the arc between u and w is directed towards w. For each c_j in $I_0 - c_i$, the arc between c_j and w_i is directed towards c_j (by our choice of w_i), and so c_j must be adjacent to w (else $wc_ic_jw_i$ would not alternate, a contradiction); each v in I_2 must also be adjacent to w (else s_2vuw would not alternate, a contradiction). Hence w satisfies (2).

Subcase 1.2: The arc between s_2 and c_i is directed towards s_2 . Note that, for each u in I_1 , the arc between u and w_i is directed towards u (consider the path $s_2c_iuw_i$). By Lemma 2 with w_i in place of s_2 , c_i in place of C_1 , and I_2 in place of C_2 , we find a vertex w outside $N[s_1] \cup N[w_i]$ such that w is adjacent to all the vertices in $\{c_i\} \cup I_2$; p the arc between w and c_i is directed towards c_i ; for some v in I_2 , the arc between v and w_i is directed towards w_i . For each x in $I_1 \cup (I_0 - \{c_i\})$, the arc between x and w_i is directed towards x, and so x must be adjacent to w (else wc_ixw_i would not alternate, a contradiction). Hence w satisfies (1).

Case 2: w_i satisfies (2) in place of w (and with $C - c_i$ in place of C). If w_i is not adjacent to s_1 then the condition of Case 1 is satisfied (since each path $s_1c_ivw_i$ with $v \in I_2$ alternates); hence may assume that w_i is adjacent to s_1 . Since $w_is_1c_is_2$ alternates, the arc between s_2 and c_i is directed towards c_i . The remainder of the argument follows the lines of Subcase 1.1. \Box

Proof of Theorem 4. Suppose to the contrary that a maximal stable set S shares no vertices with a maximal clique C. Since each P_4 in G alternates, G is F_1 -free; hence Lemma 1 guarantees the existence of two vertices, say s_1 and s_2 , in S such that each vertex in C is adjacent to at least one of s_1 and s_2 . Let I_1 (resp. I_2) denote the set of all the vertices in C which are adjacent to s_1 (resp. s_2) but nonadjacent to s_2 (resp. s_1), and let I_0 denote the set of all the vertices in C which are adjacent to s_1 (resp. s_2) but nonadjacent to s_2 (resp. s_1), and let I_0 denote the set of all the vertices in C which are outside I_1 and I_2 . (Both I_1 and I_2 are nonempty, for otherwise C is not a maximal clique.) Since each P_4 in G alternates, we may assume (switching s_1 and s_2 if necessary) that each arc between s_1 and I_1 is directed towards I_1 , and each arc between s_2 and I_2 is directed towards s_2 . By Lemma 3, C is not a maximal clique, a contradiction.

3. Complexity

Let us call a graph *grillet* if it has the property that each of its maximal stable sets meets each of its maximal cliques. A natural question is this: how difficult is it to recognize graphs which are *not* grillet? Obviously, this problem is in NP; we are inclined to believe that it is NP-complete. Our Theorem 2 implies that this problem can be solved in polynomial time for graphs which contain no subgraph isomorphic to F_1 or $\overline{F_1}$.

If G happens to be not grillet then this fact cannot be certified by exhibiting a "forbidden" induced subgraph of G: every G is an induced subgraph of a grillet graph. To see this, let $C_1, C_2, ..., C_k$ be all the maximal cliques of G, add to G pairwise nonadjacent vertices $v_1, v_2, ..., v_k$, and connect v_i to all the vertices in C_i for each $1 \le i \le k$.

The related problem of recognizing pairs (G, S) such that G is a graph and S is a maximal stable set in G disjoint at least one maximal clique of G is NP-complete: we shall reduce the satisfiability problem into this problem. Given a boolean formula as a conjunction of clauses $C_1, C_2, ..., C_k$, consider the graph G whose vertex-set consists of pairwise disjoint stable sets $S_1, S_2, ..., S_k$ and S. Vertices in each S_i are labeled by the literals that occur in C_i ; two vertices in distinct S_i 's are nonadjacent if and only if they are labeled by x and \bar{x} for some x; vertices of S are $v_1, v_2, ..., v_k$ and each v_i is adjacent to all the vertices in all S_j such that $j \neq i$. It is easy to see that S is disjoint from at least one maximal clique of G if and only if the formula is satisfiable.

Acknowledgment

I am very grateful to Professor Vašek Chvátal for his invaluable guidance and for the many hours he spent in teaching me and in writing the paper.

References

- [1] C. Berge, Problems 9.11 and 9.12, in: I. Rival, ed., Graphs and Order (Reidel, Dordrecht) 583-584.
- [2] P. Grillet, Maximal chains and antichains, Fund. Math. 65 (1969) 157-167.
- [3] C.T. Hoáng and B.A. Reed, P₄-comparability graphs, Discrete Math. 74 (1989) 173-200.