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The porous structure of a scaffold determines the ability of bone to regenerate within this environment.
In situations where the scaffold is required to provide mechanical function, balance must be achieved
between optimizing porosity and maximizing mechanical strength. Supercritical CO2 foaming can pro-
duce open-cell, interconnected structures in a low-temperature, solvent-free process. In this work, we
report on foams of varying structural and mechanical properties fabricated from different molecular
weights of poly(DL-lactic acid) PDLLA (57, 25 and 15 kDa) and by varying the depressurization rate. Rapid
depressurization rates produced scaffolds with homogeneous pore distributions and some closed pores.
Decreasing the depressurization rate produced scaffolds with wider pore size distributions and larger,
more interconnected pores. In compressive testing, scaffolds produced from 57 kDa PDLLA exhibited typ-
ical stress–strain curves for elastomeric open-cell foams whereas scaffolds fabricated from 25 and 15 kDa
PDLLA behaved as brittle foams. The structural and mechanical properties of scaffolds produced from
57 kDa PDLLA by scCO2 ensure that these scaffolds are suitable for potential applications in bone tissue
engineering.

� 2011 Acta Materialia Inc. Published by Elsevier Ltd.Open access under CC BY license. 
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1. Introduction

The treatment of critically sized bone defects currently involves
autograft or allograft transplantation or implantation procedures.
The shortage of organ donors coupled with the risk of rejection
and disease and the difficulties inherent with artificial implants
have led to a great demand for tissue engineered strategies [1,2].
These strategies often use scaffolds, in combination with cells
and/or bioactive compounds, to generate new tissue [3]. Consider-
ations for scaffold design are naturally complex and involve not
only mechanical and structural constraints but also material com-
position, degradation properties and products, and surface proper-
ties of the scaffold. Additionally, the processing technique must
produce scaffolds that can match irregular shapes and sizes of bone
defects. The scaffold must promote cell adhesion and growth, and
degrade over time into non-toxic components.

Synthetic biodegradable polymers such as poly(lactic acid) (PLA)
and poly(lactic acid-co-glycolic acid) (PLGA) copolymers are com-
monly used in scaffold fabrication as they are approved for certain
clinical applications by the US Food and Drug Administration
(FDA), degrade in vivo and the degradation products are processed
by normal metabolic pathways [4–6]. Scaffolds may be produced
lsevier Ltd.
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from these polymers by a variety of methods, including solvent cast-
ing/salt leaching [7–9], phase separation [10,11] and rapid prototyp-
ing/solid free-form fabrication [12–15]. These conventional
methods, however, generally employ elevated processing tempera-
tures or the use of solvents, which prohibit the incorporation of bio-
active molecules in the scaffolds. To overcome these limitations,
carbon dioxide (CO2) has been used as a plasticizer in gas foaming
to produce three-dimensional (3-D) polymer constructs [16–20].

CO2 is a non-toxic, non-flammable, inexpensive reagent that is
available in high purity. At a temperature and pressure above its crit-
ical point (Tc = 31.1 �C and Pc = 73.8 bar) carbon dioxide is a super-
critical fluid, with properties of both gaseous and liquid states
[21,22]; the liquid-like density provides much increased solvent
power, whilst the gas-like viscosity leads to high rates of diffusion
[23]. The addition of supercritical CO2 (scCO2) to amorphous poly-
mers can produce dramatic changes in the glass transition temper-
ature (Tg), viscosity, interfacial tension and permeability of the
polymer [24], and result in the production of foamed materials.
Supercritical carbon dioxide (scCO2) foaming is a well-documented
process [20,25–33], with two key stages: (i) a soak stage and (ii) a
depressurization stage [34]. During the soak, the glassy polymer is
saturated with scCO2 at elevated pressures. This acts as a plasticizer,
lowering the polymer Tg, and consequently the polymer state
becomes rubbery. In the depressurization stage, with temperature
constant, the pressure drop from the equilibrium solution state
license. 
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induces bubble nucleation; these nuclei grow becoming pores. As
the pressure is decreased, the concentration of the plasticizer is also
decreased. The polymer Tg increases and vitrification occurs with the
porous structure fixed in the glassy state.

Open-cell, interconnected foamed structures are produced by
this solvent-free, low-temperature process [35–38]. Drug mole-
cules and proteins can be encapsulated within these constructs
as protein structure and activity are retained during processing.
Successful applications of this technique include the controlled re-
lease of proteins [39,40], promotion of bone formation in vitro and
in vivo [41,42] and the induction of angiogenesis in vitro [43].

Scaffold structure is a vital concern in bone tissue engineering.
Careful balance must be maintained between optimizing porosity
and maximizing mechanical properties in situations where the
scaffold may be required to substitute the mechanical function of
the tissue that it aims to repair [44]. Whilst highly porous scaffolds
(>90%) are needed to ensure cell delivery and tissue ingrowth
[45,46], porosities not exceeding 80% are recommended for poly-
meric scaffolds for implantation into orthopaedic defects [47]. A
pore size greater than 100 lm is the minimum recommended for
vascularization [48], although more recent in vitro and in vivo
studies have suggested that pore sizes and pore interconnections
>200 lm may be required [49]. The permeability and interconnec-
tivity of the scaffold are also crucial in determining cell infiltration
and successful tissue ingrowth [15].

Recent work on a series of PLGA polymers has shown that mod-
ifying polymer composition, molecular weight and foaming pro-
cess parameters can produce scaffolds with tailored porosities
and pore sizes [24]. In this paper, a series of different molecular
weights of poly(DL-lactic acid) (PDLLA) polymers were employed
for a detailed investigation of the effect of the depressurization rate
and molecular weight upon scaffold characteristics. This study
sought to elucidate the effects of the processing parameters on
the porosity, pore size, interconnectivity and mechanical proper-
ties of foamed scaffolds as potential devices for bone tissue
engineering.

2. Experimental

2.1. Materials

In this study a series of amorphous PDLLA polymers with differ-
ent inherent viscosity were purchased from Purac (Gorinchem,
Netherlands) and Boehringer Ingelheim (Resomer� product)
(Ingelheim, Germany), and used as received (Table 1). The
weight-average molecular weights (Mw) and polydispersity (PDI)
of the polymers were determined using gel permeation chroma-
tography (GPC) (PL-120, Polymer Labs) with a refractive index
(RI) detector, as described in Ref. [24]. The Tg of the polymers
was determined with a TA2920 differential scanning calorimeter.
A heating rate of 10 �C min�1 was used with a test range of �10
to 120 �C. Food grade CO2 was supplied by Cryoservice (Worcester,
UK) and used without purification.

2.2. Scaffold fabrication

To each well of a Teflon mould was add 130 ± 3 mg of poly-
mer; the mould contained 12 wells, each with a diameter and
Table 1
Polymer characteristics.

Polymer Resource Form Mw (kDa

PDLLA (57 kDa) Purac Granular 57
PDLLA (25 kDa) Resomer� Powder 25.7
PDLLA (15 kDa) Resomer� Powder 15
height of 10 mm (a similar mould is shown in Ref. [35]). The
moulds, which were made in-house, had no lid and had a
detachable base to facilitate easy removal of scaffolds post-
fabrication.

The mould was then placed inside a 60 ml clamp sealed stain-
less steel high-pressure autoclave (made in-house), which was
equipped with a pressure transducer to monitor pressure and a
heating jacket with a CAL 3300 temperature controller (CAL Con-
trols, Brighton, UK). HiP (High Pressure Equipment Company,
Pennsylvania, USA) high-pressure valves and Swagelok (Ohio,
USA) tubing and fittings were used to connect the system. The
CO2 was compressed using a high pressure PM101 pump (New
Ways of Analytics, Lörrach, Germany).

The high-pressure vessel was heated to the desired tempera-
ture (T) prior to the introduction of CO2. During the fill time,
CO2 was introduced until the desired pressure (P) was reached.
This pressure was maintained during the soak time; the vessel
was then depressurized (at a constant rate) to ambient pressure
throughout the vent time. The pressure of the vessel in each of
the three stages of scaffold fabrication was controlled by a
back-pressure regulator (Bronkhorst, Ruurlo, Netherlands) and
associated computer software. In this work the desired tempera-
ture and pressure were 35 �C and 232 bar, respectively. The por-
ous scaffolds fabricated had diameters of approximately 10 mm
and were 5–10 mm in height; a non-porous skin surrounded each
scaffold.
2.3. Scaffold characterization

Scaffolds were characterized by micro-X-ray computed
tomography (lCT; Skyscan 1174, Skyscan, Aartselaar, Belgium).
The lCT was originally designed for non-destructive analysis of
unprocessed surgical bone biopsies, but has been adapted for
the analysis of polymeric scaffolds [50]. Prior to scanning, the
non-porous skin on the scaffolds was removed and scaffolds
were cut into uniform cubes, with width, length and height of
5 ± 0.5 mm. The cubic scaffolds were then mounted on a stage
at a height of 3 mm within the imaging system and scanned.
Measurements were obtained at a voltage of 40 kV, a current
of 800 lA and a voxel resolution of 8.9 lm. The transmission
images were reconstructed using Skyscan supplied software
(NRecon); the resulting 16 bit, 2-D images were saved in tagged
image file format (tiff). Quantitative analysis of porosity and
pore architecture was obtained using direct morphometry calcu-
lations in the Skyscan CTAn software package. The mean pore
diameter was calculated by filling maximal spheres into the
pores with a distance transformation, as described by Hildebrand
and Rüegsegger [51].

In this study, interconnectivity was quantified as the fraction of
the pore volume in a scaffold that was accessible from the outside
through openings of a certain minimum size; quantitative analysis
and a 2-D representation of the process are provided in Ref. [52]. A
three-dimensional ‘‘shrink wrap’’ was performed using the Skyscan
analysis software to shrink the outside boundary of the volume of
interest (VOI) in a scaffold through any openings whose size was
equal to or larger than the connection diameter chosen. Connection
diameters of 2, 4, 8, 12, 16 and 20 times the voxel size were used in
) Inherent viscosity (dl g�1) PDI Tg (�C)

0.5 1.87 46.9
0.25–0.35 1.70 47.2
0.16–0.25 2.34 41.8
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Fig. 1. Effect of depressurization rate on the morphology of PDLLA (Mw = 57 kDa) scaffolds: 2-D slices perpendicular to the direction of foaming (first column), 3-D lCT
reconstructions (second column) and pore size distributions (third column). Scaffolds were created with depressurization rates (dP/dt) of (A) 23.2 bar min�1, (B)
7.7 bar min�1, (C) 5.2 bar min�1 and (D) 3.9 bar min�1. Scale bar = 1 mm.
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this study to give a range of 17–177 lm. Interconnectivity was cal-
culated as follows [53]:

Interconnectivity ¼ V � V shrinkwrap

V � V s

where V is the total volume of the VOI, Vshrinkwrap is the volume of
the VOI after shrink-wrap processing and Vs is the volume of scaf-
fold material.

Compression testing was performed on cubic scaffolds (cut as
described above) using the Texture Analyser TA. HD plus (Stable
Micro Systems Ltd., Surrey, UK) fitted with a 50 kg load cell. Scaf-
folds were compressed to a total strain of 60% using a compression
speed of 0.01 mm s�1. The compression tests were undertaken at
room temperature and applied to the vertically oriented scaffolds,
i.e. in the direction of foaming.

The elastic collapse stress (r�el), elastic collapse strain (e�el) and
ultimate stress (r�ult) were calculated for each compression test.
The slope of the collapse plateau (Dr/De) was also calculated.
The Young’s modulus (linear elastic modulus, E⁄) was calculated
from linear regression on the linear-elastic region of the
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Fig. 2. Effect of depressurization rate on the morphology of PDLLA (Mw = 25 kDa) scaffolds: 2-D slices perpendicular to the direction of foaming (first column), 3-D lCT
reconstructions (second column) and pore size distributions (third column). Scaffolds were created with depressurization rates (dP/dt) of (A) 23.2 bar min�1, (B)
7.7 bar min�1, (C) 5.2 bar min�1 and (D) 3.9 bar min�1. Scale bar = 1 mm.
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stress–strain compression profile. r�el and e�el were determined
from the intersection of E⁄ and collapse plateau. The compressive
strength was the stress produced at 60% strain, i.e. the ultimate
stress. The limiting strain of open-cell foamed structures can be
calculated if the porosity of the structure is known [54]; an average
porosity of 70% (previously observed in foamed scaffolds) was
used, which gave rise to the limiting strain of 60% utilized in this
work. A minimum of three samples for each foaming condition
were analysed and average values (± standard deviation) are re-
ported. Statistical analysis was performed using GraphPad Instat
statistical analysis software version 3.06. All values were tested
for normality and compared statistically using a Tukey–Kramer
multiple comparisons test. Statistical significance between data
sets is indicated by � where p < 0.001.
3. Results and discussion

ScCO2 foaming of polymers produces 3-D porous scaffolds
whose structure (porosity, pore size distribution and interconnec-
tivity) depends upon the process parameters [24,37]. During the
soak, the polymer absorbs CO2 as a function of the temperature,
pressure and time, and becomes plasticized. In the depressuriza-
tion stage, bubble nucleation is induced by supersaturation caused
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Fig. 3. Effect of depressurization rate on the morphology of PDLLA (Mw = 15 kDa) scaffolds: 2-D slices perpendicular to the direction of foaming (first column), 3-D lCT
reconstructions (second column) and pore size distributions (third column). Scaffolds were created with depressurization rates (dP/dt) of (A) 23.2 bar min�1, (B)
7.7 bar min�1, (C) 5.2 bar min�1 and (D) 3.9 bar min�1. Scale bar = 1 mm.
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by a sudden pressure drop from the equilibrium solution state [23].
The activation energy that must be overcome in order to create sta-
ble nuclei depends on the temperature, concentration gradient and
pressure gradient [34,55]. In this study, a heating jacket was used
to maintain a set temperature during the depressurization stage
and nucleation was forced to occur as a result of the pressure drop.
The objective of this work was to investigate the effect of depres-
surization rate (dP/dt) upon the physical morphology and mechan-
ical integrity of scaffolds formed from different molecular weights
of PDLLA.
The images in Figs. 1–3 show the morphology of the foamed scaf-
folds at different depressurization rates. ScCO2 foaming of 57 kDa
PDLLA produced homogeneous structures with narrow pore size dis-
tributions (Fig. 1). The pore size distribution was wider at lower
depressurization rates (5.2 and 3.9 bar min�1), as previously ob-
served in foaming of amorphous PLGA [24] and a highly crystalline
random co-polymer of x-pentadecalactone (PDL) and e-caprolac-
tone (CL) (poly(PDL-CL)) [34]. During the depressurization stage,
bubble nucleation is accompanied by and competes with diffusion
of gas in the plasticized polymer. This diffusion results in pore



Fig. 4. Effect of depressurization rate on the porosity, pore size and strut size of
scaffolds fabricated from 57, 25 and 15 kDa PDLLA with depressurization rates (dP/
dt) of 23.2, 7.7, 5.2 and 3.9 bar min�1.

Fig. 5. Interconnected pore space as a function of minimum connection diameter of
scaffolds created at depressurization rates (dP/dt) of (A) 23.2 bar min�1

and(B)5.2 bar min�1. 57 kDa scaffolds are represented by square symbols, 25 kDa
by circular symbols and 15 kDa by triangular symbols, with error bars (n = 5)
providing mean and standard deviations.
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growth. If the depressurization rate is high (fast venting), then nucle-
ation is rapid and a large number of nucleation sites are produced.
Diffusion effects are negligible, giving rise to a homogeneous pore
size distribution which may contain small closed pores [37]. At lower
depressurization rates (slower venting), the pores that are initially
nucleated will be significantly larger than others due to greater dif-
fusion opportunities, creating a wider pore size distribution. There is
more time for both pore growth and coalescence, generating larger,
more connected pores, as can be observed in the comparison of inter-
connectivity with vent rate, shown in Fig. 5.

No statistically significant differences were observed in the
porosities and average pore sizes of the foamed 57 kDa PDLLA scaf-
folds fabricated with decreased depressurization rates (Fig. 4). An
increased strut size was observed between 23.2 and 3.9 bar min�1

venting rates. There was no increase in porosity and average pore
size between depressurization rates of 5.2 and 3.9 bar min�1, indi-
cating that a plateau had been reached [37].

Scaffolds produced from 25 kDa PDLLA were generally more het-
erogeneous in structure than those produced from 57 kDa PDLLA;
wider pore size distributions were achieved at each depressuriza-
tion rate (Fig. 2), with the exception of 3.9 bar min�1. The pore size
distribution was wider at lower depressurization rates, as can be
observed at 7.7 and 5.2 bar min�1 compared to 23.2 bar min�1. At
the depressurization rate of 23.2 bar min�1, rapid nucleation and
minimal opportunities for diffusion appear to produce a more
homogeneous pore size distribution. As observed in the 57 kDa
foams, more connected pores were formed with 25 kDa at lower
depressurization rates due to increased opportunities for diffusion,
pore growth and coalescence (Fig. 5).

Depressurization rate dramatically affected the structure of
scaffolds fabricated with 15 kDa PDLLA (Fig. 3). Akin to 57 and
25 kDa PDLLA, the most homogeneous pore size distribution was
produced at the highest depressurization rate of 23.2 bar min�1,
with many nucleation sites produced during this rapid vent. De-
creased depressurization rates (slower vents) produced much
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wider pore size distributions due to diffusion, pore growth and
coalescence. The porosity, average pore size and strut size of the
foamed 15 kDa PDLLA scaffolds increased with decreased depressur-
ization rate (Fig. 4). It was only possible to cut the scaffold pro-
duced at 23.2 bar min�1 into the cubic structure used for
mechanical testing; scaffolds formed at depressurization rates of
5.2 and 3.9 bar min�1 were very fragile, with open structures, as
can be seen in Fig. 3(C and D).

The critical parameters for controlling the development of
supercritical foamed scaffolds are the concentration of CO2 in the
polymer and the rate of CO2 escaping from the polymer [56]. These
parameters are inextricably linked to the solubility of CO2 in the
polymers, which in turn is dependent upon the morphology and
molecular structure of the polymers [24,57]. Thus, the molecular
weight and polydispersity (and hence viscosity) of the three poly-
mers studied in this work influence the structure of the foam
developed. During the polymer expansion phase, long polymer
chains (high molecular weight) may entangle to lock CO2 in; the
short chains (low molecular weight) allow much easier escape of
CO2, which promotes pore growth. This can be seen in Fig. 4, where
the pore size of the scaffolds decreased with increased molecular
weight; a similar effect was previously observed with PLGA scaf-
folds [24]. In particular, scaffolds produced from 15 kDa PDLLA
(the lowest molecular weight) had much larger pores and fragile
structures.
Scaffolds produced at depressurization rates of 23.2 and
5.2 bar min�1 were analysed for interconnectivity using the
‘‘shrink wrap’’ plugin in the Skyscan software. Interconnectivity
was quantified as the fraction of pore volume of the scaffold that
was accessible from the outside through openings of a certain min-
imum diameter; a range of 17–177 lm was used in this work.
Polymer scaffolds fabricated with a faster depressurization rate
(Fig. 5A: 23.2 bar min�1) had lower interconnectivity values, in
keeping with the homogeneous pore size distributions shown in
Figs. 1–3 obtained when diffusion effects are negligible. Closed
pores appear to be present in both the 57 and 25 kDa scaffolds;
there was a sharp decrease in interconnectivity when the mini-
mum connection diameter was increased above 75 lm. At the low-
er depressurization rate (Fig. 5B: 5.2 bar min�1) the additional time
for growth and coalescence has produced more connected pores
for each of the scaffold types. In particular, the high interconnectiv-
ity values of the 15 kDa scaffolds reflect the fragile, open structures
obtained.

Supercritical processing can produce foams with low intercon-
nectivity [16,20], and in some cases it was been necessary to put
salt particles in and leach them out to improve pore interconnec-
tivity [8]. Silica particles have also been used [58] to enhance pore
interconnectivity of PLA scaffolds. In this work, the addition of salt
or silica was not required as highly connected scaffolds could be
achieved by optimizing processing conditions.



Fig. 7. SEM images of foamed scaffolds before and after compression to 60% strain. Images show the morphology of 57 and 25 kDa scaffolds fabricated with a
depressurization rate (dP/dt) of 23.2 bar min�1 (A, C) before and (B, D) after compression, and 57 and 25 kDa scaffolds fabricated with a depressurization rate (dP/dt) of
5.2 bar min�1 (E, G) before and (F, H) after compression. Magnification 30�; scale bar = 500 lm.
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Fig. 8. Effect of depressurization rate on the Young’s modulus and elastic collapse
stress of scaffolds fabricated from 57, 25 and 15 kDa PDLLA with depressurization
rates (dP/dt) of 23.2 and 5.2 bar min�1.
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The mechanical properties of foamed structures depend on two
sets of parameters: those that describe the geometric structure of
the foam and those that describe the intrinsic material properties
of the foam. The former set includes the size and shape of foam
cells, the way in which material is distributed between cell edges
and faces, and the relative density; the latter includes the material
density, Young’s modulus, plastic yield and fracture strengths. In
this work, the mechanical properties of the foamed scaffolds were
characterized by compression tests; results are shown for the two
depressurization rates (23.2 and 5.2 bar min�1) that produced the
most obvious changes in physical morphology.

Thermoplastic polymers such as PDLLA and PLGA can produce
foams [54,59] which present different stress–strain curves upon
compression. Scaffolds fabricated from 57 kDa PDLLA exhibited typ-
ical stress–strain curves for elastomeric open-cell foams (Fig. 6A
and B), which are characterized by three distinct regions: a linear
elastic regime, a collapse plateau regime and a densification re-
gime [54,60] (annotated in Fig. 6A). The linear elastic regime in
elastomeric foams is controlled by cell wall (strut) bending. When
loading is compressive, the struts buckle and collapse, giving rise
to the collapse plateau, where stress remains relatively constant
despite increasing strain. The densification regime results when
the cells have almost completely collapsed and opposing walls
touch; further strain compresses the solid itself (compaction), giv-
ing rise to a final region of increasing stress. Since the integral
structure of a foam scaffold is continuous, the structure fails by
deformation of the polymer struts surrounding the individual
pores.
Open-cell foams collapse at almost constant load, giving rise to
a long, flat plateau, as can be observed in Fig. 6B. In closed-cell
foams, the compression of gas within the cells, together with mem-
brane stress that appears in the cell faces, give a stress–strain curve
which rises with strain [54]. Thus, the stress–strain curve of 57 kDa
PDLLA scaffolds fabricated with a depressurization rate of
23.2 bar min�1 (Fig. 6A) would indicate the presence of a greater
number of closed cells compared to that fabricated with a depres-
surization rate of 5.2 bar min�1 (Fig. 6B). This can also be observed
in the interconnectivity values (Fig. 5). The morphology of 57 kDa
scaffolds, before and after compression and formed at 23.2 and
5.2 bar min�1, is shown in Fig. 7(A, B, E and F).

The Young’s modulus, elastic collapse stress and compressive
strength were consistently much higher for the 57 kDa scaffolds
than for the 25 and 15 kDa scaffolds (Fig. 8). This trend was also
observed with a series of solid cubes manufactured for each poly-
mer molecular weight. The Young’s modulus was consistently
higher for the 57 kDa cubes, but there was no significant difference
between the cubes created from 25 and 15 kDa PDLLA (data not
shown). The scaffold morphology and pore structure defined the
mechanical integrity for the 57 kDa scaffolds. Increasing the rela-
tive density of 57 kDa foams, corresponding to a decrease in poros-
ity in scaffolds fabricated with a depressurization rate of
23.2 bar min�1, led to a statistically significant higher Young’s
modulus (Fig. 7A). The compressive strength of the 57 kDa
scaffolds fabricated at a depressurization rate of 23.2 bar min�1

was similar to that described for cancellous (trabecular) bone
(2–12 MPa) [61,62]. It has been suggested that low-density trabec-
ular bone resembles an open-cell foam and cellular solids models
suggest that trabecular bone fails by elastic buckling [63].

Scaffolds fabricated from 25 and 15 kDa PDLLA did not exhibit
the typical stress–strain behaviour of elastomeric open-cell foams,
but rather appeared to behave as brittle foams (Fig. 6). This is also
apparent in the scanning electron microscopy (SEM) images of the
25 kDa foams, before and after compression and fabricated at
depressurization rates of 23.2 and 5.2 bar min�1 (Fig. 7C, D, G
and H). There was no linear elastic behaviour due to strut bending;
instead, a fault line generally propagated through the structure to
cause brittle fracture.

Brittle foams collapse by the mechanism of brittle crushing. The
crushing strength can be obtained by assuming that strut rupture
is constant throughout the structure; the relative density is thus
the most important factor affecting mechanical behaviour [64].
However, this was not observed with the 25 and 15 kDa brittle
foams. In Fig. 4A the 25 and 15 kDa scaffolds (fabricated at
23.2 bar min�1) possess equivalent relative densities, yet the
Young’s moduli (Fig. 7A) and compressive strengths (not shown)
are significantly different. One possible explanation for this is that
the molecular weight of the polymer could dictate the behaviour of
the foam. Alternatively, these brittle foams could follow a Weibull
distribution [54,64] with an inherent size effect, whereby large
specimens fail at lower stresses than small ones because it is more
probable that they will contain a larger pre-existing crack. A corol-
lary of this is that, for brittle open-cell foams of the same relative
density, the crushing strength decreases with increasing cell size;
the strut strength increases with smaller cell sizes. Thus the larger
pore size of the 15 kDa foam (Fig. 4B 23.2 bar min�1) dictates that
the foam will crush more easily than the 25 kDa foam possessing
equivalent relative density but a smaller pore size.

With brittle foams, progressive crushing can lead to a plateau,
which ends when the material is completely crushed. The very por-
ous 15 kDa PDLLA foam fabricated at 5.2 bar min�1 needed very lit-
tle strain to crush it (Fig. 6F). The most obvious plateau can be
observed in Fig. 6C for the 25 kDa PDLLA scaffold fabricated at
23.2 bar min�1. This structure was the most homogeneous of all
the 25 kDa scaffolds. Gibson and Ashby [54] observed that
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imperfections in the foam, such as non-uniformities in the relative
density (for example, irregular shaped pores or heterogenic pore
distributions), can induce cell wall bending. In the case of the brit-
tle foams, although true cell wall bending possibly does not occur,
heterogeneity reduces the Young’s modulus, most clearly in the
case of the 25 kDa foams (Figs. 2A and C and 6C and D).

4. Conclusions

ScCO2 foaming can produce open-cell, interconnected struc-
tures in a solvent-free, low-temperature process. Foams of varying
structural and mechanical properties can be fabricated from differ-
ent molecular weights of PDLLA (57, 25 and 15 kDa) and by varying
the depressurization rate. Rapid depressurization rates (fast vents)
produced scaffolds with homogeneous pore distributions and some
closed pores. Decreasing the depressurization rate produced scaf-
folds with wider pore size distributions and larger, more intercon-
nected pores. In compressive testing, scaffolds produced from 25
and 15 kDa PDLLA behaved as brittle foams and collapsed by the
mechanism of brittle crushing. Scaffolds fabricated from 57 kDa
PDLLA exhibited typical stress–strain curves for elastomeric open-
cell foams. The Young’s modulus was increased at high depressur-
ization rates, due to the increased relative density of the foams.
Analogous compressive strengths to cancellous bone were
achieved with scaffolds fabricated at 23.2 bar min�1. This strength
and similarity of mechanical behaviour ensures that 57 kDa PDLLA
scCO2 scaffolds are suitable for potential applications in bone tis-
sue engineering.
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